用户名: 密码: 验证码:
复杂件等离子熔积成形过程有限元及无网格法模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
等离子熔积成形具有能量密度高、加热速度快、成材范围广、冶金质量好、制件尺寸大及设备运行成本低等优点。但成形中高能量等离子束移动热源,会导致零件内温度分布不均匀和表面明显的阶梯效应。因此,如何对成形系统的温度进行有效控制和优化,减少制件由于热应力导致的热裂纹,提高成形性与成品率,是该技术实用化的关键。
     论文在有限元ANSYS软件系统的基础上,考虑移动热源和三维增材成形特点,基于热力耦合数学物理模型,开发了随热源和热边界移动的单元逐步激活与加载的等离子熔积制造APDL程序,系统地模拟研究了热辐射效应和工艺参数对高温合金薄壁件成形过程温度场的影响,综合比较了循环水逐步淹没基板、基板下火炉预热与基板中循环水冷三种温度控制系统。模拟所得合适工艺参数为:熔积电压为30V,电流为70A,扫描速度为0.008m/s,冷却水流速为1.6m/s,送粉速度为0.627g/s,基板材料为Q235B。论文首次明确指出高能束成形多余能量主要通过基板以热传导方式转移,辐射与对流造成的热损失只占总量的5%左右,最后提出了成形前基于零件几何外形的基板局部预热与成形开始后基板中水冷却的等离子熔积成形复合温控方案。论文进一步研究了汽车翼子板模具(包括凸模和凹模)等离子熔积制造过程的温度场分布及其变化规律,详细评估了三种扫描路径对成形温度的影响,结果表明:与平行Z字式和交叉Z字式相比,内外回形式扫描成形中零件的温度及其梯度较低,温度场分布较均匀。在以上模拟计算工作的基础上,开展成形试验,成功制造出高温合金复杂双扭涡轮件和叶片样件。
     在以上等离子熔积成形的有限元分析中,为了保证模拟计算精度和收敛性,采用了六面体网格并尽量规则、均匀和细密。然而,零件本身及其与基板过渡区的四面体网格扭曲变形严重,不但给网格划分带来了极大困难,大大增加了分析计算工作量,而且严重影响了有限元法的求解速度、精度、稳定性及收敛性。为此,本文提出采用对节点分布免疫的新型无网格法模拟等离子熔积三维复杂零件成形过程的温度场与应力应变场。与有限元法相比,无网格法只需域内的节点信息构造目标函数,从而避免了因单元网格严重扭曲造成的求解问题。
     论文基于广义变分原理与G空间理论,在无网格NS-PIM和ES-PIM法理论模型的基础上,采用广义光滑梯度技术修正协调梯度场,提出并建立了三维复杂形状零件的增量动态非线性温度场和应力应变场的数学模型,并依此开发了相应的无网格法程序系统。大量复杂问题的分析结果表明:在同一种节点分布条件下,所开发的无网格软件可获得“准”精确的系统刚度,其数值解精度、收敛性及稳定性均高于传统的有限单元法结果,并且在极不规则的节点分布条件下仍能给出满意的数值精度。此外,论文首次系统地研究和比较了NS-PIM、ES-PIM、FEM与EFG和MLPG法的计算成本和效率。研究结果表明:论文开发的无网格程序的计算效率远高于经典无网格EFG、MLPG法以及标准的FEM。
     鉴于目前尚无成熟的无网格法计算力学软件,论文基于面向过程的程序设计思想开发了复杂形状零件非线性温度及应力应变场分析的无网格程序系统,初步建立了一套温度及热应力场的程序设计体系,着重论述了该程序的实现过程及其主要模块功能,并给出了核心功能模块的源代码。最后对复杂双扭涡轮件成形冷却过程的非线性温度场与应力应变场进行了数值模拟分析,与实测结果基本一致,表明该软件系统在分析三维复杂件非线性温度场与热应力场的可行性与正确性。论文的研究结果为等离子熔积成形复杂三维金属零件的工艺优化与设计提供了科学依据。
The plasma deposition manufacturing(PDM) technology has the features of higherenergy density, rapid heating and solidification, widely-used materials, better metallurgicalquality, larger-dimensioned parts and lower cost of equipments. In the process ofmanufacturing, the excess energy due to the continuous heat input of plasma arc cumulatesrapidly, which usually induces the uneven temperature field and severe staircase effect thatis one of the most significant manifestations of part inaccuracy in liquid-based rapidtooling. Therefore, the key problem of advancing this technology into commercial marketis to control the temperature field, to reduce the hot crackability induced by thermal stressand to improve the formability and yield of metal pans. For the purpose of full scientificevidence to optimizing technical design, the nonlinear transient temperature and thermalstress fields of complicated parts are simulated in this thesis through both the finiteelement method(FEM) and meshfree methods.
     According to the features of moving heat source and adding material manufacture inthe PDM, The ANSYS Parametric Design Langrage(APDL) is used to develop the virtualmanufacturing process of elemental activation and load step by step following the movingheat source. This program is then used to investigate the influences of radiation andconvection, plasma power voltage(U_p), transferred arc current(I_(PO)), scanning speed ofplasma torch(v_s.), mean flow rate of cooling water in the substrate(ν_(im)) and the powderflow rate(u_p) on the transient temperature field of the superalloy thin wall. Moreover,three types of temperature control schemes, including the submerging substrate withcooling water, the preheating with a stove under the substrate and the cooling water insidesubstrate are compared and validated using above manufacturing program. Computationalresults show that the great majority of excess energy in the PDM is taken away throughthe substrate by the way of heat conduction, and about five percent of heat is released byradiation and convection. The suitable processing specifications can be obtained: U_p=30V,I_(PO)=70A,ν_s.=0.008m/s,ν_(im)=1.6m/s and u_p=0.627g/s together with Q235B as the substratematerial, and then the temperature control system of locally preheating in terms of thegeometry shape of metal part before fabrication and circulating water cooling inside the substrate at the outset of fabrication are proposed. Using the optimized process scheme,temperature distribution and its evolution principle of a car fender mould(including apunch and die mould) manufactured by the PDM are further investigated, and three typesof scanning path are evaluated in terms of hot crackability and formability. Computationalresults show that, compared with parallel Z-shaped and criss-cross Z-shaped scanningstrategies, the in-to-out scanning strategy can give much less peak temperature and itsgradient as well as much more uniform temperature distribution. Finally, a geometricallycomplicated turbine and a blade are manufactured successfully, in which the good surfacequalityand small deformation and warps are found during and after the fabrication.
     It is suggested from the foregoing analysis that a regular, uniform and fine meshshould be used for accurate selection to simulate the deposition process. In addition, largeelemental deformation and distortion usually take place especially for the tetrahedrons inthe transition region between the part and substrate. This kind of integrated initial meshcan not only result in the significant increase of manpower and cost of the analysis butalso strongly deteriorate the convergence rate, accuracy and reliability of the numericalsolutions. In recent decades, meshfree methods that are not sensitive to or even immunefrom elemental mesh have been developed as the powerful alternative techniques to theFEM. Remarkable progress has been made to provide more effectively solutions forproblems, such as large deformation and dynamic propagation of cracks that cannot beefficiently solved using the traditional FEM.
     Meshfree smoothed PIMs including the Node-based Smoothed PIM(NS-PIM) andthe Edge-based Smoothed PIM(ES-PIM) are developed recently by Professor Liu GR.They use the generalized gradient smoothing technique to modify the gradient fields.Based on the G space theory and the generalized variational principle, the dynamicincremental smoothed nonlinear mathematical formula of temperature and residual stressfields is established in this dissertation from conventional meshfree NS-PIM and ES-PIM.The meshfree codes are then developed to analyze three-dimensional nonlineartemperature and thermal stress fields of geometrically complicated parts. Numerousexample problems have been investigated in details using both NS-PIM and ES-PIM.They have been proven to be stable, works well with triangular and tetrahedral meshes respectively for two and three dimensions, free from volumetric locking, much moreresistant to mesh distortion, and capable of giving a close-to-exact stiffness, ultra-accurate,and even upper bound solutions compared with FEM. In the present work, thecomputational cost and efficiency are systematically investigated for methods of NS-PIM,ES-PIM, FEM, EFG and MLPG. It is indiciated that two types of meshfree methods ofNS-PIM and ES-PIM developed are much more efficient than the well-developed EFGand MLPG as well as the standard FEM.
     It is well-known that, up to the present, no any meshfree software has been developed.Based on the procedure of process-oriented programming, the dynamic incrementalnonlinear meshfree in-house code has been developed using FORTRAN 90. The detailedaspects of their programming are given in Chapter 5, and some kernel subroutine codesare given for the comparison and reference. A turbine part with both complicatedgeometry and boundary conditions are then simulated based on this software. Numericalresults show that present software is very stable numerically, and the computationalconvergence, accuracy and efficiency are better than the traditional FEM using the sameset of nodes and triangular cells. This indicates that present meshfree NS-PIM andES-PIM are promising and potential to the wide applications into practical problems witharbitrarily complicated geometries and boundary conditions.
引文
[1] Cahn RW, Evans AG, Mclean M. High-temperature Structural Materials. (1st ed.). London: Chapman and Hall, 1996.
    [2] Betteridge W, Heslop J. The Nimonic Alloys and other Nickel-base High-temperature Alloys. London: Edward Arnold, 1974.
    [3] 工程材料实用手册编委会.工程材料实用手册.(第二版).第2卷:变形高温合金、铸造高温合金.北京:中国标准出版社,2002.
    [4] 张海鸥.快速模具制造技术的现状及其发展趋势.模具技术,2000,(6):84-89.
    [5] 颜永年,张人佶,林峰.快速制造技术及其应用发展之路.航空制造技术,2008,(11):26-31.
    [6] Pham DT, Dimov SS. Rapid Manufacturing: The Technologies and Applications of Rapid Prototyping and Rapid Tooling. New York: Springer, 2001.
    [7] Cooper KG. Rapid Prototyping Technology: Selection and Application. New York: Marcel Dekker, 2001.
    [8] Griffith ML, Schlienger ME, Harwell LD et al. Understanding thermal behavior in the LENS process. Materials and Design, 1999, 20(2-3): 107-113.
    [9] Griffith ML, Ensz MT, Puskar JD et al. Understanding the microstructure and properties of components fabricated by laser engineered net shaping (LENS). In: Danforth SC, Dimos DB, Prinz F. Materials Research Society Symposium Proceedings: Solid Freeform and Additive Fabrication. San Francisco: Springer Materials Research Society, 2000.9-20.
    [10] 杨林,钟敏霖,黄婷等.激光直接制造镍基高温合金零件成形工艺的研究.应用激光,2004,24(6):345-349.
    [11] Meleka AH. Electron-beam Welding: Principles and Practice. London: McGraw-Hill for the Welding Institute, 1971.
    [12] Zhang HO, Xu JP, Wang GL. Fundamental study on plasma deposition manufacturing. Surface and Coatings Technology, 2003, 171(1-3): 112-118.
    [13] Zhao W, Liu L, Zhang HO et al. Investigation on the microstructure of plasma deposition manufacturing nickel base superalloy. Rare Metal Materials and Engineering, 2005, 34(s2): 376-379.
    [14] 张海鸥,吴红军,王桂兰等.等离子熔积直接成形高温合金件组织结构研究.华中科技大学学报(自然科学版),2005,33(11):54-56.
    [15] Sheng PS, Liu KW. Laser machining for secondary finishing applications. Journal of Engineering for Industry, 1997, 11(4): 115-117.
    [16] 张海鸥,汪亮,王桂兰等.等离子熔积高温合金表面激光气化光整研究.中国机械工程,2005,16(18):1674-1677.
    [17] Xiong XH, Zhang HO, Wang GL. Metal direct prototyping by using hybrid plasma deposition and milling. Journal of Materials Processing Technology, 2009, 209(1): 124-130.
    [18] Shalom E, Yaffa E. The Fourth State of Matter: An Introduction to Plasma Science. (2nd ed.). Philadelphia: Institute of Physics, 2001.
    [19] 徐继彭,张海鸥,王桂兰等.金属粉末等离子熔积成形的工艺试验研究.电加工与模具,2005,(2):39-42.
    [20] 吴红军.等离子熔积直接成形高温材料工艺及组织研究.[硕士学位论文].武汉:华中科技大学图书馆,2006.
    [21] Ojo OA, Richards NL, Chaturvedi MC. Contribution of constitutional liquation of gamma prime precipitate to weld HAZ cracking of cast Inconel 738 superalloy. Scripta Materialia, 2004, 50(5): 641-646.
    [22] 李廷忠,吴圣川.等离子熔积成形的热源输入数学模型.电焊机,2006,36(6):34-37.
    [23] 熊新红.等离子熔积与铣削光整复合直接制造高温合金零件技术研究.[博士学位论文].武汉:华中科技大学图书馆,2007.
    [24] Xiong XH. A new method of direct metal prototyping: hybrid plasma deposition and milling. Rapid Prototyping Journal, 2008, 14(1): 53-56.
    [25] 徐继彭.等离子熔积直接快速成形技术基础.[博士学位论文].武汉:华中科技大学图书馆,2004.
    [26] Karapatis NP, G-riethuysen JPS, Glardon R. Direct rapid tooling: a review of current research. Rapid Prototyping Journal, 1998, 4(2): 77-89.
    [27] 张凯,刘伟军,尚晓峰等.激光直接快速成形金属材料及零件的研究进展.激光杂志,2005,26(4):4-8.
    [28] Himmer T, Techel A, Nowotny S et al. Recent developments in metal laminated tooling by multiple laser processing. In: Bourell DL. The 13th Solid Freeform Fabrication Symposium. University of Texas at Austin. Austin: 2002. 466-473.
    [29] Bourell DL, Marcus HL, Barlow JW et al. Selective laser sintering of metals and ceramics. International Journal of Powder Metallurgy, 1992, 28(4): 369-381.
    [30] Mazumder J, Choi J, Nagarathnam K et al. The direct metal deposition of H13 tool steel for 3D components. JOM Journal of the Minerals, Metals and Materials, 1997, 49(5): 55-60.
    [31] Geng HY. Manufacturing Engineering Handbook. New York: McGraw-Hill, 2004.
    [32] Dimitrov. D, Schreve K, Beer ND. Advances in three dimensional printing-state of the art and future perspectives. Rapid Prototyping Journal, 2009, 15(1): 136-147.
    [33] 宋海鹰.基于光电技术和图像处理技术的高温熔体非接触式测温系统的研究.[博士学位论文].长沙:中南大学图书馆,2004.
    [34] 雷剑波.基于CCD的激光再制造熔池温度场检测研究.[博士学位论文].天津:天津工业大学图书馆,2007.
    [35] 朱伯芳.有限单元法原理及应用.(第二版).北京:中国水利水电出版社,1998.
    [36] 王勖成。有限单元法。北京:清华大学出版社,2003.
    [37] Zienkiewicz OC, Taylor RL. The Finite Element Method. (6th ed.). New York: Elsevier Butterworth-Heinemann, 2005.
    [38] Buqeda G, Cervera M, Lombera G. Numerical prediction of temperature and density distributions in selective laser sintering processes. Rapid Prototyping Journal, 1999,5(1): 21-26.
    [39] Shiomi M, Yoshidome A, Abe F et al. Finite element analysis of melting and solidification processes in laser rapid prototyping of metallic powders. International Journal of Machine Tools and Manufacture, 1999, 39(1-3): 237-252.
    [40] Matsumoto M, Shiomi M, Osakada K et al. Finite element analysis of single layer forming on metallic powder bed in rapid prototyping by selective laser processing. International Journal of Machine Tools and Manufacture, 2002,42(1): 61-67.
    [41] Childs THC, Hauser C, Badrossamay M. Selective laser sintering (melting) of stainless and tool powders: experiments and modeling. Proceedings of the Institution of Mechanical Engineers B:Journal of Engineering Manufacture, 2005, 219(4): 339-357.
    [42] Qian L, Mei J, Liang J et al. Influence of position and laser powder on thermal history and microstructure of direct laser fabricated Ti-6A1-4V samples. Materials Science and Technology,2005, 21(5): 597-605.
    [43] Labudovic M, Hu D, Kovacevic R. A three dimensional model for direct laser metal powder deposition and rapid prototyping. Journal of Materials Science, 2003, 38(1): 35-49.
    [44] Ye RQ, Smugeresky JE, Zheng BL et al. Numerical modeling of the thermal behavior during the LENS process. Materials Science and Engineering A, 2006,428(1-2): 47-53.
    [45] Dai K, Shaw L. Thermal and mechanical finite element modeling of laser forming from metal and ceramic powders. Acta Materialia, 2004, 52(1): 69-80.
    [46] Hu DM, Kovacevic R. Sensing, modeling and control for laser-based additive manufacturing.International Journal of Machine Tools and Manufacture, 2003,43(1): 51-60.
    [47] Zekovic S, Dwivedi R. Thermo-structural finite element analysis of direct laser metal deposited thin-walled structures. In: Bourell DL. The 16th Solid Freeform Fabrication Symposium. University of Texas at Austin. Austin: 2005. 338-355.
    [48] Ghosh S, Choi J. Three-dimensional transient finite element analysis for residual stresses in the laser aided direct metal/material deposition process. Journal of Laser Applications, 2005, 17(3):144-158.
    [49] Ghosh S, Choi J. Modeling and experimental verification of transient residual stresses and microstructure formation in multi-layer laser aided DMD process. Journal of Heat Transfer-Transaction of the ASME, 2006, 128(7): 662-679.
    [50] Ghosh S, Choi J. Deposition pattern based thermal stresses in single-layer laser aided direct material deposition process. Journal of Manufacturing Science and Engineering-Transaction of the ASME, 2007, 129(2): 319-332.
    [51] Costa L, Vilar R, Reti T et al. Rapid tooling by laser powder deposition: process simulation using finite element analysis. Acta Materialia, 2005, 53(14): 3987-3999.
    [52] 杜建红,白培康,程军.选择性激光烧结过程温度场数值模拟.中北大学学报(自然科学版),2000,21(1):30-32.
    [53] Shi LK, Gao SY, Xi MZ et al. Finite element simulation for laser direct depositing processes of metallic vertical thin wall. Parts-Ⅰ: The simulation for temperature field during depositing processes. Acta Metallurgica Sinica, 2006, 42(5): 449-453.
    [54] Shi LK, Gao SY, Xi MZ et al. Finite element simulation for laser direct depositing processes of metallic vertical thin wall. Parts-Ⅱ: The simulation for stress field during depositing processes. Acta Metallurgica Sinica, 2006, 42(5): 454-458.
    [55] Shi LK, Gao SY, Xi MZ et al. Finite element simulation for laser direct depositing processes of metallic vertical thin wall. Parts-Ⅲ: The analysis for distortion during depositing processes. Acta Metallurgica Sinica, 2006, 42(5): 459-462.
    [56] 席明哲,张永忠,章萍芝等.工艺参数对激光快速成型316L不锈刚组织性能的影响.中国激光,2002,29(11):1045-1048.
    [57] 刘振侠.激光熔凝和激光熔覆的数学模型及数值分析.[博士学位论文].西安:西北工大学图书馆,2003.
    [58] 陈静,林鑫,王涛等.316L不锈刚激光快速成形中熔覆层的热裂机理.稀有技术材料与工程,2003,32(3):183-186.
    [59] 谭华.激光快速成形过程温度测量及组织控制研究.[硕士学位论文].西安:西北工业大学图书馆,2005.
    [60] 贾文鹏,陈静,林鑫等.激光快速成形过程中粉末与熔池交互作用的数值模拟.金属学报,2007,43(5):546-552.
    [61] 沈显峰,姚进,王洋等.金属粉末的直接选区激光烧结温度场数值模拟.光电子.激光,2005,16(4):492-495.
    [62] 郭华锋.金属粉末激光直接烧结成形温度场的三维有限元模拟及实验研究.[硕士学位论文].镇江:江苏大学图书馆,2007.
    [63] 姚化山,史玉升,章文献等.金属粉末选区激光熔化成形过程温度场模拟.应用激光,2007,27(6):456-460.
    [64] 程军.选择性激光烧结预热温度场的数值模拟及实验研究.[硕士学位论文].武汉:华中科技大学图书馆,2006.
    [65] 翁孟超,杨志强,郭华峰等.工艺参数对激光烧结铁粉温度场演变的影响.激光杂志,2007,28(3):70-72.
    [66] 熊文平.激光快速原型三维温度场仿真及其热应变计算.[硕士学位论文].长沙:湖南大学图书馆,2004.
    [67] 张晓萍,颜永年,袁晓蒙.熔融堆积成形过程温度场的模拟研究.中国机械工程,2000,11(10):1101-1104.
    [68] 宋丽莉.熔融沉积制造成型过程的数值模拟.[硕士学位论文].北京:北京化工大学图书馆,2005.
    [69] 郎旭元.基于单道激光熔覆金属零件快速成形的数值模拟及试验研究.[硕士学位论文].衡阳:南华大学图书馆,2007.
    [70] Zhang Y, Chou K. A parametric study of part distortions in fused deposition modeling using three-dimensional finite element analysis. Proceedings of the Institution of Mechanical Engineering Part B-Journal of Engineering Manufacture, 2008, 222(8): 959-967.
    [71] Zhang Y, Chou K. Three-dimensional finite element analysis simulation of the fused deposition modeling process. Proceedings of the Institution of Mechanical Engineering Part B-Journal of Engineering Manufacture, 2006, 220(10): 1663-1671.
    [72] Sandia National Lab.: http://www.sandia.gov/mst/technologies/net-shaping.html.
    [73] Dunkerton S, Simpson J. http://www.twi.co.uk/content/spsbdjuly2006.html.
    [74] Johnston S, Anderson R. Finite element thermal analysis of three dimensionally printed (3D TM) metal matrix composites. In: Bourell DL. The 13th Solid Freeform Fabrication Symposium. University of Texas at Austin. Austin: 2002. 432-439.
    [75] Shivpuri R, Cheng X, Agarwal K et al. Evaluation of 3D printing for dies in low volume forging of 7075 aluminum helicopter parts. Rapid Prototyping Journal, 2005, 11(5): 272-277.
    [76] Iliescu M, Nutu E, Comanescu B. Applied finite element method simulation in 3D printing. International Journal of Mathematics and Computers in Simulation, 2008, 4(2): 305-312.
    [77] Cormier D, Harrysson O, West H. Characterization of H13 steel produced via electron beam melting. Rapid Prototyping Journal, 2004, 10(1): 35-41.
    [78] 陈云霞,朱妙凤,姚舜等.三维扫描电子束快速成型技术.电焊机,2008,38(5):16-18,61.
    [79] Watson JK, Taminger KM, Harley RA et al. Development of a prototyping low-voltage electron beam freefrom fabrication system. In: Bourell DL. The 13th Solid Freeform Fabrication Symposium. University of Texas at Austin. Austin: 2002. 458-465.
    [80] Taminger KM. Electron Beam Freeform Fabrication: a metal deposition apparatus to build components directly from CAD. http://fuentek.net/technologies/EBF3.htm.
    [81] Arcam AB website: http://www.arcam.com/index.asp.
    [82] Taminger KM, Harley RA. Characterization of 2219 aluminum produced by electron beam freeform fabrication. In: Bourell DL. The 13th Solid Freeform Fabrication Symposium. University of Texas at Austin. Austin: 2002.482-489.
    [83] Taminger KM, Hafiey RA. Electron beam freeform fabrication for cost effective near-net shape manufacturing. Scientific and Technical Aerospace Reports: Metals and Metallic Materials, 2006, 44(7): 1-10.
    [84] Harrysson OLA, Cansizoglu O,Marcellin LDJ et al. Direct metal fabrication of titanium implants with tailored materials and mechanical properties using electron beam melting technology. Materials Science and Engineering C-Biomimetic and Supramolecular Systems, 2008, 28(3): 366-373.
    [85] 杨鑫,汤慧萍,贺卫卫等.电子束烧结快速成形技术.钛工业进展,2007,24(3):10-14.
    [86] 齐海波,林峰,颜永年等.电子束在快速制造领域的应用.新技术新工艺,2004,(11):54-56.
    [87] Aggarangsi S, Beuth JL. Localized preheating approaches for reducing residual stress in additive manufacturing. In: Bourell DL. The 17th Solid Freeform Fabrication Symposium. University of Texas at Austin. Austin: 2006. 709-720.
    [88] 韩建栋,林峰,齐海波等.粉末预热对电子束选区熔化成形工艺的影响.焊接学报,2008,29(10):77-80.
    [89] 李文涛,齐海波,杨黎等.电子束选区熔化选区技术的粉末预热系统设计.机械设计与制造,2007,(11):113-115.
    [90] 刘海涛,赵万华,唐一平.电子束熔融直接金属成型工艺的研究.西安交通大学学报,2007,41(11):1307-1310,1325.
    [91] 朱妙凤.电子束快速成型及其温度场模拟.[硕士学位论文].上海:上海交通大学图书馆,2008.
    [92] 王桂兰,张珩,张海鸥.等离子熔积成形过程的温度场有限元模拟.华中科技大学学报(自然科学版),2006,34(1):1-3,10.
    [93] 曾玲芳,王桂兰,张海鸥等.等离子多层熔积混相瞬态流场和温度场的模拟.焊接学报,2007,28(3):36-40.
    [94] Zhang HO, Kong FR, Wang GL et al. Numerical simulation of multiphase transient field during plasma deposition manufacturing. Journal of Applied Physics, 2006, 100(1): 123522.1-123522.9.
    [95] Kong FR, Zhang HO, Wang GL. Numerical simulation of transient multiphase field during hybrid plasma-laser deposition manufacturing. Transactions of the ASME: Journal of Heat Transfer, 2008, 130(11): 112101.1-112101.7.
    [96] 王桂兰,吴圣川,张海鸥.复杂零件等离子无模成形的温度场模拟.焊接学报,2007,28(5):49-52.
    [97] 吴圣川,张海鸥,王桂兰等.等离子无模成形叶轮的应力场分析与校核.焊接学报,2007.28(6):49-52,56.
    [98] Liu GR. Meshfree Methods: Moving Beyond the Finite Element Method. Boca Raton: CRC Press, 2002.
    [99] 张熊,刘岩.无网格法.北京:清华大学出版社,2004.
    [100] Atluri SN, Shen SP. The Meshless Local Petrov-Galerkin (MLPG) Method. Netherlands: Springer Press, 2005.
    [101] Liu GR, Gu YT. An Introduction to Meshfree Methods and Their Programming. Netherlands:Springer Press, 2005.
    [102] Belytschko T, Krongauz Y, Organ D. Meshless method: an overview and recent development.Computer methods in Applied Mechanics and Engineering, 1996, 139(1-4): 3-47.
    [103] Lucy LB. A numerical approach to testing of the fission hypothesis. The Astronomical Journal,1977, 8(12): 1013-1024.
    [104] Monaghan JJ. An introduction to SPH. Computer Physics Communications, 1998,48(1): 89-96.
    [105] Liu GR, Liu MB. Smoothed Particle Hydrodynamics-A Meshfree Particle Method. Singapore:World Scientific Publishing Company, 2003.
    [106] Wong S, Shie Y. Large deformation analysis with Galerkin based smoothed particle hydrodynamics. CMES-Computer Modeling in Engineering and Science, 2008, 36(2): 97-118.
    [107] Swegle JW, Attaway SW. On the feasibility of using smoothed particle hydrodynamics for underwater explosion calculations. Computational Mechanics, 1995, 17(3): 151-168.
    [108] Liu MB, Liu GR, Lam KY et al. Smoothed particle hydrodynamics for numerical simulation of underwater explosion. Computational Mechanics, 2003, 30(2): 106-l18.
    [109] Cleary PW, Prakash M, Ha J. Novel applications of smoothed particle hydrodynamics (SPH) in metal forming. Journal of Materials Processing Technology, 2006, 177(1-3): 41-48.
    [110] Jeong JH, Jhon MS, Halow JS et al. Smoothed particle hydrodynamics: Applications to heat conduction. Computer Physics Communications, 2003, 153(1): 71-84.
    [111] Monaghan JJ, Huppert HE, Worster MG. Solidification using smoothed particle hydrodynamics.Journal of Computational Physics, 2005,206(2): 684-705.
    [112] Zhang MY, Zhang H, Zheng LL. Application of smoothed particle hydrodynamics method to free surface and solidification problems. Numerical Heat Transfer A-Applications, 2007, 52(4):299-314.
    [113] Zhang MY, Zhang H, Zheng LL. Simulation of droplet spreading, splashing and solidification using smoothed particle hydrodynamics method. International Journal of Heat and Mass Transfer,2008, 51(13-14): 3410-3419.
    [114] Lancaster P, Salkauskas K. Surfaces generated by moving least square methods. Mathematics of Computation, 1981, 37(155): 141-158.
    [115] Nayroles B, Touzot G, Villon P. Generalized the finite element method: diffuse approximation and diffuse elements. Computational Mechanics, 1992, 10(5): 307-318.
    [116] Belytschko T, Lu YY, Gu L. Element-free Galerkin method. International Journal for Numerical Methods in Engineering, 1994, 37(2): 229-256.
    [117] Belytschko T, Lu YY, Gu L. Fracture and crack growth by element-free Galerkin method. Modeling and Simulation in Material Science and Engineering, 1994, 2(3A): 519-534.
    [118] Singh Ⅳ Sandeep K, Prakash R. Heat transfer analysis of two-dimensional fins using a meshless element free Galerkin method. Numerical Heat Transfer A-Applications, 2003, 44(1): 73-84.
    [119] Singh Ⅳ. A numerical study of weight functions, scaling, and penalty parameters for heat transfer applications. Numerical Heat Transfer A-Applications, 2005, 47(10): 1025-1053.
    [120] Singh Ⅳ, Tanaka M. Heat transfer analysis of composite slabs using meshless element free Galerkin method. Computational Mechanics, 2006, 38(6): 521-532.
    [121] Singh Ⅳ, Tanaka M, Endo M. Nonlinear thermal analysis of carbon nanotube composites by the element free Galerkin method. Numerical Heat Transfer A-Applications, 2007, 51(11): 1087-1102.
    [122] Singh A, Singh Ⅳ, Prakash R. Meshless element free Gaterkin method for unsteady nonlinear heat transfer problems. International Journal of Heat and Mass Transfer, 2007, 50(5-6): 1212-1219.
    [123] Gao ZH, Lai YM, Zhang MY et al. An element free Galerkin method for nonlinear heat transfer with phase change in Qinghai-Tibet railway embankment. Cold Regions Science and Technology, 2007, 48(1): 15-23.
    [124] Singh Ⅳ. Parallel implementation of the EFG method for heat transfer and fluid flow problems. Computational Mechanics, 2004, 34(6): 453-463.
    [125] Singh Ⅳ, Jain PK. Parallel EFG algorithm for heat transfer problems. Advances in Engineering Software, 2005, 36(8): 554-560.
    [126] Yang HT, Liu L. The use of cyclic symmetry in EFG analysis for heat transfer problems. International Journal for Numerical Methods in Engineering, 2005, 62(7): 937-951.
    [127] Yang HT, Liu L. Solving transient heat conduction problems with cyclic symmetry via a paralleled EFGM and a precise algorithm. Numerical Heat Transfer B-Fundamentals, 2004, 46(5): 479-495.
    [128] Wu SC, Zhang HO, Zheng C et al. A high performance large symmetry sparse solver for element-free Galerkin method. International Journal of Computational Methods, 2008, 5(4): 533-550.
    [129] 李玉坤.复杂断块油藏无网格试井.[博士学位论文].东营:中国石油大学图书馆,2007.
    [130] 林龙凤,尹华杰.无网格迦辽金法在电磁场数值计算中的应用.电机电器技术,2002,(6):35-38
    [131]陆新征,江见鲸.利用无网格方法分析钢筋混凝土梁开裂问题.工程力学,2004,21(2):24-28.
    [132] 曹中清.无单元法及其面向对象程序实施.[博士学位论文].成都:西南交通大学图书馆,2006.
    [133] 龚曙光.基于EFG法形状优化的数值方法研究与工程应用.[博士学位论文].湘潭:湘潭大学图书馆,2005.
    [134] Liu WK, Jun S, Zhang YF. Reproducing kernel particle methods. International Journal for Numerical Methods in Fluids, 1995, 20(8-9): 1081-1106.
    [135] Liu WK, Jun S, Sihling DT et al. Multiresolution reproducing kernel particle method for computational fluid dynamics. International Journal for Numerical Methods in Fluids, 1997,24(12): 1391-1415.
    [136] Chen JS, Pan C, Wu CT. Large deformation analysis of rubber based on a reproducing kernel particle method. Computational Mechanics, 1997, 19(3): 211-227.
    [137] Liew KM, Ng TY, Wu YC. Meshfree method for large deformation analysis-a reproducing kernel particle approach. Engineering Structures, 2002, 24(5): 543-551.
    [138] Zhang ZQ, Zhou JX, Wang XM et al. H-adaptivity analysis based on multiple scale reproducing kernel particle method. Applied Mathematics and Mechanics, 2005, 26(8): 1064-1071.
    [139] Li GY, Sidibe K, Liu GR. Meshfree method for 3D forming analysis with lower order integration scheme. Engineering Analysis with Boundary Elements, 2004,28(10): 1283-1292.
    [140] Park YH. Rigid-plastic analysis for metal forming processes using a reproducing kernel particle method. Journal of Materials Processing Technology, 2007, 183(2-3): 256-263.
    [141] Liu CW, Taciroglu E. Enriched reproduced kernel particle method for piezoelectric structures with arbitrary interfaces. International Journal for Numerical Methods in Engineering, 2006,67(11): 1565-1568.
    [142] Chen L, Cheng YM. Complex variable reproducing kernel particle method for transient heat conduction problems. Acta Physica Sinica, 2008, 57(10): 6047-6055.
    [143] Atluri SN, Zhu T. A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics. Computational Mechanics, 1998,22(2): 117-127.
    [144] Sladek J, Sladek V, Zhang C et al. Analysis of orthotropic thick plates by meshless local Petrov-Galerkin method (MLPG) method. International Journal for Numerical Methods in Engineering, 2006, 67(13): 1830-1850.
    [145] Qian LF, Batra RC. Three-dimensional transient heat conduction in a functionally graded thick plate with a higher-order plate theory and a meshless local Petrov-Galerkin method.Computational Mechanics, 2005, 35(3): 214-226.
    [146] Sladek J, Sladek V, Wen P et al. Meshless local Petrov-Galerkin method for shear deformable shells analysis. CMES-Computer Modeling in Engineering and Science, 2006, 13(2): 103-117.
    [147] Li D, Lin ZQ, Li SH. Numerical analysis of Mindlin shell by meshless local Petrov-Galerkin method. Acta Mechanica Solida Sinica, 2008, 21(2): 160-169.
    [148] Ni GZ, Ho SL, Yang SY et al. Meshless local Petrov-Galerkin method and its application to electromagnetic field computations. International Journal of Applied Electromagnetics and Mechanics, 2004, 19(sl-4): 111-117.
    [149] Xiong YB, Long SY, Hu DA et al. A meshless local Petrov-Galerkin method for geometrically nonlinear analysis. Acta Mechanica Solida Sinica, 2005, 18(4): 348-356.
    [150] Hu DA, Long SY, Han X et al. A meshless Petrov-Galerkin method for large deformation contact analysis of elastomers. Engineering Analysis with Boundary Elements, 2007, 31(7): 61-74.
    [151] Sladek J, Sladek V, Atluri SN. Meshless local Petrov-Galerkin method for heat conduction problem in an anisotropic medium. CMES-Computer Modeling in Engineering and Science,2004, 6(3): 309-318.
    [152] Arefinanesh A, Najafi M, Abdi H. A meshless local Petrov-Galerkin method for fluid dynamics and heat transfer applications. Journal of Fluids Engineering-Transactions of the ASME, 2005,127(4): 647-655.
    [153] Sladek J, Sladek V, Hellmich C et al. Heat conduction analysis of 3D axisymmetric and anisotropic FGM bodies by meshless local Petrov-Galerkin method. Computational Mechnics,2007,39(3): 323-333.
    [154] Sladek J, Sladek V, Zhang C et al. Meshless local Petrov-Galerkin method for linear coupled thermoelastic analysis. CMES-Computer Modeling in Engineering and Science, 2007, 16(1):57-68.
    [155] Wu SC, Zhang HO, Tang Q et al. Meshless analysis of the substrate temperature in plasma spraying process. International Journal of Thermal Sciences, 2009,48(4): 674-681.
    [156] Shen SP, Atluri SN. Multiscale simulation based on the meshless local Petrov-Galerkin (MLPG) method. CMES-Computer Modeling in Engineering and Science, 2007, 5(3): 235-255.
    [157] Liu KY, Long SY, Li GY. A simple and less-costly meshless local Petrov-Galerkin method for the dynamic fracture problem. Engineering Analysis with Boundary Elements, 2006, 30(1):72-76.
    [158] Long SY, Liu KY, Li GY. An analysis for the elasto-plastic fracture problem by the meshless local Petrov-Galerkin method. CMES-Computer Modeling in Engineering and Science, 2008,28(3): 203-216.
    [159] Yuan W, Chen P, Liu K. A new quasi-unsymmetric sparse linear systems solver for meshless local Petrov-Galerkin method (MLPG). CMES-Computer Modeling in Engineering and Science,2007, 17(2): 115-134.
    [160] Duarte CA, Oden JT. Hp clouds-hp meshless method. Numerical Methods for Partial Differential Equations, 1998, 12(6): 673-705.
    [161] Babuska I, Melenk JM. The partition of unity methods. International Journal for Numerical Methods in Engineering, 1998,40(4): 727-758.
    [162] Onate E, Idelsohn S, Zienkiewicz OC et al. A finite point method in computational mechanics:applications to convective transport and fluid flow. International Journal for Numerical Methods in Engineering, 1998, 39(22): 3839-3866.
    [163] Mukherjee YX, Mukherjee S. The boundary node method for potential problems. International Journal for Numerical Methods in Engineering, 1998, 40(5): 795-815.
    [164] 张熊,胡炜,潘小飞等。加权最小二乘无网格法。力学学报, 2003, 35(4): 425-431.
    [165] Liu GR, Gu YT. A point interpolation method for two-dimensional solids. International Journal for Numerical Methods in Engineering, 2001, 50(4): 937-951.
    [166] Wang JG, Liu GR. A point interpolation meshless method based on radial basis functions.International Journal for Numerical Methods in Engineering, 2002, 54(11): 1623-1648.
    [167] Mendez SF, Huerta A. Imposing essential boundary conditions in mesh-free methods. Computer Methods in Applied Mechanics and Engineering, 2004, 193(12-14): 1257-1275.
    [168] Krongauz Y, Belytschko T. Enforcement of essential boundary conditions in meshless approximations using finite element. Computer Methods in Applied Mechanics and Engineering,1996, 131(1): 133-145.
    [169] Zhu T, Atluri SN. A modified collocation and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method. Computational Mechanics, 1998, 21(3):211-222.
    [170] Ventura G. An augmented Lagrangian approach to essential boundary conditions in meshless methods. International Journal for Numerical Methods in Engineering, 2002, 53(4): 825-842.
    [171] Liu GR, Quek SS. Finite Element Method: A Practical Course. Burlington:Butter-Worth-Heinemann, 2003.
    [172] Chandra A, Mukherjee S. Boundary Element Methods in Manufacturing. New York: Oxford University Press, 1997.
    [173] Samarskii AA, Vabishchevich PN, Vulkov LG. Finite Difference Method: Theory and Applications. New York: Nova Science Publishers, 1999.
    [174] Stein E, Ramm E, Rank E et al. Error-controlled Adaptive Finite Elements in Solid Mechanics.New York: John Wiley and Sons, 2003.
    [175] Chen JS, Wu CT, Yoon S et al. A stabilized conforming nodal integration for Galerkin meshfree methods. International Journal for Numerical Methods in Engineering, 2001, 50(2): 435-466.
    [176] Liu GR, Dai KY, Nguyen TT. A smoothed finite element method for mechanics problems.Computational Mechanics, 2007, 39(6): 859-877.
    [177] Liu GR, Nguyen TT, Lam KY. An edge-based smoothed finite element method (E-SFEM) for static, free and forced vibration analysis of solids. Journal of Sound and Vibration, 2009,320(4-5): 1100-1130.
    [178] Liu GR, Zhang GY, Dai KY et al. A linearly conforming point interpolation method (LC-PIM) for 2D solid mechanics problems. International Journal of Computational Methods, 2005, 2(4):645-665.
    [179] Liu GR, Zhang GY. Edge-based smoothed point interpolation methods. International Journal of Computational Methods, 2008, 5(4): 621-646.
    [180] Zhang GY, Liu GR, Wang YY et al. A linearly conforming point interpolation method (LC-PIM) for three-dimensional elasticity problems. International Journal for Numerical Methods in Engineering, 2007, 72(13): 1524-1543.
    [181] Li Y, Liu GR, Luan MT et al. Contact analysis for solids based on linearly conforming radial point interpolation method. Computational Mechanics, 2007, 39(4): 537-554.
    [182] Cheng J, Chang XL, Wu SC et al. Certified solutions for hydraulic structures using the node-based smoothed point interpolation method (NS-PIM). International Journal for Numerical and Analytical Methods in Geomechanics, (submitted), 2009.
    [183] Tang Q, Liu GR, Zhong ZH et al. A three-dimensional adaptive analysis using the node-based smoothed point interpolation method. Finite Element Analysis and Design, (submitted), 2009.
    [184] Zhang GY, Liu GR, Li Y. An efficient adaptive analysis procedure for certified solutions with exact bounds of strain energy for elasticity problems. Finite Elements in Analysis and Design, 2008, 44(14): 831-841.
    [185] Wu SC, Liu GR, Zhang HO et al. A node-based smoothed point interpolation method (NS-PIM) for three-dimensional thermoelastic problems. Numerical Heat Transfer A-Applications, 2008,54(12): 1121-1147.
    [186] Wu SC, Liu GR, Zhang HO et al. A node-based smoothed point interpolation method (NS-PIM) for thermoelastic problems with solution bounds. International Journal of Heat and Mass Transfer,2009,52(5-6): 1464-1471.
    [187] Wu SC, Liu GR, Zhang HO et al. A node-based smoothed point interpolation method (NS-PIM) for three-dimensional heat transfer problems. International Journal of Thermal Sciences, 2009,48(7): 1367-1376.
    [188] Liu GR, Zhang GY. Upper bound solution to elasticity problems: A unique property of the linearly conforming point interpolation method (LC-PIM). International Journal for Numerical Methods in Engineering, 2008, 74(7): 1128-1161.
    [189] Liu GR. A generalized gradient smoothing technique and the smoothed bilinear form for Galerkin formulation of a wide class of computational methods. International Journal of Computational Methods, 2008, 5(2): 199-236.
    [190] Liu GR, Nguyen TT, Nguyen HX et al. A node-based smoothed finite element method for upper bound solution to solid problems (NS-FEM). Computers and Structures, 2008, 87(1-2): 14-26.
    [191] Dohrmann CR, Heinstein MW, Jung J et al. Node-based uniform strain elements for three-node triangular and four-node tetrahedral meshes. International Journal for Numerical Methods in Engineering, 2000,47(9): 1549-1568.
    [192] Liu GR, Nguyen TT, Lam KY. A novel alpha finite element method (αFEM) for exact solution to mechanics problems using triangular and tetrahedral elements. Computer Methods in Applied Mechanics and Engineering, 2008, 197(45-48): 3883-3S97.
    [193] Liu GR. A weakened weak (W~2) form for a unified formulation of compatible and incompatible methods. Part Ⅱ-Theory and part El-Application to solid mechanics problems. International Journal for Numerical Methods in Engineering, (accepted). 2009.
    [194] Beissel S, Belytschko T. Nodal integration of the element-free Galerkin method. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1-4): 49-74.
    [195] Nagashima T. Node-by-node Meshless approach and its applications to structural analyses.International Journal for Numerical Methods in Engineering, 1999, 46(3): 341-385.
    [196] Puso MA, Chen JS, Zywicz et al. Meshfree and finite element nodal integration methods. International Journal for Numerical Methods in Engineering, 2007, 74(3): 416-446.
    [197] Zhang ZQ, Liu GR. Temporal stabilization of node-based smoothed finite element method (NS-PIM) and solution bound of linear elastostatics and vibration problems. Computational Mechanics, (submitted), 2009.
    [198] He ZC, Liu GR, Zhong ZH et al. An edge-based smoothed finite element method (ES-FEM) for acoustic problems. Computer Methods in Applied Mechanics and Engineering, (accepted), 2009.
    [199] Wang S, Liu GR, Zhang GY et al. Design of asymmetric gear and accurate bending stress analysis using the ES-PIM. Computer Methods in Applied Mechanics and Engineering, (submitted), 2009.
    [200] Cui XY, Liu GR, Li GY et al. Analysis of elastic-plastic problems using an edge-based smoothed finite element method. International Journal of Pressure Vessels and Piping, (accepted), 2009.
    [201] Jaluria Y. Design and Optimization of Thermal Systems. (2nd ed.). Abingdon: Taylor and Francis, 2008.
    [202] Reddy JN, Gartling DK. The Finite Element Method in Heat Transfer and Fluid Dynamics. (2nd ed.). Boca Raton: CRC Press, 2001.
    [203] Patrick DR, Fardo SW. Industrial Process Control Systems. Indianapolis: Howard W. Sams & Co., 1979.
    [204] 胡晓东.基于弧焊的直接金属成形技术研究.[博士学位论文].西安:西安交通大学图书馆,2003.
    [205] 李亚江.焊接组织性能与质量控制.北京:化学工业出版社,2005.
    [206] 许超.基于微束等离子弧熔焊的直接金属成形工艺研究.[硕士学位论文].西安:西安交通大学图书馆,2003.
    [207] Cabrera VMS, Gonzalez CR, Vela JJR et al. Effect of preheating temperature and filler metal type on the microstructure, fracture toughness and fatigue crack growth of stainless steel welded joints. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2007, 452(1): 235-243.
    [208] Spencer JD, Dickens PM, Wykes CM. Rapid prototyping of metal parts by three-dimensional welding. Proceedings of the Institution of Mechanical Engineers B-Journal of Engineering Manufacture, 1998, 212(3): 175-182.
    [209] Ahmed N. New Developments in Advanced Welding. Cambridge: Woodhead Publishing, 2005.
    [210] Kakae S, Yener Y. Convective Heat Transfer. (2nd ed.). Boca Raton: CRC Press. 1995.
    [211] 闫亚坤,庄蔚敏,那景新.改进型逆有限元法再某轿车翼子板快速成形模拟是大应用.塑性工程学报,2006,13(1):1-4.
    [212] Thivillon L, Bertrand Ph, Laget B et al. Potential of direct metal deposition technology for manufacturing thick functionally graded coatings and parts for reactors components. Journal of Nuclear Materials, 2009, 385(2): 236-241.
    [213] Liu GR, Li Y, Dai KY. A linearly conforming radial point interpolation method for solid mechanics problems. International Journal of Computational Methods, 2006, 3(4): 401-428.
    [214] Franke C, Schaback R. Solving partial differential equations by collocation using radial basis functions. Applied Mathematics and Computation, 1997, 93(1): 73-82.
    [215] Wendland H. Error estimates for interpolation by compactly supported radial basis functions of minimal degree. Journal of Approximate Theory, 1998, 93(2): 258-396.
    [216] Ozisik MN. Heat Conduction. (2nd ed.). New York: Wiley, 1993.
    [217] Boley BA, Weiner JH. Theory of Thermal Stress. New York: John Wiley & Sons, 1960.
    [218] Lewis RW, Morgan K, Thomas HR et al. The Finite Element Method in Heat Transfer Analysis. New York: Wiley, 1996.
    [219] 胡海昌.弹性力学的变分原理及其应用.北京:科学出版社,1981.
    [220] Chen L, Nguyen HX, Nguyen TT et al. Assessment of smoothed point interpolation methods for elastic mechanics. Communications in Numerical Methods in Engineering, (online: doi: 10.1002/cnm. 1251), 2009
    [221] Pares N, Bonet J, Huerta A et al. The comparison of bounds for linear functional outputs of weak solutions to the two-dimensional elasticity equations. Computer Methods in Applied Mechanics and Engineering, 2006, 195(4-6): 406-429.
    [222] Zienkiewicz OC. Displacement and Equilibrium Models in the Finite Element Method by B. Fraeijs de Veubeke, Chapter 9, Pages 145-197 of Stress Analysis, Edited by O. C. Zienkiewicz and G. S. Holister: John Wiley & Sons, 1965. International Journal for Numerical Methods in Engineering, 2001, 52(3): 287-342.
    [223] Sze KY, Chen JS, Sheng N et al. Stabilized conforming nodal integration: exactness and variational justification. Finite Elements in Analysis and Design, 2004, 41(2): 147-171.
    [224] Zhang ZQ, Liu GR. Solution bound of nonlinear elasticity using node-based and edge-based smoothed finite element method (NS-FEM and ES-FEM). Computer Methods in Applied Mechanics and Engineering, (submitted), 2008.
    [225] Liu GR, Xu X, Zhang GY et al. An extended Galerkin weak form and a point interpolation method with continuous strain field and superconvergence using triangular mesh. Computational Mechanics, 2009, 43(5): 651-673.
    [226] Lucy LB. Numerical approach to the testing of the fission hypothesis. Institute of Astronomy, 1977, 82(12): 1013-1024.
    [227] 吴圣川.铝合金激光-电弧复合焊研究及其温度场的数值模拟.[硕士学位论文].武汉:华中科技大学图书馆,2005.
    [228] 孔祥谦.有限单元法在传热学中的应用.(第三版).北京:科学出版社,1998.
    [229] Gockenbach MS. Understanding and Implementing the Finite Element Method. Philadelphia: Society for Industrial and Applied Mathematics, 2006.
    [230] Voller VR, Swaminathan CR, Thomas BG. Fixed grid techniques for phase change problems: a review. International Journal for Numerical Methods in Engineering, 1990, 30(4): 875-898.
    [231] Bathe KJ, Khoshgofiaar MR. Finite element formulation and solution of nonlinear heat transfer. Nuclear Engineering and Design, 1979, 51 (2): 389-401.
    [232] Griebel M, Schweitzer MA. Meshfree Methods for Partial Differential Equations. New York: Springer, 2003.
    [233] 苑维然,陈璞,刘凯欣.非对称稀疏线性方程组的快速外存解法及其在无网格法计算中的应用.应用数学和力学,2006,27(10):1173-1181.
    [234] Runesha HB, Nguyen DT. Vector-sparse solver for unsymmetrical matrices. Advances in Engineering Software, 2000, 31(8-9): 563-569.
    [235] Augarde CE, Deeks AJ. On the effects of nodal distributions for imposition of essential boundary conditions in the MLPG meshfree method. Communications in Numerical Methods in Engineering, 2000, 21 (7): 389-395.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700