静电纺丝法制备氮化硼连续纳米纤维
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮化硼纤维兼备了氮化硼材料和纤维材料各自所特有的多种优良性,极具良好的应用前景。本研究以氧化硼为原料,采用溶液静电纺丝技术制备了高质量的氮化硼连续纳米纤维。
     首先,本研究采用静电纺丝技术制备了氧化硼/聚乙烯缩丁醛(B2O3/PVB)复合纤维,并较为系统地考察了静电纺丝工艺参数对B2O3/PVB纤维形貌的影响,主要包括聚合物(PVB)浓度、B2O3的浓度及电纺电压三个参数。本论文进而研究了B2O3/PVB初级复合纤维的聚合物脱除工艺和氮化工艺条件对氮化硼纳米纤维产品的形貌和成份的影响规律。研究结果表明,聚合物的脱除与否对氮化硼纳米纤维产品的纯度具有明显的影响。没有脱除聚合物的产品,由于聚合物在高温处理过程中发生碳化,所以产品中含有较多的碳杂质;反之,脱除了聚合物后,氮化硼纤维中的碳杂质含量很低。研究还表明,在进行聚合物脱除过程中,采用NH3气氛保护是必要的。氮化工艺可以将B2O3转变为BN,本研究制备得到了纯度较高的氮化硼纳米纤维产品,其氧元素的摩尔含量低于1.5%,说明所用氮化工艺条件能够将B2O3彻底地氮化生成BN。与文献中得到的皮包芯结构不同,本论文得到了实心的氮化硼纤维,此与本研究采用静电纺丝技术得到的初级纤维具有纳米尺度的直径,NH3和N2分子易于扩散至纤维中心密切相关。SEM和TEM表征的结果表明,氮化硼纳米纤维产品的直径可控制在200nm以下,且纤维表面比较光滑、直径分布均匀。SEM结果还表明,氮化硼纳米纤维产品对B2O3/PVB初级纤维的形貌有较大的继承性。
     本论文采用FTIR、EDX、EELS及TGA等手段对氮化硼纤维产品的成份和抗氧化性能进行了表征。FTIR、EDX和EELS分析的结果证实,脱除聚合物后得到的氮化硼纳米纤维产品中的主要成份是B和N两种元素,不含或含微量的碳元素。FTIR和EELS结果还表明氮化硼主要以六方的形式存在。TGA结果显示,氮化硼纳米纤维具有良好的抗氧化性能,其在空气氛中的起始氧化温度约为890℃,而碳杂质的存在使其起始氧化温度下降约95℃。
     此外,本论文对电纺纤维的收集装置进行了研究,采用点电极收集装置制备了大量的、具有良好定向性的B2O3/PVB初级纤维,将其进行高温处理后得到氮化硼连续纳米纤维仍保持了良好的定向性。
Boron nitride fibers which possess the excellent properties of both born nitride material and fibrous material, show a very high promising in some applications. In this work, continuous boron nitride nanofibers (BNFs) with high quality were prepared via solution-electrospinning technique by adopting B2O3 as precursor.
     Firstly, B2O3/polyvinylbutyral (B2O3/PVB) composite fibers (BOFs) were prepared by solution electrospinnig. And the influences of the electrospinning parameters on the morphology of BOFs were studied, including the concentration of PVB ethanol solution, the concentration of B2O3 ethanol solutiono and the electrospinning voltage. Secondly, we studied the process of removing the PVB from the as-spun B2O3/PVB composite fibers and the nitridization, and the effects of the used conditions on the morphology and structures of BNFs final products. The results showed that the removal of the PVB greatly affected the purity of the boron nitride nanofibers. The BNFs had not treated by removing PVB and the PVB would be converted into carbon impurity at high temperature. Contrarily, the BNFs treated by removing PVB had very low carbon content. The research results also showed that the protection of NH3 during the elimination of PVB was necessary. In this paper, BNFs with high purity were prepared via nitridization processing during which B2O3 were transformed into BN. The molar content of oxygen element in obtained BN fibers was about 1.5%, strongly suggesting that most B2O3 had been converted into BN under the used nitridization conditions. Be different from the reported boron nitride fibers with a structure of bark encapsulated core, the whole BN fibers even the core could be nitrdized, because the as-spun BOFs have nano-diameters and thus NH3 and N2 molecules could diffuse into the core of BOFs. The SEM and TEM results showed that the average diameter of the BNFs could be controlled below 200 nm, and the fibers had smooth and unfirom diameters. The SEM results also showed that BNFs final products inherited the morphology to a great extent.
     In this work, FTIR, EDX, EELS and TGA characterization methods were used to investigate the components and resistance to oxidation of BNFs products. The results of FTIR, EDX and EELS proved that the BNFs after the removal of PVB mainly composed of B and N elements, and little or no C elment was detected. FTIR and EELS results also showed that the BN mainly existed in the form of hexagonal structure. TGA analysis revealed that the BNfs without carbon impurity exhibited good resistance to oxidation, and their initiate oxidation temperature in air was about 890℃. But carbon impurity would cause this initiate oxidation temperature decrease about 95℃.
     Additionally, in this work, the electrospinning collector was also studied. And well-aligned B2O3/PVB composite fibers and boron nitride fibers were prepared by using a tip electrode collector.
引文
1 Perdigon-Melon JA, Auroux A, Corn D et al. Porous boron nitride supports obtains from molecular precursors. Influence of the precursor formulation and of the thermal treatment on the properties of the BN ceramic [J]. Journal of Organometallic Chemistry. 2002, 657: 98~106
    2 Perdigon-Melon JA, Auroux A, Guimon C, et al. Micrometric BN powders used as catalyst support: influence of the precursor on the properties of the BN ceramic [J]. Journal of Solid State Chemistry. 2004, 177: 609~615
    3 D. Cornu, S. Bernard, S. Duperrier, B. Toury, P. Miele. Alkylaminoborazine-based precursors for the preparation of boron nitride fibers by the polymer-derived ceramics (PDCs) route. 2005, 25: 111~112
    4 Wideman T, Sneddon G. Dipentylamine-Modified PolyboraZylene: A New, Melt-Spinnable Polymeric Precursor to Boron Nitride Ceramic Fibers [J]. Chem.Mater. 1996, 8: 3~5
    5 Toury B, Miele P, Comu D, et al. Boron nitride fibers prepared from symmetric and Asymmetric Alkylaminoboranizes [J]. Advanced Functional Materials.2002, 12: 228~234
    6张雯,王红杰,金志浩.先驱体热解制备BN复合陶瓷材料研究进展[J].兵器材料科学与工程. 2004, 27, 58~63
    7张相法,张奎,梁浩等.棕色高韧性立方氮化硼合成技术的研究.金刚石与磨料磨具工程(收稿日期:2001-10-11)
    8 X.W. ZHANG, H.-G.BOYON, N. DEYNEKA, P. ZIEMANNN, F. BANHART and M. SCHRECK. Epitaxy of cubic boron nitride on
    001-orinented diamond. Nature Materials. 2(2003)312
    9 N.Patiband la and K.Luthra. Electrochem. Soc. (1992)139, 2558
    10 Economy J. Exploratory development on formation of high strength, high modulus boron nitride continuous filament yarns. AD-90194911972-08-04
    11高庆文,张清文,童申勇等.氮化硼纤维制备工艺及其设备.中国利,1059507A.11992
    12 Taniguchi I, Harada K, Maeda T. 765300, May 11 (1976)
    13 Wade B, et al. ACS Spring Meeting, Polymeric Materials Science andEngineering Division. Atlanta, April 14-19 (1991)
    14 V enkatasubramanian N., et al. Non-Cryst Solids. 1991, 130: 144~156
    15沈春英,丘泰等. BN纤维先驱体的合成.硅酸盐学报第32卷第9期, 2004年9月
    16曾竟成,陈朝辉等.氮化硼纤维先驱体的合成及其热解研究.高分子材料科学与工程.第15卷第6期,1999年11月
    17 R. S. Rayleigh. On The Equilibrium of Liquid Conducting Masses Charged With Electricity. Edinburgh and Dublin Philosophical Magazine and Journal. 1882, 44: 184
    18 Zeleny. The Electrical Discharge from Liquid Points and A Hydrostatic Method of Measuring. The Electric Intensity at Their Surfaces. Phys. Rev. 1914, 3: 69~91
    19 A. Formhals. Process and Apparatus for Preparing Artificial Threads. 1934
    20 B. Vonnegut, R. L. Neubauer. Production of Monodisperse Liquid Particles by Electrical Atomization. J. Colloid. Sci. 1952, 7: 616~622
    21 G. I. Taylor. Disintegration of Water Drops in An Electric Field. Proceedings of Royal Society London. 1964, 280~383
    22 H. L. Simons. US patent 3280229. 1966
    23 P. K. Baumgarten. Electrostatic Spinning of Acrylic Microfibers. J. Colloid. Int. Sci. 1971, 36: 71~79
    24 L. Larrondo, R. S. T. Manley. Electrostatic Fiber Spinning From Polymer Melts and Experimental Observations on Fiber Formation and Properties. J of Polymer Sci.: Polymer Physics Ed. 1981, 19: 909~920
    25 A. F. Spivak, Y. A. Dzenis, D. H. Reneker. A Model of Steady State Jet in the Electrospinning Process. Mechanics Research Communications. 2000, 27 (1): 37~42
    26张锡玮,夏禾,徐纪钢.静电纺丝法制备纳米级聚丙烯腈纤维毡.塑料.2000, 29 (2): 16~19
    27王新威,胡祖明,潘婉莲.聚丙烯腈纳米微纤的制备.合成纤维. 2004, 33 (5): 16~19
    28张春雪,袁晓燕,邬丽丽.电纺聚乙烯醇超细纤维膜的性能研究.高分子学报.2006, (2): 294~296
    29景遐斌,张雪飞,曾敬.生物降解高分子药物载体材料研究.2003全国高分子学术论文报告会论文集.2003: 80~81
    30方壮熙,张璐,韩涛,胡平. PHBV电纺纤维结构与形态的研究.高分子学报. 2004, 4: 500~505
    31袁晓燕,董存海,赵瑾.静电纺丝制备生物降解性聚合物超细纤维.天津大学学报. 2003, 36 (6): 707~709
    32段斌,董存海,袁晓燕.静电纺丝制备壳聚糖/聚氧化乙烯超细纤维. 2003全国高分子学术论文报告会论文集. 2003: 146~147
    33 J Christopher, Buchkoa, C Loui, ct al. Processing and Microstructural Ch Aractcrization of Porous Biocompatible Protein Polymer. Thin Films [J]. Polymer.1999, 40: 7397~7407
    34 H L Jiang, D F Fang, B S Hsiao, et al. Optimization and Characterization of Dextran Membranes Prepared by Electrospinning [J]. Biomacromolecures. 2004, 5 (2): 32~333
    35 H J Jin, Sergey V Fridrikh, C Gregory. Rutledge, et al. Electrospinning silk with Poly (ethylene oxide) [J]. Biomacromolecules, 2002, 3: 1233~123
    36 Zheng-Ming, Huang Y.-Z. Zhang, M. Kotaki, S. Ramakrishna. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology. 2003, 63: 2223-2225
    37 Fong H, Chun I, Reneker DH. Beaded nanofibers formed during electrospinning. Plomer. 1999,40: 4585~4592
    38 Liu HQ, Hsieh YL. Ultrafine fibers cellulose membranes from electrospinning of cellulose acetate. J of polymer Sci Part B: Polymer Physics. 2002, 40: 2119~29
    39 Bergshoef MM, Vancso GJ. Transparent nanocomposites with ultrathin, electrospun Nylon-4,6 fiber reinforecement. Adv Mater. 1999, 11 (16): 1362~1365
    40 Deitzel JM, Kleinmeyer J, Harris D, Tan NCB. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer. 2001, 42: 261~72
    41 Koombhongse S, Reneker DH. Branched and split fiber from electeospiining process. J Plymer Sci: Part B: Polymer Physics. 2001, 39: 2598~606.
    42 Reneker DH, Yarin AL, Fong H, Koombhongse S. Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. JAppl Phys. 2000, 87: 4531~4547
    43 Yarin AL, Koombhongse S, Reneker DH. Bending instability in electrospinning of nanofibers. J Appl Phys. 2001, 89(5): 3018~26
    44 Shin YM, Hohman MM, Brenner MP, Rutledge GC. Electrospinning: A whipping fluid jet generates submicron polymer fibers. Appl Phs Letts. 2001, 78: 1149~1151
    45 Hohman MM, Shin M, Rutledges G, Brenner MP. Electrospinning and electrically forced jets. I. Sability theory. Physics of Fluids. 2001, 3: 2201~2220
    46 Hohman MM, Shin M, Rutledges G, Brenner MP. Electrospinning and electrically forced jets. II. Application. Physics of Fluids. 2001, 3: 2221~2236
    47 Bognitzki M, Czado W, Frese T, Schaper A, Hellwig M, Steinhart M, et al. nanostructured fibers via electrospinning. Adv Mater 2001;13:70-72
    48 Baumgarten PK. Electrostatic spinning of acrylic microfibers [J]. Colloid and Interface Science. 1971, 36: 71~90
    49 Doshi J, Reneker DH. Electrospinning process and application of electrospun fibers. Electrostatics. 1995, 35 (2-3): 151~160
    50 Demir MM, Yilgor I, Yilgor E, Erman B. electrospinning of polyurethane fibers. Polymer. 2002, 43: 3303~3309
    51 Zheng-Ming Huang, Y.-Z. Zhang, M. Kotaki, S. Ramakrishna. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology. 2003, 63: 2223~2253
    52 Jaeger R, Schonherr H, Vancso GJ, Chain packing in electrospun poly(ethylene oxide)visualized hy atomic force microscopy. Macromolecules 1996;29:7634-7636
    53 Fong H, Reneker DH. Elastomeric nanofibers of styrene-butadiene-styrene triblock copolymer. J Polym Sci: Part B Polym Phys. 1999, 37 (24): 3488~3493
    54 Zong X, Kim K, Fang D, Ran S, Hsiao BS. Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer.2002, 4 (16): 4403~4412
    55李栋高,蒋惠钧.丝绸材料学[M].北京:中国纺织出版社. 1994
    56 J S Kim. Improved Mechanical Properties of Composites Using Ultrafine Electrospun Fibers [D]. PhD. dissertation, The Graduate Faculty of the University of Akron. 1997
    57 C Park, Z Ounaies, KA Watson, K Pawlowski, S E Lowther, J W Connell, et al. Polymer-single Wall Carbon Nanotube Composites for Potential Spacecraft Applications [A]. Making Functional Materials with Nanotubes Symposium (Materials Research Society Symposium Proceedings). 2002, 706: 91~96
    58 I Chun, D H Reneker, H Fong, X Fang, J Deitzel, N B Tan, et al. Carbon Nanofibers from Polyacrylonitrile and Mesophase Pitch [J]. Adv. Mater. 1999, 31 (1): 36~41
    59 Y A Dzenis, Y K Wen. Continuous Carbon Nanofibers for Nanofiber Composites [A]. Materials Research Society Symposium-Proceedings. 2002, 702: 173~178
    60 D Groitzsch, E Fahrbach. US Patent 4618524, 1986
    61 D Emig, A Klimmek, E Raabe. US Patent 6395046, 2002
    62 S Graham.‘Smart’Silicon Dust Could Help Screen for Chemical Weapons [J]. Scientific American. 2002: 3
    63 C T Laurencin, A M A Ambrosio, M D Borden, Jr J A Cooper. Tissue Engineering: Orthopedic Applications [J]. Annu. Rev. Biomed. Eng. 1999, 1: 19~46
    64 Byung-Moo Min, Young You, Jin-Man Kim, et al. Formation of Nanostructured Poly (Lactic-Co-Glycolic Acid)/Chitin Matrix and Its Cellular Response to Normal Human Keratinocytes and Fibroblasts [J]. Carbohydrate Polymers. 2004 (57): 182~292
    65 H. Yoshimotoa, Y. M. Shina, H. Teraia, et al. A Biodegradable NanofiberScaffold by Electrospinning and Its Potential for Bone Tissue Engineering [J]. Biomateria1s. 2003 (24): 2077~2082
    66 Wan-Ju Li, Richard Tuli, Hukwuka Olafora, et al. A Three-Dimensional Nanofibrous Scaffold for Cartilage Tissue Engineering Using Human Mesenchymal Stem Cells [J]. Biomaterials. 2005 (26): 599~609
    67 Wan-Ju Li, Cato T. Laurencin, Edwward J. Caterson, et al. Electrospun Nanofibrous Scaffold for Cartilage Tissue Engingeering [J]. J. of Biomed. Mater. Res. 2002 (60): 613~621
    68 Kian-Ngiap Chuaa, Wei-Seng Lima, Pengchi Zhang, et a1. Stable Immobilization of Rat Hepatocyte Spheroids on Galactosylated Nanofiber Scaffold [J]. Biomaterials. 2005 (26): 2537~2547
    69 Chang Hun Lee, Ho Joon Shin, In Hee Cho, et al. Nanofiber Alignment and Direction of Rat Hepatocyte Spherids on Galactosylated Nanofiber Scaffold [J]. Biomaterials. 2005 (26): 1261~1270
    70 H Keun Kwon, Satoru Kidoaki, Takehisa Matsud. Electrospun Nano-to -Microfiber Fabrics Made of Biodegradable Copolyesters: Structural Characteristics, Mechanical Properties and Cell Adhesion Potential [J]. Biomaterials. 2005 (26): 3929~3939
    71 A Stefania. Riboldia, Maurilio Sampaolesib, Peter Neuenschwander. Electrospun Degradable Polyeserurethane Membranes: Potential Scaffolds for Skeletal Muscle Tissue Engineering [J]. Biomaterials. 2005 (26): 4606~4615
    72 Zuwei Ma, Masaya Kotakia, Thomas Yong, et al. Surface Engineering of Electrospun Development Polyethylene Terephthalate (PET) Nanofibers Towards of New Material for Blood Vessel Engineering [J]. Biomaterials. 2005 (26): 2527~2536
    73 Zheng-Ming Huang, Y.-Z. Zhang, M. Kotati, S. Ramafrishna. A Review on Polymer Nanofibers by Electrospinning and Their Applications in Nanocomposites [J]. Composites Sci. and Tech. 2003, 63: 2223~2253
    74 S A Athreya, D C Martin. Impedance Spectroscopy of Protein Polymer Modified Silicon Micromachined Probes [J]. Sensors and Actuators A-Physical. 1999, 72 (3): 203~216
    75 E R Kenawy, G L Bowlin, K Mansfield, et al. Release of Tetracycline Hydrochloride from Electrospun Poly (Lactic Acid) and a Blend [J]. J. of Control Release. 2002, 81: 57~64
    76 Ignatious F, Baldoni JM. PCT/US01/02399, 2001
    77 Kwangsok Kim, Yen K. Luu, Charles Chang, et al. Incorporation And Controlled Release of A Hydrophilic Antibiotic Using Poly(Lactide-Co-Glycolide)-Based Electrospun Nanofibrous Scaffolds [J]. J. of Controlled Release. 2004 (98): 47~56
    78 K J Senecal, D P Ziegler, J He, R Mosurkal, H Schreuder-Gibson, L A Samuelson. Photoelectric Response from Nanofibrous Membranes [A]. Materials Research Society Symposium Proceedings. 2002, 708: 285~289
    79 I D Norris, M M Shaker, F K Ko, A G Macdiarmid. Electrostatic Fabrication of Ultrafine Conducting Fibers: Polyaniline/Polyethylene Oxide Blends [J]. Synthetic Metals. 2000, 114 (2): 109~114
    80 C M Waters, T J Noakes, I Pavery, C Hitomi. US Patent 5088807, 1992
    81 S J Kwoun, R M Lec, B Han, F K Ko. A Novel Polymer Nanofiber Interface for Chemical Sensor Applications [A]. Proceedings of the 2000 IEEE/EIA International: Frequency Control Symposium and Exhibilition. 2000, 887329: 52~57.
    82 S J Kwoun, R M Lec, B Han, F K Ko. Polymer Nanofiber Thin Films for Biosensor Applications [A]. Proceedings of the IEEE 27th Annual Northeast: Bioengineering Conference. 2001, 924694: 9
    83 X Y Wang, S H Lee, C Drew, K J Senecal, J Kumar, L A Samuelson. Highly Sensitive Optical Sensors Using Electrospun Polymeric Nanofibrous Membranes [A]. Materials Research Society Symposium Proceedings. 2002, 708: 397~402
    84 X Y Wang, C Drew, S H Lee, K J Senecal, J Kumar, L A Samuelson. Electrospun Nanofibrous Membranes for Highly Sensitive Optical Sensors [J]. Nano Lett. 2002, 2 (11):1273~1275
    85 Ma, R. Z.; Golberg, D.; Bando, Y.; Sasaki, T. Philos. Trans. R. Soc. London, Ser. A 2004, 362, 2161~2187.
    86 Ivanovskaya VV, Zobelli A, Seifert G, Ivanovskii AL. Dimensionally, morphologically, and thermally induced phase transformations in boron-nitrogen nanowires. Jetp Letters. Aug. 2007, 85 (12): 626~631
    87 Terrones, M.; Grobert, N.; Terrones, H. Carbon. 2002, 40, 1665~1684
    88 M. Terrones, J.-C. Charlier, A. Gloter et al. Nano Letters. 2008, 8, 1026~1032
    89 D. Cornu, S. Bernard,S. Duperrier,B. Toury,P. Miele. Journal of the European Ceramic Society. 2005, 25, 111~121
    90 Hongyu Guan, Changlu Shao, Shangbin Wen et al. A novel method for preparing Co3O4 nanofibers by using electrospun PVA/cobalt acetate composite fibers as precursor. Materials Chemistry and Physics. 2003, 82:1002~1006
    91 Hongqin Dai et al. A novel method for preparing ultra-fine alumina-borate oxide fibres via an electrospinning technique. Nanotechnology. 2002, 13: 674~677
    92 Javed Rafique, Jie Yu, Jiliang Yu and Gang Fang. Electrospinning highly aligned long polymer nanofibers on large scale by using a tip collector APPLIED PHYSICS LETTERS 91, 063126 (2007)
    93 Economy J. Exploratory development on formation of high strength, high modulus boron nitride continuous filament yarns. AD-9019491.1972-08-04
    94 Venkatasubramanian N. Formation, structure and properties of boron nitride fibers from polymer precursors. AD-A247679. 1992-02-25
    95 Solozhenko V L, Petrusha I A, Svirid A A. Thermal phase stability of rhombohedral boron nitride [J]. High Press Res.1996, 15: 95~103.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700