用户名: 密码: 验证码:
菠菜镉积累及生理效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镉(Cd)是环境中迁移性和毒性最强的重金属元素之一。菠菜对Cd有较强的吸收能力,且是人们喜食的绿叶蔬菜之一。随农田污染日益严重,菠菜生长易受Cd污染危害。因此,研究降低菠菜吸收积累Cd的方法亟待进行。本论文利用盆栽试验,较为系统的研究了Cd影响菠菜生长及其Cd积累的生理机制,并探索了某些外源物质如硅(Si)、微生物对减少菠菜Cd吸收、积累的影响机理。
     (1)Cd毒害菠菜实验结果:盆栽试验土壤Cd处理浓度分别为0.17、2.13、6.20、8.47和19.60 mg·kg-1,以强力全能和益农398两个菠菜品种为实验材料。随Cd处理浓度的增加,2个菠菜品种各生长和生理指标的变化趋势分别为:地上部和地下部生物量(鲜重和干重)、可溶性糖含量、VC含量、POD及CAT活性呈显著减小趋势;地上部和地下部Cd含量、土壤有效Cd含量、还原糖含量、质膜透性、MDA含量显著增加;地上部和地下部Cd积累量、地上部P及Pro含量、SOD活性先显著增加后显著减小;地上部N、K含量先显著下降后显著上升。另外,2个菠菜品种叶绿体光合色素含量随Cd含量变化不一致,强力全能显著降低,益农398不明显;可溶性蛋白质含量随Cd浓度增加先降低后上升,但较对照均未达到显著性水平。
     2个菠菜品种地上部Cd积累量显著高于地下部Cd积累量;在不同Cd水平下,强力全能和益农398地上部Cd积累量分别是地下部Cd积累量的5.53-13.13倍和9.15-16.26倍。从安全角度看,强力全能和益农398地上部Cd含量对照组均未超标,加Cd后菠菜地上部Cd含量出现超标;菠菜Cd积累的富集系数及转运系数均小于1,不符合超积累植物标准。
     (2)Si缓解实验结果:盆栽试验土壤Cd处理浓度分别为0.17、2.13、6.20、8.47和19.60 mg·kg-1,Si浓度为0、100、200 mg·kg-1(分别标记为CK、T1、T2),组成Si、Cd复合处理。以强力全能为实验材料。加Si使菠菜地上部干重、地下部干重、地上部N、K含量及SOD、POD、CAT活性分别增加了14.4%-75.0%、0.0%-60.9%、2.6%、2.9%、2.0%-15.1%、1.2%-34.2%和2.9%-27.8%;使菠菜地上部Cd含量、地下部Cd含量、土壤有效Cd含量、地上部P含量和MDA含量分别下降了0.7%-46.2%、3.9%-47.9%、0.6%-35%和7.2%-32.1%;且使Cd由地下部向上地上部转移减少,地上部Cd含量相对降低,这可以从Cd积累量的降低率看出。通过对Si浓度比较得出,T2较T1处理更能缓解菠菜Cd毒害。
     (3)微生物缓解实验结果:采用盆栽方法模拟土壤Cd轻度污染(1 mg·kg-1Cd)状况,研究施入3种微生物菌剂(枯草芽孢杆菌、光合细菌和乳酸菌)对菠菜生长及对Cd吸收的影响。以益农398为实验材料。施入微生物菌剂后,菠菜单株鲜重和干重平均增长幅度分别为18.8%和15.7%,微生物对菠菜生长的促进作用大小为:光合细菌>乳酸菌>枯草芽孢杆菌;此外,菠菜植株Cd含量显著减少,平均下降幅度为14.5%,微生物对菠菜Cd吸收的降低作用大小为:枯草芽孢杆菌>光合细菌>乳酸菌。实验还得到,菠菜植株Cd含量与菌数呈显著负相关。
Cadmium (Cd) is one of the most mobile and toxic heavy metals in environment. Spinach has high ability to accumulate cadmium and is a very important green leafy vegetables in China. In the production, spinach is easily polluted by Cd, which is one of the most toxic heavy metalsto both plants and animals. Therefore, it’s necessary to reduce Cd uptake and accumulation in spinach. In this study, these experiments will be carried out to study the physiological mechanism in effects of Cd contents in plants of spinach with a plot experiment. Meanwhile, the possibility to reduce Cd uptake and accumulation in spinach by application of Silicon (Si) or microorganisms will be also studied. The major results were summarized as follows:
     (1) Cd toxicity experiment results: In a plot experiment, five Cd levels, i.e. 0.17, 2.13, 6.20, 8.47 and 19.60 mg·kg-1 were designed based on the Qiangli Quanneng and Yinong398 which are the different tolerance spinach varieties of cadmium. With the levels of cadmium added in soil, the results showed that: the fresh weight and dry weight of shoot and root, soluble sugar content, Vitamin C content, POD and CAT activities in two varieties all showed upward significantly; Cd contents of shoot and root, available-Cd content, reducing sugar content, Relative electrolyte leakage proline content and MDA content all showed downward significantly; Cd accumulation of shoot and root, K content of shoot, proline content and SOD activity showed significant upward first and then downward significantly; N and K contents of shoot showed significant downward first and then upward significantly. Meanwhile, The chloroplast pigment of two spinach varieties had the different change to Cd with decrease significantly of Qiangli Quanneng and no significant of Yinong398; solutable protein content showed downward first and then upward, but no significantly.
     Cd accumulation of shoot in two spinach varieties was higher than that of root. The Cd accumulation of shoot in Qiangli Quanneng spinach was 5.53-13.13 times than that of root while 9.15-16.26 times in Yinong398. The Cd contents of shoot were less than standard in no Cd added treatment and then the opposite in Cd added treatments. Values of PAF and TF in two spinach varieties under different Cd levels were all less than 1, and so spinach was not hyperaccumulator.
     (2) Si alleviating Cd toxicity experiment results: In a plot experiment, five Cd levels, i.e. 0.17, 2.13, 6.20, 8.47, 19.60 mg·kg-1, and three Si levels, i.e. 0, 100, 200 mg·kg-1 were designed based on the Qiangli Quanneng. With the levels of Si added in soil, the increasing rates of dry weight of shoot and root, N and K contents of shoot, SOD, POD and CAT activities were 14.4%-75.0%, 0.0%-60.9%, 2.6%, 2.9%, 2.0%-15.1%, 1.2%-34.2% and 2.9%-27.8% respectively; the decreasing rates of Cd contens of shoot and root, available-Cd content, K content of shoot and MDA content were 0.7%-46.2%, 3.9%-47.9%, 0.6%-35% and 7.2%-32.1% respectively. The decreasing rates of Cd accumulation reflected that Cd content of shoot decreased relatively. We also concluded that the T2 treatment was better than the T1 in alleviating Cd toxicity.
     (3)Microorganisms alleviating Cd toxicity experiment results: Effect of three kinds of microorganisms on growth and cadmium uptake in spinach was investigated with a pot experiment in greenhouse based on the Yinong398. When plants were supplied with microorganisms, fresh and dry weight per plant were average increased 18.8% and 15.7% respectively and Cd conent in spinach was average decreased 14.5%. Besides, we also concluded that Cd content in plant was negative correlated with microbial concentration significantly.
引文
[1]宫靖.镉米杀机[EB/OL].http://news.ifeng.com/opinion/special/dudami/detail201102/16/46 963042.shtml, 2011-2-16.
    [2]甄燕红,成颜君,潘根兴,李恋卿.中国部分市售大米中Cd、Zn、Se的含量及其食物安全评价[J].安全与环境学报,2008,8(1):119-122.
    [3]Simon L. Cadium accumulation and distribution in sunflower plant [J]. Plant Nutr, 1998, 21: 341-352.
    [4]鞠殿民,范丽颖,李景梅,等.镉对菠菜生长影响的基因型差异研究[J].安徽农业科学,2009,37(4):1441-1442.
    [5]李景梅,葛建镕,冯耀勇,等.不同镉水平对菠菜生长及营养元素含量的影响[J].长春理工大学学报, 2007,30(4):72-75.
    [6]阳继辉.几种蔬菜对镉胁迫适应性差异及机制研究[D].广西:广西大学,2007.
    [7]Mengel K. [德] , Kirkby E. A. [英].(张宜春等译).植物营养原理[M].北京:农业出版社,1987.
    [8]蔡德龙,陈常友,小林均.硅肥对水稻镉吸收影响初探[J].地域研究与开发,2000,19(4): 69-71.
    [9]陈秀芳,赵秀兰,夏章菊,等.硅缓解小麦镉毒害的效应研究[J].西南农业大学学报(自然科学版), 2005,27(4):447-450.
    [10]杨超光,豆虎,梁永超,等.硅对土壤外源镉和玉米吸收镉的影响[J].中国农业科学,2005,38(1):116-121.
    [11]Chen Y X, Wang Y P, Lin Q, et al. Effect of copper-tolerant rhizosphere bacteria on mobility of copper in soil and copper accumulation by Elsholtzia splendens [J]. Environ Int, 2005, 31: 861-866.
    [12]Burd G L, Dixon B R. Plant growth-promoting bacteria that decrease heavy metal toxicityin plants [J]. Can J Microbiol, 2000, 46: 237-245.
    [13]Sitaula B K, Almas A, Bakken L R, et al. Assessment ofheavymetals associated with bacteria in soil [J]. Soil Biol Biochem, 1999, 31: 315-316.
    [14]汪洪,赵士诚,夏文建,等.不同浓度镉胁迫对玉米幼苗光合作用、脂质过氧化和抗氧化酶活性的影响[J].植物营养与肥料学报,2008,14(1):36-42.
    [15]陈志良,莫大伦,仇荣亮.镉污染对生物有机体的危害及防治对策[J].环境保护科学,2001,27(4):37-39.
    [16]何李生.镉对水稻生长和养分吸收的影响及质外体在水稻耐受镉毒害中的作用[D].浙江:浙江大学,2007.
    [17]Ben Ammar W, Tray B, Zarrouk M, et al. Cadmium effects on mineral nutrition and lipid contents in tomato leaves. J Soc Biol., 2005, 199(2): 157-163.
    [18]王志坤,廖柏寒,黄运湘,等.镉胁迫对大豆幼苗生长影响及不同品种耐镉差异性研究[J].农业环境科学学报,2006,25:1143-1147.
    [19]李子芳,刘惠芬,熊肖霞,等.镉胁迫对小麦种子萌发幼苗生长及生理生化特性的影响[J].农业环境科学学报,2005,24:17-20.
    [20]赵胡,郑文教,陈杰.土壤镉污染对大蒜幼苗生长及根系抗氧化系统的影响[J].生态学杂志,2008,27(5):771-775.
    [21]黄凯丰,杨凯,江解增,等.镉胁迫对茭白生长及产品残留量的影响[J].中国蔬菜,2008(2):12-14.
    [22]王连臻.镉对小麦苗期生长及生理指标的影响[J].安徽农业科学,2008,36(9):3529-3530.
    [23]章秀福,王丹英,储开富,等.镉胁迫下水稻SOD活性和MDA含量的变化及其基因型差异[J].中国水稻科学,2006,20(2):194-198.
    [24]Karina B.Balestrasse, Susana M.Gallego, María P.Benavides, et al. Polyamines and proline are affected by cadmium stress in nodules and roots of soybean plants [J]. Plant and Soil, 2005, 270: 343-353.
    [25]Florijn P J, Nelemans J A, VAN Beusichem M L. Cadmium uptake by lettuce varieties [J]. Neth J Aagric Sci, 1991, 39, 103-104.
    [26]夏增禄.中国土壤环境容量[M].北京:地震出版社,1992.
    [27]Clarke.B B, Brennan.E. Differential cadmium accumulation and phytotoxicity in sixteen tobacco cultivars [J]. JAPCA,1989, 39(10): 1319-1322.
    [28]Guttornsen G, Singh B.R., Jeng A.S.. Cadmium concentration in vegetable crops grown in a sandy soil as affected by Cd levels in fertilizer and soil pH [J]. Nutrient Cycling in Agroecosystems, 1995, 4(1): 27-32.
    [29]Moustakes N K, Akoumianakis K A, Passam H C. Cadmium accumulation and its effect on yield of lettuce, radish , and cucumber [J]. Commun Soil Sci Plant Anal, 2001, 32(11/12): 1793-1802.
    [30]李铭红,李侠,宋瑞生.受污农田中农作物对重金属镉的富集特征研究[J].中国生态农业学报, 2008,16(3):675-679.
    [31]AuthurB., CrewsH., Morgan C. Optimizing plant genetic strategies for minizing environmental contamination in the food chain [J]. Internal Phytoremedian, 2000, 2 (1): 1-21.
    [32]Verma M P. Macromolecular interation with cadmium and the effects of Zine, Copper, lead and Mercury ions [J]. Biological Trace Element Research, 1982, 4: 35-43.
    [33]陈平,张伟锋,余土元,等.镉对水稻幼苗生长及部分生理特性的影响[J].仲恺农业技术学院报, 2001,14(4):18-21.
    [34]金国贤.镉对植物根系的危害及其作用机理研究[D].浙江:浙江大学,1997.
    [35]王永锐,周建华.硅营养对缓解水稻幼苗Cd、Cr毒害的生理研究[J].应用环境生物学报.1999,5(l):11-15.
    [36]陈国祥,施国新,何兵.Hg、Cd对纯菜越冬芽光合膜光化学活性及多肤组分的影响[J].环境科学学报,1999, 19(5):521-525.
    [37]Cagno R.d., L.Guidi, A.Stefani. Effects of cadmium on Krowth of llelianthus annulus seedlings: Physiological aspects [J]. New Phytologist, 1999, l44 (1): 65-71.
    [38]周青,黄晓华.Sm-Gly-VB6对Pb-Cd胁迫下五种树木若干生理生化指标的影响[J].环境污染与防治,2002, 24(4):201-203.
    [39]Gil J, Moral R, Gomez L, et al. Effects of cadmium on physiological and nutritional aspects of tomato plantⅠ.ChloroPhyll (a and b) and carotenoids [J]. Fresenius Environ Bull, 1995, 4: 430-435.
    [40]洪仁远,蒲长辉.镉对小麦幼苗的生长和生理生化反应的影响[J].华北农学报,1991,6(3):70-75.
    [41]杨居荣,鲍子平,张素芹,等.镉、铅在植物细胞内的分布及其可溶态结合形态[J].中国环境科学,1995,6 (1) :57-912.
    [42]李元,王焕校,吴玉树,等.Cd、Fe及其复合污染对烟草叶片几项生理指标的影响[J].生态学报, 1992,12(2):147-154.
    [43]Bartolf M, Brennna E. Partial characterization of a cadmimu-binding Portein from the roots of cadmium treated tomato. Plant Physiol., 1980, 66: 438-441.
    [44]Lovemaige.活性氧[EB/OL]. http://baike.baidu.com/view/1097219.htm,2011- 3-31.
    [45]Foyer C.H., Noctor G. Oxygen Processing in photosynthesis: regulation and signaling [J].New Phytologist, 2000, 146: 359-388.
    [46]Vitoria A.P., Lea P.J., Azevedo R.A.. Antioxidant enzymes responses to cadmium in radish tissues [J]. Phyto- chemistry, 2001, 57: 701-710.
    [47]Foyer C.H., H.Lopez-Delgado, J.F.Dat, et al. Hydrogen peroxide and glutathione-associated mechanism of acclamatory stress tolerance and signaling. Physiol. Plant, 1997, 100: 241-254.
    [48]Baisak R D, Rana P B B, Acharya M K. Alterations in the activities of active oxygen scavenging enzymes of wheat leaves subjected to water stress [J].Plant Cell Physiol, 1994, 35, 489-495.
    [49]Bowler Chris. Superoxid edismutase and stress toleranee [J]. Ann Rev Plant Physiol Plant Biol, 1992, 43: 83-116.
    [50]Asada K. Production and action of active oxygen in photosynthetic tissue [M]. Bota Raton: CRC Press, 1994, 77-104.
    [51]刘晓.不同品种烟草忍耐镉的机制研究[D].重庆:西南大学,2007.
    [52]严重玲,付舜珍,方重华,等.Hg、Cd及其共同作用对烟草叶绿素含量及抗氧化酶系统的影响[J].植物生态学报,1997,21(5):468-473.
    [53]徐勤松,施国新,郝怀庆.Cd,Cr(Ⅵ)单一及复合污染对菹草叶绿素含量和抗氧化酶系统的影响[J].广西植物,2001,21(l):87-90.
    [54]黄玉山,罗广华,关棨文.镉诱导植物的自由基过氧化损伤[J].植物学报,1997,39(6):522-526.
    [55]孙赛初,王焕校,李启任.水生维管束植物受镉污染后的生理变化及受害机制初探[J].植物生理学报,1985, 11(2):113-121.
    [56]Chaoui A, Mazhoudi S, Ghorbal M N, et al. Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgarisL.) [J]. Plant Science, 1997, 127: 139-147.
    [57]杨丹慧.重金属离子对高等植物光合膜结构与功能的影响[J].植物学通报,1991,8(3):26-29.
    [58]洪仁远.镉对小麦幼苗超氧化物歧化酶活性和脂质过氧化作用变化的影响[G].中国植物生理学会第6次全会论文汇编,1993.
    [59]Ashraf Metwally, Vera I Safronova, Andrei A Belimov, et al. Genotypic variation of the response to cadmium toxicity in Pisum sativum L [J]. Joumal of Experimental Botany, 2005, 56(409) : 167-178.
    [60]黄运湘.镉对大豆的毒害效应及不同大豆品种耐镉差异性研究[D].湖南:湖南农业大学,2006.
    [61]汤章城.逆境条件下植物脯氨酸的累积及其可能意义[J].植物生理学通讯.l984.(l):15-21.
    [62]邵国胜.水稻镉耐性和积累的基因型差异与机理研究[D].浙江:浙江大学,2005.
    [63]秦天才,吴玉树,王焕校,等.镉、铅及其相互作用对小白菜生理生化特性的影响[J].生态学报,1994,14 (l):46-50.
    [64]刘吉振.高锌胁迫对不同品种大白菜产量和品质的影响[D].重庆:西南大学,2006.
    [65]王焕校.污染生态学基础[M]昆明:云南大学出版社,1990.
    [66]Burzynski M. The influence of lead and cadmium on the absorption and distribution of potassium, calcium, magnesium and iron in cucumber seedlings [J]. Acta Physiologiae Plantarun, 1987, 9 (4) : 229-238.
    [67]杨明杰,林咸永,杨肖娥,等.Cd对不同种类植物生长和养分积累的影响[J].应用生态学报,1995,9(1):59-94.
    [68]Chaffei C H, Gorbel M H. Nitrogen metabolism of tomato under cadmium stress conditions [J]. J Plant Nurt, 2003, 26: 1671-1634.
    [69]Fabio F Noeito, Livia Pirovano, Maurizio Cocucci, et al. Cadmium-induced sulfate uptake in maize roots [J]. Plant Physiology, 2002, 129 (4) : 1872-1880.
    [70]Nocito FF, Pirovano L, Cocucci M, et al. Cadmium-induced Sulfate uptake in Maize Roots [J]. Plant Physiology, 2002, 129: 1872-1879.
    [71]Fu Bao-rong, Li Fa-yun, Xiao Peng-fei, et al. Interactive Effects of Low Molecular Weight Organic Acids and Cadmium on Some Biochemical Compounds and Growth in Wheat Seedlings [J]. Journal of Liaoning University (Natural Sciences Edition), 2003, 30(3): 270-274.
    [72]孙仲秧.外源脱落酸缓解水稻镉毒害的生理机制研究[D].浙江:浙江大学,2006.
    [73]钱海胜,陈亚华,王桂萍,等.镉在不结球白菜中的积累及外源脱落酸对镉积累的影响[J].南京农业大学学报,2008,31(4):61-65.
    [74]杨艳,汪敏,刘雪云,等.三种有机酸对镉胁迫下油菜生理特性的影响[J].安徽师范大学学报(自然科学版),2007,30(2):158-162.
    [75]Sanjib Kumar Panda, Hemanta Kumar Patra. Effect of salicylic acid potentiatescadmium-induced oxidative damage in Oryza sativaa L. leaves [J]. Acta Physiologiae Plantarum, 2007, 29(6): 567-575.
    [76]张佩,周琴,孙小芳,等.抗坏血酸对镉胁迫下油菜幼苗生长的影响[J].农业环境科学学报, 2008,27(6):2362-2366.
    [77]曾路生,廖敏.镉污染对水稻土微生物量、酶活性及水稻生理指标的影响[J].应用生态学报, 2005,16(11):2162-2167.
    [78]Gao QH, Wang XF, Shi QH, et al. Effects of lanthanum on the plant growth and leaf antioxidative enzyme activities of cucumber seedings under nitrate stress [J]. Ying Yong Sheng Tai Xue Bao, 2008, 19 (5): 976-980.
    [79]张丽霞,梁利芳,莫乙娟,等.稀土-苯氧乙酸二元、三元配合物的表征及其对植物铅、Cd污染的影响[J].稀土,2006,27(2):66-69.
    [80]马建军,朱京涛,于瑞芹.单一稀土处理油菜种子对其吸收镉的影响[J].河北农业技术师范学院学报, 1998,12(4):13-16.
    [81]任艳芳,何俊瑜,周国强,等.镨对镉胁迫下水稻幼苗根系生长和根系形态的影响[J].生态环境学报, 2010,19(1):102-107.
    [82]张亚丽,沈其荣,姜洋.有机肥料对镉污染土壤的改良效应[J].土壤学报, 2001,38(2): 212- 218.
    [83]张亚丽.猪粪和稻草对镉污染黄泥土生物活性的影响[J].应用生态学报, 2003,14(11):1997-2000.
    [84]李支援.镉污染土壤的改良研究[J].工程设计与建设, 2003, 35(3):42- 46.
    [85]李明德.海泡石对镉污染土壤改良效果的研究[J].土壤肥料, 2005,(1):42- 44.
    [86]王凯荣,张玉烛,胡荣桂,等.不同土壤改良剂对降低重金属污染土壤上水稻糙米铅镉含量的作用[J].农业环境科学学报,2007,26(2):476-481.
    [87]李佳华,林仁漳,王世和,等.改良剂对土壤-芦蒿系统中镉行为的影响[J].环境化学,2009,28(3):350-354.
    [88]Gamtse.硅肥[EB/OL]. http://baike.baidu.com/view/142202.htm, 2010-8-11.
    [89]张浩,王济,郝萌萌,等.土壤-植物系统中镉的研究进展[J].安徽农业科学,2009,37(7):3210-3215.
    [90]滕应,骆永明,李振高.污染土壤的微生物修复原理与技术进展[J].土壤,2007,39(4):497-502.
    [91]Macaskie LE, Dean ACR, Cheethan AK, et al. Cadmium accumulation by a citrobacter sp.: The chemical nature of the accumulated metal precipitate and its location on the bacterial cells [J]. J Gen.Microbiol., 1987, 133: 539-544.
    [92]郭凌.光合细菌在防治重金属对农作物污染中的作用及机理研究[D].山西:山西大学,2007.
    [93]刘茵,孔凡美,冯固,等.丛枝菌根真菌对紫羊茅镉吸收与分配的影响[J].环境科学学报,2004,24 (6):1122-1127.
    [94]胡振琪,杨秀红,高爱林,等.镉污染土壤的菌根修复研究[J].中国矿业大学学报, 2007, 36(2): 237-240.
    [95]陈怀满.影响土壤吸附镉的若干因子[J].土壤,1988(3):131-136.
    [96]肖美秀,梁义元,梁康迳,等.水稻重金属污染及其控制技术的研究进展[J].亚热带农业研究, 2005,1(3):40-43.
    [97]秦世学.土壤Cd污染对作物的影响及作物对土壤Cd的吸收[J].环境科学丛刊,1983,4(10):8-19.
    [98]刘燕,蒋光霞.硒对镉胁迫下油菜生物学特性的影响[J].河南农业科学,2008(3):47-50.
    [99]王松华,周正义,陈庆榆,等.外源一氧化氮对镉胁迫下绿豆幼苗根尖抗氧化酶的影响[J].激光生物学报,2007,16(1):62-67.
    [100]Jin Xu, Wenying Wang, Hengxia Yin, et al. Exogenous nitric oxide improves antioxidative capacity and reduces auxin degration in roots of Medicago truncatula seedlings under cadmium stress [J]. Plant Soil, 2010, 326: 321-330.
    [101]王欣,刘云国,艾比布·努扎艾提,等.苎麻对镉毒害的生理耐性机制及外源精胺的缓解效应[J].农业环境科学学报,2007,26(2):487-493.
    [102]高柳青,杨树杰.硅对小麦吸收镉锌的影响及其生理效应[J].中国农学通报,2004,20(5): 246-249.
    [103]臧惠林,郑春荣,陈怀满.控制镉污染土壤上作物吸收镉的研究Ⅱ.对小麦和后作水稻的控制效果[J].农业环境保护,1989,8(1):33-34.
    [104]秦淑琴,黄庆辉.硅对水稻吸收镉的影响[J].新疆环境保护,1997,19(3):51-52.
    [105]李德明,朱祝军.Si对Cd胁迫下小白菜生长及叶绿素荧光的影响[J].浙江农业学报, 2006,18(4):212-215.
    [106]Shi Q H, Bao Z Y, Zhu Z J, et al. Silicon-mediated alleviation of Mn toxicity in Cucumis sativus in relation to activities of superoxide dismutase and ascorbate peroxidase [J]. Phytochemistry, 2005, 66: 1551-1559.
    [107]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000.
    [108]高俊凤等.植物生理学实验指导[M].北京:高等教育出版社,2006.
    [109]郝建军,康宗利,于洋.植物生理学实验技术[M].北京:化学工业出版社,2006.
    [110]王晶英,敖红,张杰,等.植物生理生化实验技术与原理[M].哈尔滨:东北林业大学出版社,2003.
    [111]李德明.白菜镉积累及生理的研究[D].浙江:浙江大学,2003.
    [112]马朝红,曾德生.土壤中镉对水稻生长的影响.湖北农业科学,1992.(2):26-30.
    [113]ZU Y Q, LI Y, CHRISTIAN S, et al. Accumulation of Pb, Cd, Cu and Zn in plants and hyperaccumulator choice in Lanping lead-zinc mine area, China [J]. Environment International, 2004, 30: 567-576.
    [114]MCGRATH S P,LOMBI E,GRAY C W, et al. Field evaluation of Cd and Zn phytoextraction potential by the hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri [J]. Environmental Pollution, 2006, 141:115-125.
    [115]赵中秋,朱永官,蔡运龙.镉在土壤-植物系统中的迁移转化及其影响因素.生态环境,2005,14(2):282-286.
    [116]吴双桃.镉污染土壤超富集植物选择和镉-锌复合污染实验研究[D].长沙:中南林学院,2003.
    [117]刘秀梅,聂俊华,王庆仁.六种植物对Pb的吸收与耐性研究[J].植物生态学报,2002,26(5):533-537.
    [118]王凯荣.镉对不同基因型水稻生长毒害影响的比较研究[J].农村生态环境,1996,12(3):18-23.
    [119]Grant CA, Bailey LD. Effects of phosphorus and zinc fertilizer management effects on cadmium accumulation in flaxseed [J]. Journal of Science Food and Agriculture, 1997, 73: 307-314.
    [120]Maier N A, Mclaughlin M J, Heap M, et al. Effects of current-season application of calciti lime and phosphorus fertilization on soil pH, Potato, growth, yield, dry matter content and Cadmium concentration [J]. Communications in Soil Science and Plant Analysis, 2002, 33
    (13-14) : 2145-2165.
    [121]杨志敏,郑绍建,赵秀兰,等.磷对小麦细胞镉、锌的积累及在亚细胞内分布的影响[J].环境科学学报, 1999,19(6):693-695.
    [122]张国平,深见元弘,关本根.不同镉水平下小麦对镉及矿质养分吸收和积累的品种间差异[J].应用生态学报,2002,13(4):454-458.
    [123]Jail A, Selles F, Clarke JM. Effect of cadmium on growth and uptake of cadmium and other elements by Durum wheat [J]. J Plant Nutr, 1994, 17: 1839-1958.
    [124]郭智,王涛,奥岩松.镉对龙葵幼苗生长和生理指标的影响[J].农业环境科学学报,2009,28(4):755-760.
    [125]孙铁珩,周启星,李培军.污染生态学[M].北京:科学出版社,2001.
    [126]Shi G X, Xu Q S, Xie K B, et al. Physiology and ultrastructure of Azolla imbricated by and Cd2+ toxicity [J]. Acta Botanica Sinica, 2003, 45 (4) : 437-444.
    [127]Woolhouse H W. Longevity and senescence in plant [J]. Sci Prog Oxford, 1974, 61: 123-147.
    [128]张杰,梁永超,娄运生,等.镉胁迫对两个水稻品种幼苗光合参数、可溶性糖和植株生长的影响[J].植物营养与肥料学报,2005,11(6):774-780.
    [129]陈朝明,龚慧群,王凯荣. Cd对桑叶品质、生理生化特性的影响及其机理研究[J].应用生态学报,1996,7(4): 417-423.
    [130]Arrigoni O, Calabrese G, De Gara L, et al. Correlation between changes in cell ascorbate and growth of Lupinus albus seedlings [J]. Journal Plant Physiology, 1997, 150:302-308.
    [131]De Tullio M C, Paciolla C, Della Vecchia F, et al. Changes in onion root development induced by the inhibition of peptidyl prolyl hydroxylase and influence of the ascorbate system on the cell division and elongation [J]. Planta, 1999, 209: 424-434.
    [132]Schützendübel A, Schwanz P, Teichamann T, et al. Cadmium-induced changes in antioxidant systems, hydrogen peroxide content, and differentiation in scots pine roots [J]. Plant Physiol, 2001, 127: 887-898.
    [133]孙光闻,朱祝军,方学智.镉对白菜活性氧代谢及H2O2清除系统的影响.中国农业科学,2004,37(12):2012-2015。
    [134]喻敏,萧洪东,陈跃进.硼钼对低温下海滨雀稗可溶性糖和游离脯氨酸含量的影响[J].作物学报,2004,30(8): 847-848.
    [135]刘亚云,孙红斌,陈桂珠,等.秋茄幼苗对多氯联苯污染的生理生态响应[J].生态学报.2007,27(2):747- 754.
    [136]Gouia H, Habib Ghorbal M, Meyer C. Effeets of cadmium on activity of nitrate reductase And on other enzymes of the nitrate assimilation pathway in bean [J]. Plant Physiology and Bioehemistry, 2000, 38 (7-8): 629-638.
    [137]史吉平,董永华,韩建民.铬对小麦幼苗脯氨酸含量的影响[J].农业环境保护,1996,15(4):182-184.
    [138]邬飞波.大麦镉积累和耐镉基因型差异的机理研究[D].浙江:浙江大学,2002.
    [139]Root R A, Miller RJ, Koeppe DE. Uptake of cadmium-its toxicity and effect on the iron ratio in hydroponically grown corn [J]. Environ Qual, 1975 (4) : 473-476.
    [140]Shah K, Kumar R G, Verma A, et al. Effect of cadmium on lipid peroxidation,superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings [J]. Plant Science, 2001, 161: 1135-1141.
    [141]李合生.现代植物生理学[M].北京:高等教育出版社,2002.
    [142]Salin M L. Toxic oxygen species and protective systems of the chloroplast [J]. Physiol Plant, 1987, 72: 681-689.
    [143]Foyer C H, Lelandais M, Kunert K J. Photooxidative stress in plants [J]. Physiol Plant, 1994, 92: 693-717.
    [144]Sanita L, Gabbrielli R. Response to cadmium in higher plants [J]. Environ Exp Bot, 1999, 41: 105-130.
    [145]Sandalio L M, Dalurzo H C, Gomez M, et al. Cadmium-induced changes in the growth and oxidative metabolism of pea plants [J]. Journal of Experimental Botany, 2001, 52: 2115-2126.
    [146]Di Toppi L S, Gabbrielli R. Response to cadmium in higher plants [J]. Environmental and Experimental Botany, 1999, 41: 105-130.
    [147]Degraeve N. Carcinogenic, teratogenic and mutagenic effects of cadmium [J]. Mutation Research, 1981, 86 (1): 115-135.
    [148]黄秋婵,韦友欢,黎晓峰.硅对Cd胁迫下水稻幼苗生长及其生理特性的影响[J].湖北农业科学,2007,46 (3):354-357.
    [149]Khan A G, Kuek C, Chaudhry T M, et al. Role of plants, mycorhizae and phytochelatorsin heavy metal contaminated land remediation [J]. Chemosphere, 2000, 41: 197-207.
    [150]Joner E J, Leyval C. Uptake of 109Cd by roots and hyphae of a glomusmosseae/Trifolium subterraneum mycorrhiza from soil amended with high an low concentrations of cadmium [J]. New Physiol, 1997, 135: 352-360.
    [151]陈保冬.丛枝菌根减轻宿主植物锌、镉毒害机理研究[D].北京:中国农业大学,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700