用户名: 密码: 验证码:
冷轧带钢连续退火模拟实验机的研究与开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高等级冷轧产品的组织和性能主要是通过连续退火过程来控制的。连续退火是冷轧带钢生产的重要工艺,与最终产品力学性能有关的微观组织和织构主要是由退火过程决定的。为了能迅速、经济而准确地考察不同工艺过程对最终产品性能的影响,工艺开发人员需要有方便、灵活、精确的开发工具。产品开发人员为了选择最佳的生产工艺,也有同样的需求。
     冷轧带钢连续退火模拟实验机的研究与开发课题应运而生。本论文以国家自然科学基金科学仪器基础研究专项基金项目“冷轧带钢连续退火模拟实验机的研究与开发”、宝钢股份不锈钢分公司技术中心与东北大学签订的“光亮退火模拟实验机的研究与开发”、太钢技术中心与东北大学签订的“太钢技术中心中间试验场实验设备研制与丌发项目”等项目为背景,确立了“冷轧带钢连续退火模拟实验机的研究与开发”这一研究课题。
     冷轧带钢连续退火模拟实验机采用单片试样,模拟再现冷轧带钢在连续退火过程中的张力、加热、冷却和炉内气氛等工艺过程和现象,从而获得退火工艺与材料组织性能之间的定量关系,为实际生产服务。
     本课题的研究丌发工作分为冷轧带钢连续退火模拟实验机的整体结构与功能设计、实验机控制系统的研究与丌发、模糊专家温度控制系统的研究与开发、用氢安全控制策略的研究与开发、实验机应用研究等。成功研制出的第一台冷轧带钢连续退火模拟实验机已在宝钢股份不锈钢分公司运行近三年,并发挥了较大的科研作用。该实验机的开发成功,对冷轧产品开发及退火工艺的研究具有重要意义,同时填补了国内空白,提高了国内模拟实验机设备研究与国外相关领域研究的竞争能力。
     论文主要工作及创新性研究成果如下:
     (1)本文在充分研究己知的国内外连续退火模拟实验机的结构特点的基础上,提出了用单工位的结构来模拟连续退火生产的设计思想。该设计思想抛弃了依靠试样在不同工艺炉段之间的穿行来实现加热、冷却、过时效等工艺过程的方法,直接在一个炉体中实现试样的加热、均热、缓冷、快冷、过时效和终冷等工艺过程。多工位的设计思想虽然从设备整体结构上和试样的运行方式上切合了实际的生产过程,但是不仅没有很好的模拟连续退火生产过程,反而使设备结构复杂化,设备功能不够全面,降低了模拟实验和实际生产过程的相似性。
     (2)根据冷轧带钢连续退火模拟实验机的设计原则、设计指标和多功能的设计要求,确定实验机的功能结构主要包括:实验机本体、加热系统、冷却系统、张力系统、气水分配系统、气体分析系统、真空和气体排放系统、控制系统几个部分。在实验机各功能部分的设计中结合实验机的功能要求和模块化、集成化的设计理念,使得各功能部分相辅相成,设备装卸和维修十分简便。在各功能部分的设计中还充分考虑和实现了使用氢气的安全保护功能。
     (3)冷却技术是连续退火机组的核心技术。本文中把冷却系统的设计开发作为了一个关键的技术课题。设计开发出一套拥有自主知识产权的能够模拟气冷、水冷以及气雾冷却的组合式冷却装置。通过该装置灵活的位置布置实现试样的均匀冷却。气体冷却介质为氮氢混合气体,可实现全氢冷却。
     (4)根据实验机控制系统的功能要求,设计开发了控制系统硬件及网络结构原理和配置,包括主控制系统、氢气安全报警系统和控制系统现场电气件分布三部分。实验机基础自动化主控制系统采用SIEMENS公司S7-400系列PLC+FM458的基本结构。S7-400 CPU通过PROFIBUS-DP网与现场远程I/O,以及传动装置进行数据交换,通过工业以太网与HMI进行快速数据交换。氢气安全报警系统配置选用SIEMENSLOGO系列PLC。
     (5)控制系统软件开发包括PLC控制软件开发和HMl人机界面系统开发。PLC软件系统主要包括功能逻辑控制系统、炉内压力控制系统、用氢安全控制策略、张力控制系统、模糊专家温度控制系统、气水分配和调节系统等部分。实验机人机界面系统用于操作人员设定退火工艺参数、监视实验状态和获取实验数据。
     (6)由于冷轧带钢连续退火模拟实验机温度控制系统的非线性、时变性、变结构、多层次和大滞后等缺点而导致常规PID控制效果不理想,不能够达到实验机的设计性能指标。而在实际调试过程中发现采用分段PID控制方法和动态变规格控制方法相结合的控制策略具有很好的控制效果。因此引入模糊专家系统的结构和理论基础,并结合实际调试过程中总结出的专家策略,建立了模糊专家温度控制系统。
     (7)针对氢气使用的安全性,通过分析模拟实验机的气体工作原理和氢气的物理特性,设计开发出一整套氢气使用的安全控制策略。主要包括炉体密封性能的安全控制、炉体内气体含量的安全控制、厂房内氢气检测报警的安全控制、安全互锁和紧急处理、安全操作规程等策略。
The microstructures and properties of high grade cold rolled products are determined by continuous annealing process. Continuous annealing which determines the mechanical properties of the final products is an important technology of cold rolled strip steel. A convenient, flexible, and accurate development device is in urgent need for the development of annealing technologies and products.
     A project of "research and development of continuous annealing simulator for cold rolled strip steel" is proposed based on the project of "research and development of continuous annealing simulator for cold rolled strip steel" which is supported by National Natural Science Foundation of China, the contract of "research and development of bright annealing simulator" between Northeast University and Stainless Steel Branch of Baosteel Group Corporation Limited, the contract of "research and development of experimental equipments of pilot test laboratory of TISCO technology center" between Northeast University and TISCO technology center.
     The continuous annealing simulator for cold rolled strip steel uses small specimens to simulate a series of technological processes of continues annealing of cold rolled strip steel, for example: tension, heating, cooling and protective atmosphere. The quantitative relationships between the annealing technology and the microstructure and properties of tested steels can be obtained after the experiment.
     The research and development works include the design of function structure, research and development of control system, development of temperature fuzzy expert control system, research and development of the safety control strategy for hydrogen utilization, preliminary application of the simulator, etc. After plenty of hard works the first continuous annealing simulator for cold rolled strip steel which had therefore been developed successfully has been used for about three years in Stainless Steel Branch of Baosteel Group Corporation Limited, and plays an important role there. This simulator which fills a domestic gap has important significance to the research and development of cold rolled products and annealing technologies. It also improves the international competition in the related fields.
     Main contents and innovative achievements of this dissertation are as follows:
     (1) The idea of single work position is proposed after a sufficient study about the continuous annealing simulators of home and abroad. It abandons the method of moving the sample through different work positions but uses just one work position to simulate the heating, soaking, slow cooling, fast cooling and over aging processes of annealing. The idea of different work positions just is the same as the actual annealing line about the mechanical structure and working mode, but it doesn't simulates the continuous annealing process well and makes the simulator's structure complicated. As a result, simulator's functions are not comprehensive and the similarities between experiments and the real production are decreased.
     (2) The function structure of continuous annealing simulator for cold rolled strip steel was designed according to the design principles, design indexes and multifunctional requirements. The function parts include mechanical body of simulator, heating system, cooling system, tension system, gas and water distribution system, gas analysis system, vacuum and exhaust system, control system. The design of function structure embodies the concept of modularization and integration and the function parts supplement each other well. So handling and maintenance are very convenient. The safety function of hydrogen utilization is also considered and implemented.
     (3) Cooling technology is the key technology of continuous annealing line. Research and development of cooling system is the key topic of this dissertation. A combined cooling device which owned a patent of invention can simulates the cooling means of gas jet cooling (GJC), water quenching (WQ) and spray cooling was designed and developed successfully. By flexible arrangement of the cooling devices uniform cooling can be achieved. The cooling gases are composed of hydrogen and nitrogen. Full-hydrogen cooling can be implemented.
     (4) According to the functional demands of simulator's control system, the configuration of hardware and network structure was designed and implemented, including main control system, hydrogen safety alarming control system, arrangement plan of field sensors and actuators. The hardware of basic automation control system adopts the S7-400 PLC+FM458 configuration structure. S7-400 CPU communicates with ET200M and transmission system by PROFIBUS-DP net, and communicates with HMI by Industrial Ethernet. The hardware of hydrogen safety alarming control system adopts the SIEMENS LOGO PLC.
     (5) The software of control system is composed of PLC system software and HMI system software. PLC system software includes logical control system, furnace pressure control system, safety control strategy of hydrogen utilization, tension control system, temperature fuzzy expert control system, gas and water distribution system. HMI system provides the interface for operators to set experiment parameters, monitor experiment status and obtain experiment dates.
     (6) Because of some disadvantages of the simulator's temperature control system, for example: nonlinearity, time-varying, variable structure, multi-level, large time delays etc, the control effects were not ideal and can't meet the control performance indexes. We found that the control strategy which was composed of sectional PID control and flying gauge change (FGC) control can get a good performance. A temperature fuzzy expert control system was built after introducing the structure and theoretical basis of fuzzy expert system and combined with some expert control strategies. The control performance was good and the overshoot was small.
     (7) Analyzing the working principle of continuous annealing simulator and physical characteristics of hydrogen, a safety control strategy of hydrogen utilization was proposed including the controls of hermetical performance of furnace, gas content in furnace, alarm of hydrogen detection in plant, safety interlocking and emergency measures, safety operation specification, etc.
引文
1.骆宗安.新一代热力模拟实验技术与装备—MMS-100热力模拟实验机的研制[D],沈阳东北大学,2006.
    2.翁宇庆.提高钢铁质量和使用寿命的冶金学基础研究,973国家计划项目申请书,2004.
    3.王国栋,刘相华,朱伏先,等.新一代钢铁材料的研究开发现状和发展趋势[J],鞍钢技术,2005(4):1-7.
    4.田书华.我国钢铁行业的发展状况与形势分析[J],经济与社会观察,2004,(9):30-34.
    5.国家发改委.钢铁产业发展政策,2005年4月.
    6.何建锋.冷轧板连续退火技术及其应用[J],上海金属,2004,26(4):50-53.
    7.刘安,李俊.冷轧带钢连续退火技术的发展[J],轧钢,1997,(2):64-69.
    8.彭璇,王先进,茹铮,等.IF钢冷轧薄板罩式退火工艺的优化[J],北京科技大学学报,2000,22(3):223.
    9.叶卫平,陈铁群.IF钢罩式退火与连续退火模拟试验[J],特殊钢,2000,21(5):11-13.
    10.关小军,周家鹃,陈晓闽.不同冷轧状态的ELC-BH钢板连续退火再结晶规律[J],金属热处理,2003,28(2):31-33.
    11.傅作宝.冷轧薄钢板生产[M],北京:冶金工业出版社,2005,263-270.
    12.李学党,苗铁岭,张玉琴.现代连续退火机组的发展与应用探讨[J].河南冶金,2008,16(1):23-25.
    13.宋佳.冷轧薄板连续退火技术的发展[J],上海金属,1999,21(4):47-51.
    14.黄自友.宝钢1号连续退火机组现状分析和改造思想[J],宝钢技术,1996,(6):58-62.
    15.何建锋,汪友国.冷轧板连续退火技术的实践和展望[A],2005年全国冷轧板带生产技术交流会暨第三届薄钢板质量研讨会论文集[C],2005.
    16.辜蕾钢,徐文章.冷轧带钢连续退火冷却技术及建设的连续退火机组[J],钢铁技术,2007,(5):13-17.
    17.唐世欣,顾强.宝钢2030冷轧连续退火机组过程控制计算机物料跟踪的软件设计[A],冶金轧制过程自动化技术交流会论文集[C],2005.
    18.何建锋,宋建新.冷轧板连续退火技术在宝钢的应用[J],轧钢,2003,20(3):32-35.
    19.杨维,崔勇,庄权华.本钢1850mm连续退火机组和冷轧汽车板的生产[J],上海金属,2007,29(5):14-17.
    20.王德顺.本钢连续退火机组简介[J],本钢技术,2007,(2):27-31.
    21.袁新运,赵海强.马钢2130mm冷轧薄板连续退火线设计特点[J],轧钢,2009,26(1):44-46.
    22.李运城.第一条全国产化大型带钢连续退火机组—武钢硅钢片厂CA-5机组[J],工业炉,1999,21(2):8-12.
    23.E.Tragl,J.Strutzenberger,G.Angeli,等.新钢种的开发方法[J],钢铁,2005,40(7):80-83.
    24.Ahrens M,Bleck W,Staudte J.Surface Conditioning by reactive gases during continuous annealing of sheet steel[J],Journal of Materials Processing Technology,2001,117(3):270-275.
    25.De Paepe A,Herman J C,Wilmotte S,et al.Bevelopment of cold rolled dual-phase and multiphase steels by means of an ultra short annealing line[J],Iron and Steelmaker,2000,27(7):23-29.
    26.向顺华,黄夏兰,温宏权,等.带钢连续退火工艺模拟装置:中国,CN1804621A[P].2006-07-19.
    27.Jean-Luc Legoupil.冷轧厂各种新型关键设备的开发[J],钢铁,2000,35(11):62-65.
    28.花福安,李建平,刘相华,等.一种冷轧带钢连续退火模拟实验机:中国,CN101221161A[P].2008-07-16.
    29.吴文林,詹华,杨兴亮.多功能连续退火模拟设备的功能及应用[J],上海金属,2007,29(5):101-104.
    30.花福安,李建平,赵志国,等.冷轧薄板试样电阻加热过程分析[J],东北大学学报(自然科学版),2007,28(9):1278-1281.
    31.蒂姆恰克B M,古索夫斯基B.加热炉与热处理炉计算手册[M],于凤仁,蔡玉德译.北京:机械工业出版社,1989,189-525.
    32.吴丰顺,王磊,吴懿平,等.极材直流电阻对焊宽度方向温度分布的研究[J],中国机械工程,2004,15(14):1291-1305.
    33.SSINA.Chemical and physical properties of stainless steel[EB/OL],2006-06-25,http://www.ssina.com/chemical & physical properties.
    34.袁宝歧,蔡惕民,袁名炎.加热炉原理与设计[M],北京:航空工业出版社,1989,200.
    35.Jerome Ferrari,Noam Lior,Jan Slycke.An evaluation of gas quenching of steel rings by multiple-jet impingement[J],Journal of Materials Processing Technology,2003,136:190-201.
    36.Lanchao Lin,Rengasamy Ponnappan.Heat transfer characteristics of spray cooling in a closed loop [J],International Journal of HEAT and MASS TRANSFERS,2003,46:3737-3746.
    37.花福安,李建平,刘相华,等.一种喷气、喷雾两用式冷却装置:中国,CN101293229A[P].2008-10-29.
    38.马健儿.金属带材压力加工中张力控制系统的探究[J],机械制造与自动化,2005,(6):47-50.
    39.徐平,王丹威.MSB-6C-900A六辊可逆冷轧机张力控制系统IA],冶金自动化、信息化与创新—全国冶金自动化信息网建网30周年论文集[C],2007,123-126.
    40.王丰.电液张力控制系统的研究[D],浙江:浙江大学,2002,1-5.
    41.张宝平,周莲莲.连续退火生产线带材翘曲治理方案的研究[J],中国冶金,2007 17(6):55-57.
    42.张清东,周晓敏,邹玉贤,等.带钢在连续退火过程中的板形屈曲变形原因分析[J],上海金属, 2005,27(4):27-29.
    43.骆宗安,苏海龙,张殿华,等.多功能热力模拟实验机的开发[J],东北大学学报(自然科学版),2003,24(12):1181-1183.
    44.苏海龙,骆宗安,张殿华.Lab View RT在多功能材料实验机中的应用[J],轧钢2003,(5):39-41.
    45.张殿华,李建平,牛文勇,等.基于S7-400PLC的六机架热连轧机计算机控制系统[J],基础自动化,1999,6(5):7-11.
    46.孟爱光,李建平,张殿华.三机架冷连轧机控制系统硬件配置[A],1997中国控制与决策学术年会论文集[C],1997,1413-1417.
    47.牛文勇,李建平,苏海龙,等.四辊可逆轧机计算机控制与实验系统[J],基础自动化,2001,8(5):22-25.
    48.孙杰,张殿华,曾玉清,等.单机架可逆冷轧机自动控制系统[J],冶金自动化,2008,32(1):45-48.
    49.孙一康.带钢冷连轧计算机控制[M],北京:冶金工业出版社,2002,29-32.
    50.汪德山.氢气燃爆现缘种种[J],消防月刊,1999,(8):7.
    51.文树德.氢氧混合爆炸事故及其预防[J],工业安全与环保,1985,(6):1-4.
    52.傅丛,陈亚飞,李文华.我国氢能技术规范和标准体系初步研究[J],中国标准化,2006,(5):29-32.
    53.韩素芹.贮存和使用氢气瓶如何防火防爆[J],山东消防,2003,(1):45.
    54.张联合.氢气安全问题的预防和处理措施[J],氯碱工业,2007(10):17-18.
    55.赵冰.莱钢1500mm热轧带钢自动控制系统的研究与应用[J],冶金自动化,2008,32,(1):6.
    56.苏海龙,骆宗安,魏瑾,等.基于NI产品的热力模拟实验机测控系统[J],电子测试,2007,(5):25-29
    57.马跃洲,王伟,梁卫东,等.接触式电阻加热不锈钢管固溶处理装置[J],新技术新工艺,2003,(11):26-28.
    58.吴伯清,沙寿家.金属带钢连续退火炉的新加热法[J],工业炉,1995,(1):59-61.
    59.李辉,谢晓军.基于STEP7的现场总线调试[J],现代制造,2005,(18):60-61.
    60.刘艳彬,马振军,王玉存.西门子STEP7程序模拟调试系统[J],2005,159(5):14-15.
    61.李红梅.全氢罩式退火炉的退火过程自动控制系统[J],冶金自动化,2003,(1):46-47.
    62.熊斐.宝钢研制的全氢罩式炉控制系统分析[J],宝钢技术,2002,(6):5-8.
    63.吴慧明,王昕.铜箔卷绕的恒张力控制系统研究[J],传感器与微系统,2008,27(3):12-13.
    64.赵庆海,贾中华.模糊自适应PID控制在张力控制中的应用[J],包装工程,2008,(1):87-89.
    65.王志为.浅谈冷轧机电气控制中的张力控制[J],机械工程与自动化,2007,140(1):142-144.
    66.张清东,白剑,常铁柱,等.连续退火炉内带钢张力设定模型研究[J],钢铁,2006,41(2):42-45.
    67.邓忠华,叶小萌,李曦.一种新型张力控制系统研究与实现[J],微电机,2007,(6):11-13.
    68.黄中原,李青山.张力控制系统中的张力检测技术[J],1996,63(1):29-31.
    69.骆宗安,苏海龙,张殿华,等.金属材料快速加热方法的研究与实现[J],东北大学学报(自然科学版),2004,25(4):356-359.
    70.骆宗安,苏海龙,张殿华,等.一种新的物理模拟手段—MMS-100热力模拟实验机的研制[J],塑性工程学报,2003,10(5):57-59.
    71.文元美,简宇华,郑泰胜.用于强电流热塑成形的变压器控制电路研制[J],工业加热,2003,(3):23-25.
    72.Zimmer D,Rhodes D.Human-machine interfaces[J],IEEE Industry Applications Magazine,2006,13(2):29-35.
    73.Labs,Wayne.HMI:The hardware and software of it[J],Control Solutions International,2003,76(11):14.
    74.Cleaveland,P.Ensuring a safe,secure HMI[human machine interface][J],Control Engineering,2006,53(10):60-63.
    75.Hogan,H.Solid HMI connections,sealed edges prove tough enough[human machine interfaces][J],Control Engineering,2008,55(7):56-57.
    76.Carmola,R.E.Selecting the appropriate human machine interface(HMI)[A],Proceedings of the FPAC IV Conference[C],1995,559-564.
    77.Innocent,P.The many faces of HMI(education)[J],Computer Bulletin,1988,(4):33-35.
    78.Katzel,Jeanine.Tools for HMI applications Control Engineering[J],2003 50(12):30-33.
    79.McKay,M.A.Combining PC control and HMI[J],InTech,2002,49(7):59-62.
    80.Nicol,B.Wild,G.Luo,H.Win-TDC the state-of-the-art control and protection system for HVDC applications[A],Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference[C],2005,1-5.
    81.王文乐,李建平,甄立东,等.WinCC在光亮连续退火模拟实验机中的应用[J],控制工程,2009,16(1):100-102.
    82.Sonehara,Hiromitsu.Advanced control of continuous annealing furnaces by distributed control system[J],Advances in Instrumentation,1987,42(2):677-689.
    83.Yahiro,K.Shigemori,H.Hirohata,K.Development of strip temperature control system for a continuous annealing line[A],Proceedings of the IECON '93.International Conference on Industrial Electronics,Control,and Instrumentation[C],1993,481-486.
    84.李昌春,左为恒.专家系统与专家控制系统[J],重庆工业管理学院院报,1996,10(4):35-40.
    85.李煜.基于专家模糊PID自适应的回转窑温度控制系统[J],矿冶,2003,12(4):78-80.
    86.范程华,朱武.专家PID温度控制在高真空磁控溅射镀膜机中的应用研究[J],合肥师范学院学报,2009,27(3):56-59.
    87.曲列锋,邵惠鹤.宝钢冷轧过程故障诊断模糊专家系统[J],工业控制计算机,1998,(2):1-4.
    88.Bolat E.D,Erkan K,Postalcioglu S.Microcontroller based temperature control of oven using different kinds of autotuning PID methods[A],AI 2005:Advances in Artificial Intelligence.18th Australian Joint Conference on Artificial Intelligence Proceedings[C],2005,1295-1300.
    89.Tamura N,Matsuda K,Konishi M,et al.Application of artificial intelligence to operation control of blast furnace[A],Automatic Control World Congress 1990 'In the Service of Mankind' Proceedings of the 11th Triennial World Congress of the International Federation of Automatic Control[C],1991,(4):63-68.
    90.郑丽敏.人工智能与专家系统原理及其应用[M],北京:中国农业大学出版社,2004,1-26.
    91.李昌春,左为恒.专家系统与专家控制系统[J],重庆工业管理学院学报,1996,10(4):35-40.
    92.Deodhar A,Shiakolas P.S,Belligundu S.An AI based controller for temperature control for a hot embossing system[A],2005 IEEE International Symposium on Intelligent Control and 13th Mediterranean Conference on Control and Automation[C],2005,(1):113-18.
    93.Wakamiya Y,Tsuruda M,Isobe M.Slab reheating furnace temperature control using AI Artificial [A],Intelligence in Real-Time Control 1991 Proceedings of the 3rd IFAC Workshop[C],1992,153-157.
    94.Cheng Man,Yuan Hongbo,Shao Limin.Design of temperature measurement system based on intelligent technology[A],8th International Conference on Electronic Measurement & Instruments [C],2007,853-856.
    95.Bedzak M.Neural fuzzy controller in a temperature control system[A],Computational Intelligence for Modelling,Control and Automation Neural Networks and Advanced Control Strategies[C],1999,172-177.
    96.程伟良.广义专家系统[M],北京:北京理工大学出版社,2005,54-69.
    97.Pian Jinxiang,Chai Tianyou,Wang Hong,et al.Hybrid intelligent forecasting method of the laminar cooling process for hot strip[A],Proceedings of the American Control Conference[C],2007,4866-4871.
    98.Soyguder Servet,Alli Hasan.An expert system for the humidity and temperature control in HVAC systems using ANFIS and optimization with Fuzzy Modeling Approach[J],Energy and Buildings,2009,41(8):814-822.
    99.Zenghuan Liu,Likong Li,Lu Wen,et al.Analysis of heating furnace temperature control system based on expert fuzzy control[A],2009 International Conference on Measuring Technology and Mechatronics Automation[C],2009,542-545.
    100.Soyguder Server,Karakose Mehmet,Alli Hasan.Design and simulation of self-tuning PID-type fuzzy adaptive control for an expert HVAC system[J],Expert Systems with Applications,2009,36(1):4566-4573.
    101.马宁,邓丽,邓先瑞.PEM燃料电池加湿器温度的专家PID控制[J],微计算机信息,2007,(16): 77-79.
    102.蔡经秋,郭红.模糊专家系统的结构与设计[J],小型微型计算机系统,1989,10(2):7-11.
    103.苏羽,赵海,苏威积,等.基于模糊专家系统的评估诊断方法[J],东北大学学报(自然科学版),2004,25(7):653-656.
    104.Gordon L.Advanced process control:fuzzy logic and expert systems[J],Control Engineering,2005,52(9):1-7.
    105.Tzafestas S.G.Fuzzy systems and fuzzy expert control:an overview[J],Knowledge Engineering Review,1994,9(3):229-235.
    106.Lau H,Wong T.N.A fuzzy expert system for complex closed-loop control:a non-mathematical approach[J],Expert Systems,1998,15(2):98-109.
    107.Posthoff Christian,Sonntag Peter.Fuzzy methods in expert systems for configuration and control (models,implementations and experiences)[A],IEEE International Conference on Fuzzy Systems [C],1994,337-339.
    108.Chi-Hsu Wang,Wei-Yen Wang,Tsu-Tian Lee.Fuzzy evaluation and expert system in classical control system design[A],Proceedings of the 1994 American Control Conference[C],1994,1198-1204.
    109.Abonyi J,Babouska R,Szeifert F.Fuzzy expert system for supervision in adaptive control[A],Artificial Intelligence in Real-Time Control(AIRTC-2000) Proceedings Volume from 9th IFAC Symposium[C],2001,241-246.
    110.Lekova A,Batanov D.Self-testing and self-learning fuzzy expert system for technological process control[J],Computers in Industry,1998,37(2):135-141.
    111.El-Shal Shendy M,Morris Alan S.Fuzzy expert system for fault detection in statistical process control of industrial processes[A],IEEE Transactions on Systems,Man and Cybernetics Part C:Applications and Reviews[C],2000,30(2):281-289.
    112.Locke M.Fuzzy modelling in expert systems for process control[J],Systems Analysis-Modelling-Simulation,1990,7(9):715-719.
    113.Efstathiou J.Expert systems,fuzzy logic and rule-based control explained at last[J],Transactions of the Institute of Measurement and Control,1988,10(4):198-206.
    114.Hoang T.H.Fuzzy reasoning:a fuzzy reasoning method for advanced control systems and expert systems[J],Systems Analysis-Modelling-Simulation,1990,7(9):693-714.
    115.刘建伟,徐兴元,庞京玉,等.专家控制系统研究进展[J],微型机与应用,2005,(11):4-5.
    116.陶永华,尹怡欣,葛芦生.新型PID控制及其应用[M],北京:机械工业出版社,1998,1-5.
    117.Jerome Ferrari,Noam Lior,Jan Slycke.An evaluation of gas quenching of steel rings by multiple-jet impingement[J],Journal of Materials Processing Technology,2003,(136):190-201.
    118.Lanchao Lin,Rengasamy Ponnappan.Heat transfer characteristics of spray cooling in a closed loop [J],International Journal of Heat and Mass Transfers,2003,(46):3737-3746.
    119.Ruey-Hung Chen,Louis C.Chow,Jose E.Navedo.Optimal spray characteristics in water spray cooling[J],International Journal of Heat and Mass Transfers,2004,(47):5095-5099.
    120.Michele Ciofalo,Ivan Di Piazza,Velario Brucato.Investigation of the cooling of hot walls by liquid water sprays[J],International Journal of Heat and Mass Transfers,1999,(42):1157-1175.
    121.熊斐.宝钢研制的全氢罩式炉控制系统分析[J],宝钢技术,2002,6,5-8.
    122.徐鹏.高效能纯氢保护气氛罩式退火炉[J],钢铁,1992,27(6):53-57.
    123.郑津洋,陈瑞,李磊,等.多功能全多层高压氢气储罐[J],压力容器,2005,22(12):25-28.
    124.张德勇.化工装置氢气系统的安全防护与应急处理[J],石油化工安全环保技术,2007,23(16):18-20.
    125.王文乐,花福安,李建平,等.冷轧带钢连续退火模拟实验机的开发及其性能[J],东北大学学报(自然科学版),2009,30(9):1274-1277.
    126.余海峰,毛惠刚,崔培耀,等.410S不锈钢带表面“砂金”缺陷成因及机理分析[J],宝钢技术,2006,(S1):35-39.
    127.韩会全.低碳硅锰系冷轧DP钢组织性能研究[D],沈阳东北大学,2009.
    128.王国栋,刘相华,吴迪.节约型钢铁材料及其减量化加工制造[J],轧钢,2006,23(2):1-5.
    129.中国投资咨询网.2008-2010年中国汽车行业分析及投资咨询报告[M],中投顾问,2009:206-208.
    130.Senuma T.Physical Metallurgy of Modern High Strength Steel Sheets[J],ISIJ International,2001,41(6):520-532.
    131.王利,杨雄飞,陆匠心.汽车轻量化用高强度钢板的发展[J],钢铁,2006,41(9):1-8.
    132.韩会全,霍刚,崔席勇,等.600MPa级冷轧连续退火双相钢临界区加热温度研究[J],金属热处理,2009,34(6):76-80.
    133.林慧国.钢的奥氏体转变曲线[M],北京:冶金工业出版社,1988,256-257.
    134.GB/T 228-2002,金属材料室温拉伸试验方法[S].
    135.GB/T 4156-1984,金属杯突试验方法[S].
    136.马鸣图,吴宝榕.双相钢物理和力学冶金[M],北京:冶金工业出版社,1988,131-146.
    137.E.B.Pan,H.S.Di,G.W.Jiang,et al.Effects of annealing temperatures on microstructure and mechanical property of DP780 steel[A],9th International Conference on Technology of Plasticity [C],2008,460-461.
    138.PAN En-bao,DI Hong-shuang,JIANG Guang-wei,et al.Effects of annealing time on microstructure and mechanical of hot-dipped galvanized dual-phase steel[A],The 5~(th) International Symposium on Advanced Structure Steels and New Rolling Technologies[C],2008,148-153.
    139.张译中,邱伍华.汽车零部件用高强度钢材的进展[J],上海金属,2000,22(4):8-15.
    140.冯袆卿.双相钢在汽车行业中的应用[J],上海汽车,2008,(4):39-41.
    141.党淑娥.双相钢的研究现状及应用前景[J],山西机械,2002,(4):14-16.
    142.焦书军,张红,郑建平.冷轧热镀锌双相钢成分设计模型化的研究[J],宝钢技术,2003,(5):43-47.
    143.程东妹,郝晓东,俞钢强.双相钢热镀锌工艺现状[J],轧钢,2007,27(4):51-54.
    144.F.S.LePera.Improved etching technique to emphasize martensite and bainite in high-strength dual phase steel[J],1980,38-39.
    145.霍刚,韩会全,刘彦春,等.本钢780MPa级冷轧DP钢组织性能研究[J],轧钢,2008,25(2):20-22.
    146.张峰,宋仁伯,刘雅政.1000MPa级冷轧双相钢的热处理工艺与性能研究[J],热加工工艺,2008,(4):42-45.
    147.张增良,宋仁伯,程知松,等.连续退火工艺和合金元素对800MPa级冷轧双相钢组织性能的影响[J],热加工工艺,2008,(6):27-29.
    148.徐洲,赵连城.金属固态相变原理[M],北京:科学出版社,2004,89-102.
    149.Rashid M.S.Relationship between steel microstructure and formability[A],Processing of Modern Developments in HSLA Formable Steels[C],1977,1-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700