用户名: 密码: 验证码:
新型纳米材料用于电化学生物传感界面的构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电化学生物传感器是近年来迅速发展起来的一种全新的生物传感器。该类传感器具有灵敏度高、成本低、选择性好、易于微型化等优点,在临床医学检验、环境监测和食品工程等领域有广阔的应用前景。电化学生物传感器构制的一个关键技术在于如何将生物组分稳定、高效的固定到基体上面。本研究论文通过发展新型生物材料固定方法,构制了一系列性能良好的电化学DNA生物传感器和适体传感器以达到改进固定生物组分活性、延长传感器的使用寿命等目的。本论文主要研究工作包括:
     1、以室温固相法制备纳米MnO_2,通过壳聚糖(CHIT)的成膜效应将纳米MnO_2固定在玻碳电极表面。DNA在MnO_2/CHIT膜上的固定和杂交通过循环伏安和电化学交流阻抗进行表征。固定于电极表面的DNA探针与目标DNA杂交后使电极表面的电子传递电阻增大,以此作为检测信号可以高灵敏度地测定目标DNA。电化学阻抗谱检测大肠杆菌基因片段的线性范围为2.0×10~(-11) mol/L~2.0×10~(-6) mol/L,检测限为1.0×10~(-12) mol/L。
     2、以室温固相法制备纳米ZnO,通过CHIT的成膜效应将纳米ZnO固定在玻碳电极表面,制得的ZnO/CHIT/GCE电极成为DNA固定和杂交的良好平台。以电化学交流阻抗免标记法检测人类免疫缺陷病毒(HIV)基因片段的线性范围为2.0×10~(-11)~2.0×10~(-6) mol/L,检测限为2.0×10~(-12) mol/L。
     3、通过CHIT的成膜效应将腺苷适体固定在MnO_2/CHIT修饰电极表面,腺苷适体与目标腺苷杂交后使电极表面的电子传递电阻增大,杂交前后阻抗值的变化与样品中腺苷的量是成比例的,以此可以高灵敏度地测定目标腺苷。电化学阻抗谱检测目标腺苷的线性范围为1.0×10-8~5.0×10~(-6) mol/L,相关系数r = 0.9990,检测限为1.0×10~(-9) mol/L。
     4、以MnO_2为传感基底构制了基于目标诱导适体置换的非标记型电化学腺苷传感器。通过氧化还原探针[Fe(CN)_6]~(3-/4-)监测传感器界面表面电子传递电阻的变化。应用此电化学适体传感器,以电化学阻抗法对腺苷进行免标记检测,其线性范围为1.0×10~(-9)~1.0×10~(-6) mol/L,检测限为8.0×10~(-10) mol/L。
Electrochemical biosensor, which has been developed rapidly in recent years, is one new type of biosensors. This kind of biosensors has many superior advantages such as high sensitivity, nice selectivity, low cost and easy miniaturization, which has been widely used in clinical medical analysis, environmental monitoring and food engineering. The key aspect in the construction of the electrochemical biosensor is the immobilization procedure of biomolecules on the sensor surface. The aim of this dissertation is to develop simple and sensitive immobilization strategies of biomaterials in order to improve the performance and long-term stability of the electrochemical biosensors. The main works of the research paper are as follows:
     1. MnO_2 nanoparticle was synthesized by solid state reaction at room temperature and was immobilized on glass carbon electrode (GCE) by way of the film forming of chitosan (CHIT).The immobilization and hybridization of DNA on the MnO_2/CHIT film were characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) method.The results indicated that the electron transfer resistance (Ret) of the electron surface was increased after the hybridization of probe DNA with target DNA.Based on this,a sensitive label-free DNA electrochemical biosensor was fabricated. The DNA biosensor showed a wide linear response to the logarithm values of Escherichia coli concentration in the range of 2.0×10~(-11) mol/L~2.0×10~(-6) mol/L, with a detection limit of 1.0×10~(-12) mol/L.
     2. ZnO was synthesized by solid state reaction and was immobilized on GCE via the film forming by chitosan (CHIT). The developed ZnO/CHIT/GCE electrode was a good platform of DNA immobilization and hybridization. Under optimal conditions, the DNA biosensor showed a wide linear response to human immunodeficiency virus (HIV) gene in the range of 2.0×10~(-11) ~ 2.0×10~(-6) mol/L, with a detection limit of 2.0×10~(-12) mol/L of complementary target.
     3. Adenosine aptamer was immobilized on GCE via the film forming property of chitosan (CHIT). The results indicated that the electron transfer resistance (Ret) of the electron surface was increased after the hybridization of probe aptamer with target adenosine. The response impedance change is proportional to the amount of adenosine in sample. The linear range of the signal was observed between 1.0×10-8 mol/L and 5.0×10~(-6) mol/L of adenosine with 0.9990 correlation factor. This method was able to linearly and selectively detect adenosine with a detection limit of 1.0×10~(-9) mol/L.
     4. A simple and highly sensitive electrochemical impedance spectroscopy (EIS) biosensor based on nano-MnO_2 as a platform for the immobilization of the aptamer was developed for the determination of adenosine. In the measurement of adenosine, the change in interfacial electron transfer resistance (Ret) of the biosensor using a redox couple of [Fe(CN)6]3-/4- as the probe was monitored. The change of the electron transfer resistance (ΔRet) of the biosensor was linear with the concentration of adenosine in the range from 1.0×10~(-9) mol/L to 1.0×10~(-6)mol/L. The detection limit was 8.0×10-10 mol/L.
引文
[1] Millan K M, Saraullo A, Mikkel S R. Voltemmetric DNA biosensor for eystic fibrosis based on a modified carbon paste electrode [J]. Anal. Chem., 1994, 66 (9): 2943-2947.
    [2] Bier F F, Scheller P W, Kleinjung F, et al. Biosensors based on nucleic acids [J]. Bioforum, 1997, 20 (28): 280-283.
    [3] Marshall A, Hodgson J. DNA chips: An array of possibilities [J]. Nat. Biotechnol., 1998, 16 (1): 27-31.
    [4] Broude N E. Stem-loop oligonucleotides: a robust tool for molecular biology and biotechnology [J]. Trends Biotechnol., 2002, 20 (6): 249-256.
    [5] Watson J D, Crick F H C. Genetical implications of the structure of deoxyribonucleic acid [J]. Nature, 1953, 171 (4361): 964-967.
    [6] Palecek E, Jelen F. Electrochemistry of nucleic acids and development of DNA sensors [J]. Critical Reviews in Analytical Chemistry, 2002, 32 (3): 261-270.
    [7] Palecek E. Past, present and future of nucleic acids electrochemistry [J]. Talanta, 2002, 56 (5): 809-819.
    [8] Wang J, Rivas G, Ozsoz M, et al. Microfabricated electrochemical for sensor the detection of radiation-induced DNA damage [J]. Anal. Chem., 1997, 69 (7): 1457-1460.
    [9] Ikebukuro K, Kohiki Y, Sode K. Amperometric DNA sensor using the pyrroquinoline quinone glucose dehydrogenase-avidin conjugate [J]. Biosen. Bioelectron., 2002, 17 (11-12): 1075-1080.
    [10] Wang J, Kawde A N. Magnetic-field stimulated DNA oxidation [J]. Electrochem. Commun., 2002, 4 (4): 349-352.
    [11] Ren Y, Jiao K, Xu G, et al. An Electrochemical DNA sensor based on electrode positing aluminumion films on stearic acid-modified carbon paste electrode and its application for the detection of specific sequences related to bar gene and CP4 epsps gene [J]. Electroanalysis, 2005, 17 (23): 2182-2189.
    [12] Liu S Q, Xu J J, Chen H Y. ZrO2 gel-derived DNA-modified electrode and the effect of lanthanide on its electron transfer behavior [J]. Bioelectrochem., 2002, 57 (2): 149-154.
    [13] Chen S M, Chen S V. The bioelectrocatalytic properties of cytochrome C by direct electrochemistry on DNA film modified electrode [J]. Electrochim. Acta, 2003, 48 (5): 513-529.
    [14] Lee T Y, Shim Y B. Direct DNA hybridization detection based on the oligonucleotide-functionalized conductive polymer [J]. Anal. Chem., 2001, 73 (22): 5629-5632 .
    [15] Pedano M L, Rivas G. A. Immobilization of DNA on glassy carbon electrodes for the development of affinity biosensors [J]. Biosen. Bioelectron., 2003, 18 (23): 269-277.
    [16] Wang J, Cai X, Fernandes J R, et al. Carbon fiber microelectrodes for adsorptive stripping analysis of trace nucleic acids [J]. J. Electro. Chem., 1998, 441 (1-2): 167-172.
    [17] Hassmann J, Misch A, Schulein J, et al. Development of a molecular diagnosis assay based on electrohybridization at plastic electrodes and subsequent PCR [J]. Biosen. Bioelectron., 2001, 16 (9-12): 857-863.
    [18] Jiang X, Lin X. Immobilization of DNA on carbon fiber microelectrodes by using overoxidized polypyrrole template for selective detection of dopamine and epinephrine in the presence of high concentrations of ascorbic acid and uric acid [J]. Analyst, 2005, 130 (3): 391-396.
    [19] Stall C, Johnson A T, Chen M, et al. DNA-decorated carbon nanotubes for chemical sensing [J]. Nano. Letters., 2005, 5 (9): 1774-1778.
    [20] Wang S G, Wang R, Sellin P J, et al. DNA biosensors based on self-assembled carbon nanotubes [J]. Biochem. Biophys. Res. Commun. 2004, 325 (4): 1433-1437.
    [21] He P G,Xu Y, Fang Y Z. Applications of carbon electrochemical nanotubes in DNA biosensors [J]. Microchim. Acta, 2006, 152 (3): 175-186.
    [22] Marrazza G., Tombelli S, Mascini M, et al. Detection of human apolipoprotein E- genotypes by DNA biosensors coupled with PCR [J]. Clin. Chim. Acta, 2001, 307 (1-2): 241-248.
    [23] Buckova M, Labuda J, Sandula J, et al. Detection of damage to polysaccharides DNA and screen-printed antioxidative activity of yeast at the DNA-modified electrode [J]. Talanta, 2002, 56 (5): 939-947 .
    [24] Azek F, Grossiord C, Joannes M., et al. Hybridization assay at a disposable electrochemical biosensor for the attomole detection of amplified human cytomegalovirus DNA [J]. Anal. Biochem., 2000, 284 (1): 107-113.
    [25] Marquette C A, Lawrence M F, Blum L J. DNA covalent immobilization onto screen-printed electrode networks for direct label-free hybridization detection of sequences [J]. Anal. chem., 2006, 78 (3): 959-964 .
    [26] Pividori M, Merkoci A, Alegret S. Electrochemical genosensor design: immobilization of oligonucleotides onto transducer surfaces and detection methods [J]. Biosens. Bioelectron. 2000, 15 (5-6): 291-303 .
    [27] Tudorache M, Bala C. Biosensors based on screen-printing technology, and their applications in environmental and food analysis [J]. Anal. and Bioanal.Chem., 2007, 388 (3): 565-578.
    [28]杨丽菊,彭图治.特定序列的脱氧核糖核酸电化学生物传感器进展[J].分析化学,2001 , 29 (3): 355 - 360.
    [29]金灿灿.电化学DNA生物传感器的原理及应用[J].淮北职业技术学报, 2006, 5 (3):81.
    [30] Wang J, Cai X, Rivas G, et al. DNA Electrochemical biosensor for the detection of short DNA sequences related to the human immunodeficiency virus [J]. Anal. Chim. Acta, 1996, 68 (15): 2629–2634.
    [31] Wang H S, Ju H X, Chen H Y. Simultaneous determination of guanine and adenine in DNA using an electrochemically pretreated glassy carbon electrode [J]. Anal. Chim. Acta, 2002, 461 (2): 243-250.
    [32] Wang L, Liu X, Hu X, et al. Unmodified gold nanoparticles as a olorimetric probe for potassium DNA aptamers. Chem. Commun., 2006, 28 (36): 3780-3782.
    [33] Wang H S, Ju H X, Chen H Y. Simultaneous determination of guanine and adenine in DNA using an electrochemically pretreated glassy carbon electrode [J]. Anal. Chem. Acta , 2002, 461 (2): 243-250.
    [34] Marrazza G, Chianella I, Mascini M. Disposable DNA electrochemical sensor for hybridization detection [J]. Biosens. Bioelectron., 1999, 14 (1): 43–51.
    [35] Lemeshko S V, Powdrill T, Belosludtsev Y Y, et al. Oligonucleotides form a duplex with non-helical properties on apositively charged surface [J]. Nucleic Acids Research, 2001, 29 (14): 3051–3058.
    [36] Dela A, González-García M B, Costa-García A. DNA hybridization sensor based on aurothiomalate electroactive label on glassy carbonelectrodes [J]. Biosen. Bioelectron., 2007, 22 (6): 1048–1054.
    [37]方禹之,刘盛辉,何品刚.用盐酸阿霉素作为嵌入剂石墨电极伏安法识别测定DNA片段的研究[J].高等学校化学学报,1996,17 (8):1222-1224.
    [38]刘盛辉,孙长林,何品刚,等.单链脱氧核糖核酸在石墨电极表面固定化的研究[J].分析化学,1999, 27 (2): 130-134.
    [39] Barhoumi H, Maaref A, Cosnier S, et al. Urease immobilization on biotinylated polypyrrole coated chemelectrical devices for urea biosensor development [J]. 2008, 29 (2-3): 192-201.
    [40] Cui X Q, Pei R J, Wang Z X, et al. Layer-by-layer assembly of multilayer films composed of avidin and biotin-labeled antibody for immunosensing [J]. Biosen. Bioelectron., 2003,18 (1): 59-67.
    [41] Yamasaki R, Ito M, Lee B, et al. Single probe nucleic acid immobilization on chemically modified single protein by controlling ionic strength and pH [J]. Anal. Chim. Acta, 2007, 603 (1): 76-81.
    [42] Gore M R, Szalai V A,Ropp P A. Detection of attomole quantitites of DNA targets on gold microelectrodes by electrocatalytic nucleobase oxidation [J]. Anal. Chem., 2003, 75 (23): 6586-6592.
    [43] Huang E,Satjapipat M, Han S. Surface structure and coverage of an oligonucleotide probe tethered onto a gold substrate and its hybridization efficiency for a polynucleotide target [J]. Anal. Chem., 2001, 25 (17): 1215-1224.
    [44] Taira S Y, Okoyama K. DNA-conjugated polymers for self-assembled DNA chip fabrication [J]. Anal. Sci., 2004, 20 (2): 267-271.
    [45] Baas T,Gamble L,Hauch K D, Castne D G, et al. Characterization of a cysteine-containing peptide thether immobilized onto a gold surface [J]. Langmuir, 2002, 18 (12): 4898-4902.
    [46] Hames B D, Higgins S J. Transcription and translation: a practical approach. Oxford University Press Oxford [J], 1985, 24 (10): 78-84.
    [47] Wang J, Rivzs G, Cai X. DNA electrochemical biosensors for environmental monitoring [J]. Electroanalysis, 1997, 9 (5): 395-399.
    [48] Wang J, Rivas G, Parrado C, et al. Electrochemical biosensor for detecting DNA sequences from the pathogenic protozoan Cryptosporidium parvum [J].Talanta, 1997, 44 (18): 2003-2009.
    [49] Klley S O, Barton J K. Electrochemistry of methylene blue bound to a DNA-modified electrode [J]. Bioconjug. Chem., 1997, 8 (1): 31-36.
    [50] Kara P, Meric B, Zeytinoglu A, et al. Electrochemical DNA biosensor for the detection and discrimination of herpes simplex Type I and Type II viruses from PCR amplified real samples [J]. Anal. Chim. Acta, 2004, 518: 69-72.
    [51] Wang J, Cai X, Tian B, et al. Accumulation and trace measurements of phenothiazine drugs at DNA-modified electrodes [J]. Analyst, 1996, 121 (10): 965-970.
    [52] Fraricia P , Kuo T, et al. Towards a label-free optical porous silicon DNA sensor [J]. Biosens. Bioelectron., 2005 (21): 661-665.
    [53] Ogiso M, Minoura N, Shinbo T, et al. Detection of a specific DNA sequence by electrophoresis throug hamolecularly imprinted polymer [J]. Biomaterials, 2006, 27 (22): 4177-4182.
    [54] Lucarelli,Gal D,Cristler N,et al.Enzyme -amplified amperometric sandwich test for RNA and DNA [J].Anal. Chem., 2002, 74 (1): 158-162.
    [55] Wang J, Gustavo R, Cai X H, et al. The inter-action of specific peptide aptamers with the DNA binding domain [J]. Anal. Chim. Acta, 1997, 337 (1): 41 - 48.
    [56] Lee T, Tsuzuki M, takeuchi T, et al. Quantitative determination of cyanobacteria in mixed phytoplankton assemblages by an in vivo fluorimetric method [J]. Anal. Chim. Acta, 1995, 302 (1): 81-87.
    [57] Wang J, Chicharro M, Rivas G, et al. DNA biosensor for the detection of hydrazines [J]. Anal. Chem., 1996, 68 (23): 22 - 51.
    [58]干宁,王志颖,徐伟民,等. DNA电化学生物传感器测定水中痕量铅[J].广东微量元素科学, 2007, 14 (1):51-55.
    [59] Wang J, Rivas G, Fernandes J R, et al. Indicator-free electrochemical DNA hybridization biosensor [J]. Anal. Chim. Acta, 1998, 375 (2): 197-201.
    [60] Hashimoto K, Keiko I, Ishimori Y. Microfabricated disposable DNA sensor for detection of hepatitis B virus DNA [J]. Sens. Actuat. B, 1998, 46 (3): 429 - 430.
    [61] Wang J, Cai X H, Rivas G, et al. Stripping potentiometric transduction of DNA hybridization processes [J]. Anal. Chim. Acta, 1996, 326 (2): 141-144.
    [62] Wang J, Paleceke, Melsenpe, et al. Peptide nucleic acid probes for sequence-specific DNA biosensors [J]. J. Am. Chem. Soc, 1996, 118 (76): 7667-7670.
    [63] Diculescu V C. Electrochemical DNA sensors for detection of DNA damage [J] . Sensors, 2005, 44 (5): 377-393.
    [64]孙星炎,徐春,刘盛辉等. DNA电化学传感器在DNA损伤研究中的应用[J].高等学化学学报, 1998,19(9):1393-1396.
    [65] Maedam M, Mitsuha Shiy, Nkaanok, et al. Molecular cloning of cDNA encoding human interleukin [J]. Anal. Sci., 1992, 32 (8): 83 -84.
    [66] Yang Z S, Zhao J, Zhang D P, et al. Electrochemical determination of trace promethazine hydrochloride by a pretreated glass carbon electrode modifiedwith DNA [J]. Anal. Sci. 2007, 23 (40): 569-572.
    [67] Mehdinia A, Habtb K S, Zahra B S, et al. Electrochemical studies of DNA immobilization onto the azide-terminated monolayers and itsinteraction with taxol [J]. Anal. Biochem. 2008, 375 (2): 331-338.
    [68] Lin X Q, Kang G F, Lu L P. DNA/Poly(p-aminobenzensulfonicacid) compositebilayer modified glassy carbon electrode for determination of dopamine and uric acid under coexistence of ascorbic acid [J]. Bioelectrochem., 2007, 70 (2): 235-244.
    [69] Sha R A, May F, Rishi R P, et al. A nonoxidative sensor based on a self-doped polyaniline/carbon nanotube composite for sensitive and selective detection of the neurotransmitter dopamine [J]. Anal. Chem., 2007, 79 (6): 2583-2587.
    [70] Bonanni A, Pividori M I, Valle M. Application of the avidinbiotin interaction to immobilize DNA in the development of electrochemical impedance genosensors [J]. Anal. Bioanal. Chem., 2007, 389 (3): 851-861.
    [71]祝宁宁,张爱平,何品刚,等.基于硫化镉纳米团簇标记DNA电化学传感的研究[J].化学学报, 2003, 61: 1682-1685.
    [72] Kafi A K, Lee D Y, Park S H, et al. DNA as a support for glucose immobilization oxidase at Prussian blue-modified glassy carbon electrodein biosensor preparation [J]. J. Nanosci. Nanotechnol., 2006, 6 (11): 3539-3542.
    [73] Geiger A, Burgstaller P, Roeder A, et al. RNA aptamers that bind L-arginine with sub-micromolar dissociation constants and high enantioselectivity [J]. Nucleic Acids Res., 1996, 24 (6): 1029-1036.
    [74] Tang J, Xie J, Shao N, et al. The DNA aptamers that specifically recognize ricin toxin are selected by two in vitro selection methods [J].Electrophoresis, 2006, 27(7): 303-1311.
    [75] Okazawa A, Maeda H, Fukusaki E, et al. In vitro selection of hematoporphyrin binding DNA aptamers. Bioorg [J]. Med. Chem. Lett., 2000, 10 (23): 2653-2656.
    [76] Jayasena S D. Aptamer: an emerging class of moleculesthat rival antibodies in diagnostics [J]. Clin. Chem., 1999, 45: 1628-1650.
    [77] Nagel-Wolfrum K, Buerger C, Wittig I, et al. The inter-action of specific pep tide aptamers with the DNA bindingdomain and the dimerization domain of the transcrip tionfactor Statinhibits transactivation and induces apoptosisin tumor cells [J]. Mol. Cancer. Res., 2004, 2: 170-182.
    [78] Adler A, Forster N, Homann M, et al. Post-SELEX chemical optimization of a trypanosome-specific RNA aptamer [J]. Comb. Chem. High Throughput Screen, 2008, 11 (1): 16-23.
    [79]姚春艳,府伟灵.适配子技术在生物传感器中的应用[J].国际检验医学杂志,2006,27(8):707-708.
    [80]王成刚,莫志宏.核酸适体技术研究进展[J].生物医学工程学杂志,2006,23(2):463-466.
    [81] Willner I, Zayats M. Electronic aptamer-based sensors. Angew. Chem. Int. Ed., 2007, 46(34): 6408-6418.
    [82]徐大炜,许丹科.适体生物传感器研究进展[R].军事医学科学院放射医学研究所.
    [83] Kandimalla V B, Ju H X. New horizons with a multi dimensional tool for application analytical chemistry-aptamer [J]. Anal. Lett., 2004, 37(11): 2215-2233.
    [84] Gold L, Polisky B, Uhlenbeck O, et al. Diversity of oligonucleotide functions [J]. Annu. Rev. Biochem., 1995, 64:763-767 .
    [85] Lupold S E, Hicke B J, Lin Y, et al. Identification and characterization of nuclease-stabilized RNA molecules that bind human prostatecancer cells via the prostate-specific membrane antigen [J]. Cancer. Res., 2002 (62): 4029- 4033.
    [86]漆红兰,李延,李晓霞,等.适体传感器研究新进展[J].化学传感器, 2007, 27(3):1-8.
    [87]李晓霞,申丽华,漆红兰,等.适体电化学生物传感器研究进展[J].传感器与微系统,2007,26(12):8-11.
    [88] Xiao Y, Lubin A A, Hegeer J, et al. Label-freeelectrochemical detection of thrombin in blood serum by using an aptamer-based sensor [J]. Angew. Chem. Int. Ed., 2005, 444(34): 5456-5459.
    [89] Zhang Y, Huang Y, Jiang J H, et al. Electrochemical Aptamersensor based on selectiveand quantitative detection of adenosine [J]. J. Am. Chem. Soc., 2007, 129(50): 8024-8029.
    [90] Mir M, Vreeke M, Katakis I. Different strategies to develop an electrochemical thromin aptamer [J]. Electrochem. Commun., 2006, 8(3): 505-511.
    [91] Zheng J, Feng W J, Lin L, et al. A new amplification strategy for ultrasensitive electrochemical aptasensor with network- like thiocyanuric acid /gold nanoparticles [J]. Biosens. Bioelectron., 2007, 23 (3) : 341-347.
    [92] Zheng F, Wu Z S, Zang S B, et al. Aptamer-based electrochemical biosensors for highly selective and quantitative detection of adenosine [J]. Chem. Res. Chinese Universities, 2008, 24(2):138-142.
    [93]郑静,林莉,程圭芳,等.基于核酸适配体和纳米材料的凝血酶蛋白特异性识别电化学生物传感器[J].中国科学(B辑化学),2006,36 (6): 485-492.
    [94] Feng K J, Sun C H, Kang Y, et al. Label-free electrochemical detection of nanomolar adenosine based on target -induced aptamer displacement [J]. Electrochem. Commun., 2008, 10 (4) : 531-535.
    [95] Cai H, Lee T, Hsing I M. Label-free protein recognition using an aptamer–based impedence measurement assay [J]. Sens. Actuators B, 2006, 11(4): 433-437.
    [96] Li B L, Wang Y L, Wei H, et al. Amplified electrochemical aptasensor taking AuNPs based sandwich sensing platform as a model [J]. Biosens. Bioelectron., 2008, 23 (7) : 965-970.
    [97] Minunni M, Tombelli S, Gullotto A, et al. Development of biosensors with aptamers as bio-recognition element: the case of HIV-1 Tat protein [J]. Biosens. Bioelectron., 2004, 20 (6) : 1149-1156.
    [98]夏湘,童春义,周敬良,等.压电核酸适体传感器用于星形胶质瘤细胞的检测研究[J].化学传感器, 2008,28(1):26-29.
    [99] Lazaro D R, Hernandez M, Esteve R,et al. A rapid and direct real time PCR-based method for identification of Salmonella [J].Microbiol Methods, 2003, (54): 381.
    [100] Ruan C, Yang L,Li Y. Immunobiosensor chips for detection of escherichia coli O157:H7 using electrochemical impedance spectroscopy [J]. Anal. Chem., 2002, 74 (18): 4814-4820.
    [101] Bai Y H, Du Y, Xu J J, et a1.Choline biosensors based on a bi-electrocatalytic pripertly of MnO2 nanopartieles modified electrodes to H2O2 [J].Electrochem. Commun.,2007,9(10): 2611-2616.
    [102] Yao S J,Xu J H,Wang Y,et a1.A highly sensitive hydrogen peroxide amperometric sensor based on MnO2 nanoparticles and dihexadecyl hydrogen phosphate composite film [J].Anal. Chim. Acta,2006, 557(1/2): 78-84.
    [103]李娟,李清文,夏熙,等.纳米MnO2粉末的固相合成及其电化学性能的研究[J].应用科学学报,1999,17(2):245-250.
    [104]孙洁,张丽,张文莉,等.溶胶-乳状液-凝胶法制备纳米MnO2及其催化性质研究[J].应用化工,2007,36 (7):656-659.
    [105]魏坤,石燕,贺伦燕.纳米Dy1-xSrxCoO3-y晶体结构和红外光谱[J].物理化学学报,1998,14(10):957-960.
    [106]李英品,周晓荃,周慧静,等.纳米结构MnO2的水热合成、晶型及形貌演化[J].高等学校化学学报,2007,28(7):1223-1226.
    [107]宋旭春,杨娥,郑遗凡,等.α-MnO2和β-MnO2纳米棒的制备和催化性能研究[J].无机化学学报,2007,23(5):919-922.
    [108] Feng K J, Yang Y H,Wang Z J, et al. A nano-porous CeO2/Chitosan composite film astheimmobilization matrix for colorectal cancer DNA sequence-selective electrochemical biosensor [J]. Talanta, 2006, 70 (3): 561-565.
    [109]邹小勇,陈汇勇,李荫.电化学DNA传感器的研制及其医学应用[J].分析测试学报,2005,24 (1):123-124.
    [110]孙伟,尚智美,杨茂霞,等.巯基乙酸自组装膜DNA电化学传感器对转基因NOS的定量检测[J].高等学校化学学报,2006,27 (10):1859-1861.
    [111]王保珍,杜晓燕,郑晶,等.铂电极表面生物素—亲和素固载单链脱氧核糖核的电化学传感器[J].分析化学,2005,33 (6):789-792.
    [112] Kerman K , Ozkan D , Kara P ,et al. Voltammetric determination of DNA hybridization using methylene blue and self-assembled alkanethiol monolayer on gold electrodes [J]. Anal. Chim. Acta , 2002, 462 (1) : 39-47.
    [113]程力惠,李毅群,刘仲明,等.人类免疫缺陷病毒基因的碳糊电极快速检测[J].分析测试学报, 2003, 22 (2): 75-77.
    [114] Tlili C, Korri-Youssoufi H, Ponsonnet L, et al. Electrochemical impedance probing of DNA hybridisation on oligonucleotide-functionalised polypyrrole [J]. Talanta, 2005, 68 (1): 131-137.
    [115] Peng H, Soeller C, Vigar N A, et al. Label-free detection of DNA hybridization based on a novel functionalized conducting polymer [J]. Biosens. Bioelectron., 2007, 22 (9-10): 1868–1873.
    [116] Liu B, Zeng H C. Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm [J]. J. Am. Chem. Soc., 2003, 125 (15): 4430-4431.
    [117] Villain S, Cabane J, Knauth P. Solid state electrochemical characterisation of nanostructured silver prepared by cold-rolling and internal oxidation [J]. Scripta Materialia, 1998, 38 (6): 1003-1007.
    [118] Cai H, Xu Y, He P G, et al. Indicator free DNA hybridization detection by impedance measurement based on the DNA-doped conducting polymer film formed on the carbon nanotube modified electrode [J]. Electroanalysis, 2003, 15(23-24): 1864-1870.
    [119] Xu Y, Jiang Y, Cai H, et al. Electrochemical impedance detection of DNA hybridization based on the formation of M-DNA on polypyrrole/carbon nanotube modified electrode [J]. Anal. Chim. Acta, 2004, 516 (1-2): 19-27.
    [120] Adler A, Forster N, Homann M, et al. Post-SELEX chemical optimization of a trypanosome-specific RNA aptamer [J]. Comb. Chem. High Throughput Screen, 2008, 11(1): 16-23.
    [121] Willer I, Zayats M. Electronic aptamer-based sensors [J]. Angew. Chem. Int. Ed., 2007, 46 (34): 6408-6418.
    [122] Cronstein B N, Levinr I, Belanoff J, et al .Adenosine–anendogenous inhibiyor of neutrophil-mediated injury to endothelial-cells[J]. ClinInvest, 1986, 78 (3): 760-770.
    [123] Dunwiddie T V, Masion S A. The role and regulation of adenosine in the central nervous system [J]. Annu. Rev. Neurosci., 2001, 24 (1): 31-35.
    [124] Wu Z S, Guo M M, Zhang S B, et al. Reusable electrochemical sensing platform for highly sensitive detection of small molecules based on structure-switching signaling aptamers [J]. Anal. Chem., 2007, 79 (7): 2933–2939.
    [125] Zhang S S, Xia J P, Li X M. Electrochemical biosensor for detection of adenosine based on structure-switching aptamer and amplification with reporter probe DNA modified Au nanoparticles [J]. Anal. Chem., 2008, 80 (22): 8382-8388.
    [126] Lee J F, Hesselberth J R, Meyers L A, et al. Aptamer database. Nucleic acids Res. [J]. 2004, 32 Database issue: D95.
    [127] Tombelli S, Minunni M, Mascini M. Analytical applications of aptamers [J]. Biosens. Bioelectron., 2005, 20 (12): 2424-2434.
    [128] Liss M, Petersen B, Wolf H, et al. An aptamer-based quartz crystal protein biosensor [J]. Anal. Chem., 2002, 74 (17): 4488-4495.
    [129] Merino E J, Weeks K M. Fluorogenic resolution of ligand binding by a nucleic acid aptamer [J]. J. Am. Chem.Soc., 2003, 125 (41): 12370-12371.
    [130] Xu D, Yu X, Liu Z, et al. Label-free electrochemical detection for aptamer-based array electrodes [J]. Anal. Chem., 2005, 77 (16): 5107-5113.
    [131] Li X X, Shen L H, Zhang D D, et al. Electrochemical impedance spectroscopy for study of aptamer–thrombin interfacial interactions [J]. Biosens. Bioelectron., 2008, 23 (11): 1624-1630.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700