用户名: 密码: 验证码:
滚珠丝杠式电动舵机非线性分析及控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电动舵机是导弹控制系统中重要的控制子系统,电动舵机根据自动驾驶仪控制指令进行偏转,改变导弹的飞行姿态,其性能直接影响导弹的性能。受到制造工艺、安装精度制约,电动舵机存在间隙、摩擦等非线性因素,同时随着电动舵机日趋向高带宽、轻量化方向发展,电动舵机组件的弹性变形直接影响了系统的运动性能,因此,研究间隙、摩擦、弹性变形等非线性因素对电动舵机伺服系统动态特性的影响,并选择合适的方法来减弱、抑制或消除这些因素影响相当重要。本文以滚珠丝杠式电动舵机为研究对象,对电动舵机中的非线性因素进行理论分析和仿真分析,并以此为基础展开相应的控制理论与方法研究,且进行了实验验证。论文主要包括以下五个方面的内容:
     (1)依据系统总体指标,对电动舵机进行负载匹配、元件选型。同时根据第二类拉格朗日方程建立了电动舵机结构动力学模型,基于ANSYS对电动舵机进行模态及谐响应分析,得到舵机系统的固有频率和振型,并设计完成了满足要求的舵机结构。
     (2)考虑到间隙、摩擦、弹性变形等非线性因素,采用笛卡尔坐标法建立舵机的多体动力学模型,并通过ADAMS仿真分析了非线性因素对舵机性能的影响。结果表明非线性因素对舵机性能具有严重影响。
     (3)针对电动舵机系统的非线性、快时变等特点,设计改进自抗扰控制器,该控制器去除原有的跟踪微分器,采用线性误差反馈控制律和线性扩张状态观测器,引入Fal函数滤波系统。同时证明了系统的稳定性,提出了控制器参数的选择方法,基于NSGA-II算法对改进自抗扰控制器进行参数整定,通过ADAMS和MATLAB/Simulink构造机械和控制联合仿真平台,将建立的非线性舵机模型和改进自抗扰控制器进行联合仿真分析。通过不同条件下的输入输出分析,表明采用优化后的控制器,舵机系统动态和静态性能得到了改进。
     (4)为了探索基于观测器设计非线性控制器,本文分别设计了基于扰动观测器的电动舵机非线性PID控制器与基于降维观测器的电动舵机PID_LQR控制器,通过仿真分析,验证了改进控制器的可行性。结论表明改进的控制器具有很好的动态特性和抗扰性。
     (5)搭建半实物仿真平台,分别采用PI、自抗扰控制器和改进自抗扰控制器对滚珠丝杠式电动舵机进行控制,验证控制策略的可行性。实验结果表明跟踪±1°~±18°阶跃信号时,改进自抗扰控制器下系统上升时间为8~17ms,超调量为0~8.25%,稳态均方差为0.0094~0.0129;跟踪15sin(5πt)正弦信号时,改进自抗扰控制器能够消除位置平顶和速度死区,相位滞后0.06543rad,性能明显优于常规自抗扰控制器和PI控制器。该控制器减少了设计参数,位置跟踪超调量小,响应时间快,稳态均方差小,改善了舵机系统的动态和稳态性能。
     本文充分考虑了舵机系统中的间隙、摩擦、弹性变形等非线性因素,提供了一种综合考虑刚柔-非线性-机电耦合作用的电动舵机系统性能研究方法。该方法为电动舵机的研究提供了新思路,对今后进一步研究具有重要的参考价值。
Electromechanical actuator (EMA) is an important sub-system in the control ofmissile. It is steerred by the signal stemming from autopilot, and changes the flightattitude of missile, thus it directly affects the capability of missile. Influenced bymanufacturing technology, assembly precision, EMA contains many nonlinearfactors, such as clearance and friction. Meanwhile, with the design of EMA tends tohigh bandwidth and lightweight design, the elastic deformation of EMA componentshave a serious effect on the performance of EMA. For these reasons, it is urgent tocarry out the research on influence of clearance, friction and elastic deformation ondynamic characteristics of EMA, and adopt efficient methods to lessen, inhibite orremove the adverse factors. This paper focuses on an EMA with ball screw drive.Firstly the theoretical analysis and simulation on nonlinear factors were presented.Then, control theory of EMA was studied based on above analysis. At last,experiments were performed. This paper is organized as follows.
     (1)Firstly, according to the system indicators of EMA, load matching,component selecting of EMA were implemented. Secondly, structural dynamicmodel of EMA were established based on the Lagrange's equations of the secondkind. Finally, modal analysis and harmonic analysis of EMA were simulated byANSYS software, which obtained natural frequency and mode shape of EMA. As aresult, the structure meeting the requirements of system indicators was designed.
     (2)Considering the influences of clearance, friction and elastic deformation onEMA, a simple model for EMA in the framework of multibody systems formulationwas presented by cartesian coordinates. Then, numerical simulation of nonlinearEMA was performed using ADAMS soft. The simulation results show that nonlinearfactors can significantly affect the dynamic response of EMA.
     (3)Because electromechanical actuator (EMA) is a nonlinear, time-varyingservo system, the method of improved Active Disturbance Rejection Controller(ADRC) was proposed to improve the tracking performance of EMA. The newcontroller was established by removing nonlinear tracking-differentiator, andemploying linear state error feedback, linear extended state observer and Falfunction filter system. Simultaneously, the stability of the controller was proved andselection principle of the controller parameters were presented based on ModernControl Theory. In order to further improve controller performances, improvedADRC parameters were optimized by NSGA-II algorithm. United simulationincluding the model of nonlinear EMA and improved ADRC was established byADAMS and MATLAB/Simulink respectively. The feasibility of this controller wasdemonstrated through simulation under different input conditions. It is exactly toprove conclusively that the system static and dynamic performance is improved byoptimized controller.
     (4)For the purpose of designing nonlinear controller based on the observer,nonlinear PID controller based on disturbance observer and PID_LQR Controllerbased on reduced-order observer were designed respectively in the paper. Throughsimulation, the validity of these methods was testified. Simulation results show thatboth improved controllers have good following performance and robustness.
     (5)Semi-physical simulation system platform was builded. The performance ofPI controller, ADRC, improved ADRC were compared on EMA. Experimentalresults of improved ADRC indicate that rise time, overshoot and the steady statemean square deviation of EMA are8~17ms,0~8.25%,0.0094~0.0129respectivelywhen±1°~±18°angle are tracked. When the tracked angle is15sin(5πt), the phase error is0.06543rad, and there is no position flat crest and velocity dead space,whichhave the advantage over PI controller and traditional ADRC. It can be concludedthat the improved ADRC has a fast response, slight overshoot and high accuracy instability, as well as strong anti-disturbance and robustness. Thus, dynamicperformance and steady precision of the system are both improved.
     The paper taked into account nonlinear factors in EMA, and presented rigidflexible, nonlinearity, electromechanical coupled research technique on EMA bycomprehensive analysis. In a word, the research comes up with a new study concepton EMA and has a certain reference value to the further study of EMA with ballscrew drive in the future work.
引文
[1]汪军林,解付强,刘玉浩.导弹电动舵机的研究现状及发展趋势[J].控制与制导,2008,(3):42-46.
    [2]H.Hahn, A.Piepenbrink, K.-D.Leimbach. Input-Output Linearization Control of anElectro Servo-hydraulic Actuator[C]. Proc of the IEEE Conference on ControlApplications,1994,(2):995-1000.
    [3]牛鑫培.制导弹药气动舵机关键技术分析及解决办法[D]:[硕士学位论文].南京:南京理工大学,2008.
    [4]魏林,陈欣,吕迅竑.无人机无刷直流数字式舵机控制器设计[J].微电机,2008,41(5):46-70.
    [5]董飞垚,雷虎民,曾华.非线性PID控制在导弹电动舵机系统中的应用[J].战术导弹技术,2009,(6):54-57.
    [6]鲍文亮.联合直接攻击炸弹(JDAM)电动舵机控制系统的设计[D]:[硕士学位论文].哈尔滨:哈尔滨工业大学,2006.
    [7]郑志伟.空空导弹系统概论[M].北京:兵器工业出版社,1997.
    [8]王鳿.战术导弹舵系统发展[J].战术导弹控制技术,2011,28(1):30-39.
    [9]黄立梅,吴成富,马松辉.抑制飞控系统舵机间隙影响的非线性补偿器设计[J].飞行力学,2012,30(2):132-138.
    [10]彭书华,李华德,苏中等.不确定参数电动舵机滑模变结构控制[J].电机与控制学报,2009,13(1):128-132.
    [11]Ming Ge, Hongguang Jia, Bo Liu. Contact-impact Analysis with Clearance Hingein Flexible Multi-Body System[C]. The2nd International Conference onElectrical and Control Engineering,2011,4:3406-3409.
    [12]Williams K., Brown D. Electrically Powered Actuator Design(EPAD)[J]. NASA/USAF/Navy,1997, Release:97-274.
    [13]景蓉,彭舒钰.小型电动比例舵机研究[J].航空兵器,2002,(3):18-20.
    [14]Rubaai A, Ricketts D, Kankam M D.Development and Implementation of anAdaptive Fuzzy-neural-network Controller for Brushless Drives[J].IEEETransactions on Industry Applications,2002,38(2):441-447.
    [15]harkawi M A, Samahy A A, Sayed M L. High Performance Drive of DC BrushlessMotrors using Neural Network[J]. IEEE Transactions on Energy Conversion,1994,9(2):317-322.
    [16]崇阳,李言俊,张科等.基于DSP的模糊PID舵机控制算法设计与实现[J].飞行力学,2011,29(2):86-88.
    [17]王京锋,孙纯祥,马隽.基于DSP和FUZZY_PID控制的弹用电动舵机伺服系统的研究[J].导航与控制,2005,4(3):63-68.
    [18]米月星,林辉,李志.基于DSP+CPLD的四电动舵机伺服控制器设计[J].微特电机,2012,40(8):61-70.
    [19]Levent U. Gokdere, Khalid Benlyazid, Roger A. Dougal.A Virtual Prototype for aHybrid Electric Vehicle[J]. Mechatronics,2002,12:575-593.
    [20]Robert R. Ryan. Smarter to Market with the Functional Virtual Prototype[C].International ADAMS User Conference Orlando,2000.
    [21]Michael J.Pratt. Virtual Prototypes and Product Models in MechanicalEngineering. Gaitherburg:National Institute of Standards and Technology,1995.
    [22]郭宏,邢伟.机电作动系统发展[J].航空学报,2007,28(3):620-627.
    [23]M. R. Ristanovic, D. V. Lazic, I. Indjin. Modeling, Simulation, and Control of anElectromechanical Aerofin Control System with a PWM-Controlled DCMotor[J].Automatic Control and Computer Sciences,2008,42(4):184-190.
    [24]高原,谷良贤.一种导弹电动舵机系统的自适应控制方法研究[J].测控技术,2007,26(11):33-35.
    [25]Seong Ik Han, Jang Myung Lee. Adaptive Dynamic Surface Control with SlidingMode Control and RWNN for Robust Positioning of a Linear Motion Stage[J].Mechatronics,2012,22:222-238.
    [26]周军.变结构控制理论在导弹电动舵机系统设计中的应用[J].西北工业大学学报,1990,8(3):273-380.
    [27]Lv Yong-jian, Wang Jin, Dong Hui,etal. Adaptive Back-stepping Control Basedon Recurrent Neural Network for BLDCM EMA[C].IPEMC2009,1938-1942.
    [28]骆光照,王鹏,吴梅等.弹用电动舵机的混合H2/H∞控制器设计[J].弹箭制导学报,2003,23(3):4-6.
    [29]曹登刚,廖瑛,吴彬.基于混合优化算法的神经元PID控制策略[J].信息与电子工程,2008,(1):64-67.
    [30]Milan Ristanovic, Zarko Cojbasic, Dragan Lazic. Intelligent Control of DC MotorDriven Electromechanical Fin Actuator[J]. Control Engineering Practice,2012,20:610-617.
    [31]张晓峰,杨军,祝小平.高精度电动舵机模糊自适应控制器设计[J].弹箭与制导学报,2010,30(1):30-32.
    [32]曹菁,朱纪洪.电动舵机模糊自适应PID控制[J].中南大学学报,2005,36(1):108-111.
    [33]Saeid Habibi, Jeff Roach, Greg Luecke. Inner-Loop Control forElectromechanical (EMA) Flight Surface Actuation Systems[J]. Journal ofDynamic Systems, Measurement, and Control,2008,130:051002-1-051002-13.
    [34]Tao G, Kokotovic P V. Adaptive Control of Systems with Backlash[J]. Automatica,1993,29(2):323-335.
    [35]Tao G, Ma X, Ling Y. Optimal and Nonlinear Decoupling Control of Systemswith Sandwiched Backlash[J]. Automatica,2001,(37):165-176.
    [36]Tornambe A. Modeling and Controlling One-degree-of-freedom Impacts underElastic/Plastic Deformations[J]. IEEE Proc Control Theory Application,1996,143(5):470-476.
    [37]Gerdes J C, Kumar V. An Impact Model of Mechanical Backlash for ControlSystem Analysis[C]. Proc of the ACC, Seattle, Washington,1996:3311-3315.
    [38]Chyung D H. Output Feedback Controller Systems Containing a Backlash[C].Proc of the31st Conf on Decision&Control, Tucson, Arizona,1992:150-156.
    [39]Nordin M, Gutman P O. Nonlinear Speed Control of Elastic Systems withBacklash[C]. Proc of the39th IEEE Conf on Decision&Control, Sydney,Australia,2000:4060-4065.
    [40]Su C Y, Tan Y H, Stepanenko Y. Adaptive Control of a Class of NonlinearSystems Preceded by an Unknown Backlash-like Hysteresis[C]. IEEE Conf onDecision&Control,2000:1459-1464.
    [41]R. Merzouki, J.A. Davila, L. Fridman. Backlash Phenomenon Observation andIdentification in Electromechanical System[J]. Control Engineering Practice,2007,15:447-457.
    [42]R. Merzouki, J.C. Cadiou. Estimation of Backlash Phenomenon in theElectromechanical Actuator[J]. Control Engineering Practice,2005,13:973-983.
    [43]He C, Zhang Y, Meng M. Backlash Compensation by Neural-network OnlineLearning[C]. Proc of2001IEEE Int Symposium on Computational IntelligenceRobotics&Automation,2001:161-165.
    [44]Nohe R. Cazarez-Castro, Luis T. Aguilar, Oscar Castillo. Fuzzy Logic Controlwith Genetic Membership Function Parameters Optimization for the OutputRegulation of a Servomechanism with Nonlinear Backlash[J]. Expert Systemswith Applications,2010,37:4368-4378.
    [45]Mattias Nordin, Per-Olof Gutman. Controlling Mechanical Systems withBacklash-a Survey[J]. Automatica,2002,38:1633-1649.
    [46]Armstrong B, Dupont P, Canudas de Wit C. A Survey of Models, Analysis Toolsand Compensation Methods for the Control of Machines with Friction[J].Automatica,1994,30(7):1083-1138.
    [47]Min-Seok Kim, Sung-Chong Chung. Friction Identification of Ball-screw DrivenServomechanisms through the Limit Cycle Analysis [J]. Mechatronics,2006,16:131-140.
    [48]Craig TJ, Lorenz R D. Experimental identification of friction and itscompensation in precise, position controlled mechanisms [C]. IEEE Trans. OnIndustry Applications,1992,28(6):1392-1398.
    [49]Misovec K M, Annaswamy A M. Friction Compensation using AdaptiveNonlinear Control with Persistent Excitation[J]. International Journal of Control,1999,72(5):457-479.
    [50]Yung-Tien Liu, Tien-Tsai Kung, Kuo-Ming Chang etal. Observer-basedAdaptive Sliding Mode Control for Pneumatic Servo System[J]. PrecisionEngineering,2013,37:522-530.
    [51]Han Me Kim, Soo Hong Park, Seong Ik Han. Precise Friction Control for theNonlinear Friction System using the Friction State Observer and Sliding ModeControl with Recurrent Fuzzy Neural Networks[J]. Mechatronics,2009,19:805-815.
    [52]Faa-Jeng Lin, Po-Kai Huang, Wen-Der Chou. Recurrent-Fuzzy-Neural-Network-Controlled Linear Induction Motor Servo Drive using GeneticAlgorithms [C]. IEEE Trans On Industrial Electronics,2007,54(3)1449-1461.
    [53]J.-S. Chen, Y.-K. Huang, C.-C. Cheng. Mechanical Model and ContouringAnalysis of High-speed Ball-screw Drive Systems with Compliance Effect[J].Advanced Manufacturing Technology,2004,24:241-250.
    [54]Amit Kumar, Pushparaj Mani Pathak, N.Sukavanam.Trajectory Control of a TwoDOF Rigid-flexible Space Robot by a Virtual Space Vehicle[J]. Robotics andAutonomous Systems,2013,61:473-482.
    [55]Z. Yang, J.P. Sadler. On Issues of Elastic-Rigid Coupling in Finite ElementModeling of High-speed Machines[J]. Mechanism and Machine Theory,2000,35:71-82.
    [56]李顺利,李立涛,杨旭.柔性多体卫星自抗扰控制系统的研究[J].宇航学报,2007,28(4):845-874.
    [57]Aouf N, Boulet B, Botez R. Model and Control Reduction for Flexible AircraftPreserving Robust Performance[J]. IEEE Transaction Automatic Control,2002,47(2):229-237.
    [58]Chu Ming, Jia Qing-xuan, Sun Han-xu. Robust Tracking Control of Flexible Jointwith Nonlinear Friction and Uncertainties using Wavelet Neural Networks[C].2nd International Conference on Intelligent Computing Technology andAutomation, ICICTA,2009,878-883.
    [59]张鹏,李元春,姜日花.基于观测器的机械臂协调操作柔性负载的控制[J].浙江大学学报,2009,39(5):1240-1244
    [60]Magnus K. Dynamics of multibody system[M]. Berlin:Springer-Verlag,1978.
    [61]刘又午,吴洪涛.多体系统理论在机构运动分析中的应用[J].机械工程学报,1993,29(3):104-112
    [62]洪嘉振.计算多体系统动力学[M].北京:高等教育出版社,2009.
    [63]陆佑方.柔性多体系统动力学[M].北京:高等教育出版社,1996.
    [64]黄文虎等.多柔体系统动力学[M].北京:科学技术出版社,1997.
    [65]刘延柱.多刚体系统动力学的旋量-矩阵方法[J].力学学报,1998,20(4):335-344.
    [66]朱明.多刚体系统动力学的子系统递推法[J].1990,7(4):115-122.
    [67]Roberson, R. E., Wittenburg, J.: A dynamical formalism for an arbitrary numberof interconnected rigid bodies with reference to the problem of satellite attitudecontrol[C]. Proc.3rd Intern. Congr. Autom. Control,1967, London,46D.1-46D.8.
    [68]Huston R L, Passerello C E. Multibody Dynamics Including Translation Betweenthe Bodies[J]. Computers&Structure,1980,(12):713-720.
    [69]Kane T R, Levinson D A. Dynamics Theory and Applications[M]. New York: McGrow-Hill.
    [70]F.L.Amirouche. Computational Methods in Multibody Dynamics[M]. PrenticeHall,1992.
    [71]Winfrey R C. Dynamic Analysis of Elastic Link Mechanisms by Reduction ofCoordinates [J].ASME Journal of Engineering,1972,94(2),577-581
    [72]Winfrey R C. Elastic Link Mechanism Dynamics[J].ASME Journal ofEngineering,1971,93(1):268-272.
    [73]Erdman A G, Sandor G N. A General Method for Kinetic-elastic DynamicAnalysis and Synthesis of Mechanisms[J]. ASME Journal of Engineering forIndustry,1972,94(4):1193-1205.
    [74]Meirovitch L. Hybrid State Equations of Motion for Flexible Bodies in terms ofQuasi-coordinates[J]. Journal of Guidance, Control and Dynamics,1985,8(3):374-383.
    [75]Singh R P, Vander Voor R J, Likins P W. Dynamics of Flexible Bodies inTree-topology: a Computer-oriented Approach. Journal of Guidance, Control andDynamics,1985,8:584-590.
    [76]Turcic D A, Midha A. Generalized Equations of Motion for the Dynamic Analysisof Elastic Mechanism System. ASME Journal of Dynamic Systems, Measurementand control,1984,106:243-248.
    [77]Tamer M Wasfy, Ahmed K Noor.Computational Strategies for Flexible MultibodySystems[J].Applied Mechanics Reviews,2003,56(6):553-613
    [78]Likins P W. Finite Element Appendage Equations for Hybrid Coordinate DynamicAnalysis[J]. Journal of Solids&Structure,1972,8:709-731.
    [79]洪嘉振,潘振宽.柔性航天器动力学[J].宇航学报,1991,4:59-62.
    [80]王济勇,洪嘉振.柔性多体系统的递推组集建模与仿真软件的实现[J].应用力学学报,1998,14(2):121-126.
    [81]陆志华,叶庆泰,孙世基等.柔性多体动力学在工程机械设计中的应用研究[J].机械科学与技术,1997,16(4):590-594
    [82]Yuh J,Young T.Dynamic Modeling of an Axially Moving Beam in Rotation:Simulation and Experiment[J].Journal of Dynamic Systems,Measurement andControl,Transactions of the ASME,1991,113(1):34-40
    [83]Kane T R, Ryan R R, Banerjee A K. Dynamics of a Cantilever Beam Attached toa Moving Base[J].Journal of Guidance,Control and Dynamics,1987,10(2):139-151
    [84]Zhu J F. A New Consideration on the Derivation of the Geometrical StiffnessMatrix With The Natural Approach[J].Computer Methods in Applied Mechanicsand Engineering,1995,123:141~160
    [85]Zhang D J, Huston R L. On Dynamic Stiffening of Flexible Bodies Having HighAngular Velocity.Mech Struct&Mach,1996,24(3):313~329
    [86]Liu A Q, Liew K M. Non-linear Substructure Approach for Dynamic Analysis ofRigid-flexible Multibody Systems[J].Computer Methods in Applied Mechanicsand Engineering,1994,114:79~396
    [87]韩京清.线性系统的结构和反馈系统的计算[C].控制理论与应用,北京:学术会议,1980.
    [88]韩京清.反馈系统中的线性与非线性[J].控制与决策,1988,3(2):27-32.
    [89]韩京清,王伟.非线性跟踪-微分器[J].系统科学与数学,1994,14(2):177-183.
    [90]韩京清.一类不确定对象的扩张状态观测器[J].控制与决策,1995,10(1):85-88.
    [91]韩京清.非线性状态误差反馈控制律-NLSEF[J].控制与决策,1995,10(3)221-225.
    [92]陈茂胜,金光,张涛等.积分反馈自抗扰控制力矩陀螺框架伺服系统设计[J].光学精密工程,2012,20(11):2424-2432.
    [93]薛立娟,李海涛,李红等.基于ADRC的MSCMG框架系统高精度控制[J].北京航空航天大学学报,2012,38(11):1497-1501.
    [94]于海滨,肖本贤,郁伉.基于改进型ADRC的双轴伺服系统摩擦补偿研究[J].合肥工业大学学报,2010,3(11):1634-1638.
    [95]崇阳,张科,王靖宇.一种基于模糊ADRC的舵机控制算法设计与实现[J].西北工业大学学报,2011,29(2):217-222.
    [96]付永领,陈辉,刘和松等.基于自抗扰控制的导弹电液舵机系统研究[J],宇航学报,2012,31(4):1051-1055.
    [97]李述清,张胜修,刘毅男等.根据系统时间尺度整定自抗扰控制器参数[J].控制理论与应用,2012,29(1):125-129.
    [98]李海生,朱学峰.自抗扰控制器参数整定与优化方法研究[J].控制工程,2004,11(5):419-423.
    [99]孙立明,姜学智,李东海.一类非线性对象的自抗扰控制器参数整定[J].自动化学报,2004,30(2):251-254.
    [100]陈文英,褚福磊,阎绍泽.基于自适应遗传算法分步优化设计智能桁架结构自抗扰振动控制器[J].机械工程学报,2010,46(7):74-81.
    [101]朱丽玲,于希宁,刘磊等.基于遗传算法的ADRC参数整定及其应用[J].仪器仪表用户,2005,12(4):64-66.
    [102]Zhiqiang Gao. Scaling and Bandwidth-Parameterization Based ControllerTuning[C]. Proc of the American Control Conference, Denver, Colorado,2003,6:4989-4996.
    [103]李朝富.电动舵机直流伺服电机选用方法[J].战术导弹控制技术,2008(1):38-55.
    [104]高新绪.电动伺服机构设计的负载匹配问题[J].航空兵器,1994,(4):21-25.
    [105]王军锋,唐宏.伺服电机选型的原则和注意事项[J].装备制造技术,2009,11:129-133.
    [106]Maxon motor[[DB/DVD]]. www.maxonmotor.com,2012.
    [107]Okwudire C E, AltintasY. Hybrid Modeling of Ball Screw Drives with CoupledAxial, Torsional, and Lateral Dynamics[J]. Mechanical Design,131:71002.1-71002.9.
    [108]Whalley R, Abdul-Ameer AA, Ebrahimi M. Machine Tool Modeling and ProfileFollowing Performance[J]. Application Mathematics Model,32:2290-2311.
    [109]Diego A. Vicente, Rogelio L. Hecker, Fernando J. Villegas, etal. Modeling andVibration Mode Analysis of a Ball Screw Drive[J]. Int J Adv Manuf Technol,2012,58:257-265.
    [110]Guo-Hua Feng, Yi-Lu Pan. Investigation of Ball Screw Preload Variation Basedon Dynamic Modeling of a Preload Adjustable Feed-drive System and SpectrumAnalysis of Ball-nuts Sensed Vibration Signals[J]. Machine Tools&Manufacture,2012,52:85-96.
    [111]S. Frey,A. Dadalau, A. Verl. Expedient modeling of ball screw feed drives[J].Prod.Eng. Res.Devel,2012,6:205-211.
    [112]吴飞科,罗继伟等.关于Herz点接触理论适应范围的探讨[J].轴承,2007,(5):1-3
    [113]杨祖孝.进给滚珠丝杠副传动刚度的计算[J].制造技术与机床,1999,7:12-14.
    [114]张宏柱,汪世益.数控机床滚珠丝杠轴承的支撑刚度分析[J].制造技术与机床,2008,4:160-162.
    [115]Mostaka. Yoshimeura. Analysis and optimization of Structural Dynamics ofMachine Tool by a Synthesis of Dynamic Rigidity Program System[J]. MTDR,1975:201-203
    [116]精密数控机床典型结合面及整机静动态特性研究[D]:[硕士学位论文].长春:吉林大学,2012.
    [117]Margarida Machado, Pedro Moreira, Paulo Flores. Compliant Contact ForceModels in Multibody Dynamics: Evolution of the Hertz Contact Theory[J].Mechanism and Machine Theory,2012,53:99-121.
    [118]洪嘉振等.机械系统计算动力学与建模[M].北京:高等教育出版社,2011.
    [119]Miedema B,Mansour W M. Mechanical Joints with Clearance:a Three-modeModel[J].ASME Journal of Engineering for Industry,1976,98(4):1319-1323.
    [120]Soong K,Thompson B S. A Theoretical and Experimental Investigation of theDynamic Response of a Slider-Crank Mechanism with Radial Clearance in theGudgeon-Pin Joint[J]. ASME Journal of MechanicalDesign,1990,112(2):183-189.
    [121]Lankarani H.M, Nikravesh P.E. Continuous Contact Force Models for ImpactAnalysis in Multibody Systems[J]. Nonlinear Dynamics,1994,193-207.
    [122]Cheng Liu, Qiang Tian, Haiyan Hu. Dynamics and Control of a SpatialRigid-flexible Multibody System with Multiple Cylindrical Clearance Joints[J].Mechanism and Machine Theory,2012,52:106-129.
    [123]J. Ambróio. Impact of Rigid and Flexible Multibody System: DeformationDescription and Contact Models[J]. Proc of the NATO-ASI on Virtual NonlinearMultibody Systems,2002,2:15-33.
    [124]Lorinc Márton, BélaLantos. Control of Mechanical Systems with StribeckFriction and Backlash[J].System&Control Letters,2009,58:141-147.
    [125]Imed Khemili, Lotfi Romdhane. Dynamic Analysis of a Flexible Slider–crankMechanism with Clearance[J]. European Journal of Mechanics A/Solids,(2008)27:882-898
    [126]Schwab, A.L., Meijaard, J.P., Meijers, P.. A Comparison of Revolute ClearanceModels in the Dynamic Analysis of Rigid and Elastic Mechanical Systems[J].Mechanism and Machine Theory,2002,37:895-913.
    [127]Ravn, P.. A Continuous Analysis Method for Planar Multibody Systems withJoint Clearance[J]. Multibody System Dynamics,1998,2:1-24.
    [128]张明月,章家保,丁同超等.电动舵机速度环改进自抗扰控制研究[J].计算机测量与控制,2013,21(9):2457-2460.
    [129]韩京清.自抗扰控制技术-估计补偿不确定因素的控制技术[M].北京:国防工业出版社,2008.
    [130]Qing Zheng, Linda Q. Gao, Zhiqiang Gao.On Stability Analysis of ActiveDisturbance Rejection Control for Nonlinear Time-Varying Plants withUnknown Dynamics[C].Proc. of the46th IEEE Conference on Decision andControl,2007,3501-3506.
    [131]赖宇阳. iSIGHT参数优化理论与实例详解[M].北京:北京航空航天大学出版社,2012.
    [132]Milan R. Ristanovi, Dragan V. Lazi, Ivica Indin. Nonlinear PID ControllerModification of the Electromechanical Actuator System for Aerofin Controlwith a PWM Controlled Dc Motor[J].2008,7(1):131-139.
    [133]Mohammadi, M.Tavakoli, H.J.Marquez, etal. Nonlinear Disturbance ObserverDesign for Robotic Manipulators[J]. Control Engineering Practice,2013,(21):253-267.
    [134]M. R. Matauek, A.I.Ribicb. Design and Robust Tuning of Control Scheme Basedon the PD Controller Plus Disturbance Observer and Low-order IntegratingFirst-order Plus Dead-time Model [J]. ISA Transactions,2009,(48):410-416.
    [135]刘金琨.先进PID控制MATALB仿真[M].北京:电子工业出版社,2010.
    [136]张明月,杨洪波,章家保等.改进自抗扰控制谐波式电动舵机伺服系统设计[J].光学精密工程,2014,22(1):99-108.
    [137]Biswajit Basu, Satish Nagarajaiah. A Wavelet-based Time-varying AdaptiveLQR Algorithm for Structural Control [J].Engineering Structures,2008,(30):2470-2477.
    [138]C.W.Tao, J.S. Taur, Y.C.Chen. Design of a Parallel Distributed Fuzzy LQRController for the Twin Rotor Multi-input Multi-output System[J]. Fuzzy Setsand Systems,2012,7(24):2081-2102.
    [139]张婧,陈澜,李晓曦.针对大气紊流改进的飞控系统设计及仿真研究[J].计算机测量与控制,2011,19(4):860-865.
    [140]唐一萌,唐永哲.基于过程引导的飞机纵向LQR控制律设计[J].计算机测量与控制,2010,18(5):1061-1063.
    [141]于长官.现代控制理论[M].哈尔滨:哈尔滨工业大学出版社,2005.
    [142]Yang Fan, Chen Chen, Wang Xitian. Observer-based Decentralized Control ofInter-area Oscillation in Multi-infeed HVDC System [J]. IEEE Transactions ONAutomatic Control,2008:1-4.
    [143]张明月,杨洪波,贾宏光等.基于降维观测器的电动舵机PID_LQR控制[J].计算机测量与控制,2013,21(7):1800-1806.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700