用户名: 密码: 验证码:
几种纳米材料的制备、分析、表征及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本博士学位论文中,作者利用电化学原子层沉积(EC-ALD)和液相还原法等技术分别制备了CuInS2等几种功能纳米材料,进而采用表面分析、化学成分分析、物理指标分析以及多种电化学分析手段系统表征了所制备的材料,探讨了其在光电催化、有机物降解等领域的应用。主要内容包括:
     1.采用EC-ALD法在多晶金基底上成功制备了Ⅰ-Ⅲ-Ⅵ2族的半导体化合物CuInS2(CIS)。具体是首先用循环伏安法(CV)确定了每种元素的最佳沉积电位,然后用计时电流法(I-t)制备了该半导体化合物。接下来利用X-射线粉末衍射仪(XRD)、X-射线光电子能谱仪(XPS)、场发射扫描电子显微镜(FE-SEM)和傅立叶变换红外光谱(FT-IR)等手段表征了所得CIS材料。XRD结果表明,CIS薄膜有(112)择优取向的晶体学性质;XPS分析表明,CIS薄膜中,Cu、In和S的原子比例约为1:1:2; FT-IR结果证明发现CIS材料的半导体带隙为1.50eV。
     2.采用EC-ALD法在多晶金基底上制备了Ⅳ-Ⅵ族的半导体化合物Pb1-xSnxSe(x=0.2)薄膜。由CV法和I-t技术确定的各元素沉积顺序为:(Se/Pb/Se/Pb/Se/Pb/Se/Pb/Se/Sn...),即每个沉积周期分别是由四个PbSe和一个SnSe的沉积循环组成。通过FE-SEM观察了其形貌;利用XRD研究了其晶体结构;XPS表明沉积物中Se、Pb和Sn的比例约为1.0:0.8:0.2,与预期的化学计量比基本一致;开路电位技术(OCP)研究表明了该沉积物具有典型的p-型半导体性能,其良好的光电性质使其非常适合于制作光电开关。
     3.用一步溶剂热法合成了磁性的ZnFe2O4/石墨烯(ZnFe2O4/rGO)复合物。研究发现在氧化石墨被还原成石墨烯的同时,ZnFe2O4粒子可直接负载在石墨烯的表面;H2O2的存在与分解可产生羟基自由基(·OH),使得ZnFe2O4/rGO体系具有较强的可见光-光催化活性,对有机物罗丹明B(RhB)、甲基橙(MO)和亚甲基兰(MB)能够快速降解;该复合物的磁性使其能在溶液中被磁性分离而循环使用。
     4.将还原的氧化石墨(rGO)包覆于胺功能化Fe3O4磁性纳米球(AMs)表面,进而负载贵金属纳米粒子Pt,制得了具催化活性的Pt-rGO-AMs复合纳米材料。首先使Fe3O4表面氨基化使其带正电荷,然后通过静电层-层自组装包覆带负电荷的氧化石墨(GO);再通过多元醇还原反应将Pt纳米颗粒负载在GO表面,同时GO被还原成rGO。所制备的催化剂Pt-rGO-AMs可以尽可能多的把Pt纳米颗粒暴露于材料的表面,因而对甲醇的催化氧化具有更好的电化学活性和稳定性。
     5.在rGO包覆有胺功能化的Fe304磁性纳米球上负载PdPt合金催化层,制得了PdPt-rGO-AMs复合纳米材料。利用XRD、FE-SEM、透射电子显微镜(TEM)、拉曼光谱(Raman)等手段表征了该复合材料。电化学研究表明在相同条件下该材料对甲醇的催化活性比一元金属Pt-rGO-AMs更好、更稳定;当甲醇浓度在0.025到1.40mol/L的范围内时,甲醇的氧化峰电流密度与其浓度呈良好的线性关系,可用于甲醇的检测。
In this thesis, the author prepared CuInS2and several functional nanomaterials by electrochemical atomic layer deposition (EC-ALD) and organic phase synthesis methods. The materials were characterized by the surface analysis, the chemical composition analysis, the physical indicators analysis and a variety methods of the electrochemical analysis. Then their application in the field of photoelectric catalysis, degradation of organic compounds were explored. The contents of this thesis were described as follows:
     1. The preparation and characterization of the Ⅰ-Ⅲ-Ⅵ2semiconductor compound CuInS2(CIS) on polycrystalline gold substrate at room temperature by EC-ALD method are reported. The optimum deposition potentials for each element are determined using cyclic voltammetry (CV) technique and Amperometric (I-t) method is used to prepare the semiconductor compound. Then, the thin films were characterized by X-ray diffraction (XRD) analysis, X-ray photoelectron spectroscopy (XPS), Field-emission scanning electron microscope (FE-SEM) and Fourier transform infrared spectroscopy (FT-IR). XRD results indicate that the CIS thin films have a (112) preferred orientation. The XPS analyses of the films reveal that Cu, In and S are present in an atomic ratio of approximately1:1:2. And their semiconductor band gaps are found to be1.50eV by FT-IR.
     2. The preparation and characterization of IV-VI semiconductor Pb1-xSnxSe (x=0.2) thin films on polycrystalline gold substrate by EC-ALD method at room temperature are reported. CV and I-t technique are used to determine approximate deposition potentials for each element and prepare the semiconductor compound. The elements are deposited in the following sequence:(Se/Pb/Se/Pb/Se/Pb/Se/Pb/Se/Sn...), each period is formed using four ALD cycles of PbSe followed by one cycle of SnSe. The morphology of the deposit is observed by FE-SEM; XRD pattern is used to study its crystalline structure; XPS of the deposit indicates an approximate ratio1.0:0.8:0.2of Se, Pb and Sn, as the expected stoichiometry for the deposit. Open-circuit potential (OCP) studies indicate a good p-type property, and the good optical activity makes it suitable for fabricating a photoelectric switch.
     3. Magnetic ZnFe2O4/graphene composites (ZnFe2O4/rGO) have been successfully synthesized by a facile one-pot solvothermal method. Graphene oxide (GO) was reduced to graphene and the ZnFe2O4particles were simultaneously grown on the graphene sheets under the conditions generated in the solvothermal system. Importantly, the ZnFe2O4/rGO composites show powerful visible-light-photocatalytic activity for the degradation of Rhodamine B (RhB), methyl orange (MO) and methylene blue (MB) in the presence of H2O2. Since it can generate a strong oxidant hydroxyl radical (OH) via photoelectrochemical decomposition. Due to the excellent magnetic properties such that they can easily be separated and recycled in the solution.
     4. rGO-encapsulated amine functionalized Fe3O4magnetic nanospheres (AMs), were used to support Pt NPs. And the corresponding catalysts (Pt-rGO-AMs) also be prepared. The Pt-rGO-AMs were fabricated by modifying positively-charged aminopropyltrimethoxysilane on the surface of Fe3O4nanoparticles (NPs) to form functionalized Fe3O4NPs. Then negatively-charged graphene oxide (GO) was coated on the surface of the functionalized Fe3O4nanospheres by electrostatic layer-by-layer self-assembly. Finally, Pt NPs were uniformly anchored on the surface of GO by a polyol reduction reaction and the GO was simultaneously reduced to rGO. The electrochemical activity of the catalyst for methanol oxidation is significantly improved compared to Pt NPs absorbed on a rGO sheet and has better stability. The superior performance of this Pt-rGO-AMs catalyst is attributed both to the structure, which improve the accessibility of the Pt NPs by exposing them on the surface of the support, and to the greatly improved electronic conductivity of the support.
     5. PdPt alloy nanoparticles anchored on graphene-encapsulated Fe3O4magnetic nanospheres (PdPt-rGO-AMs) were synthesized via a simple one-step chemical reduction method. The composites were characterized by XRD analysis, FE-SEM, TEM and Raman. Then the composites were used as catalysts for methanol oxidation in alkaline. The electrochemical results showed that the higher catalytic activity and stability than Pt-rGO-AMs under the same conditions. In addition, methanol electrooxidation process at the PdPt-rGO-AMs electrode was proved to be a diffusion process. Moreover, the anodic peak current was proportional to the concentration of methanol in the range of0.025-1.40M, which can be used for the detection of methanol. This study implies that the prepared catalysts are a promising catalyst for fuel cells.
引文
[1]Feynman, R.P. There's plenty of room at the bottom data storage. J. Microelectromech. Syst. 1992,1:60-66.
    [2]Ozin, G.A., Arsenault, A.C., Cademartiri, L. Nanochemistry:a Chemical Approach to Nanomaterials, Cambridge, Royal Society of Chemistry,2008.
    [3]Asmatulu, R. Introduction to Nanotechnology-Class Notes. Wichita State University,2008.
    [4]Cao, G. Nanostructures and Nanomaterials, Synthesis, Properties and Applications. London:Imperial College Press,2004.
    [5]Asmatulu, R., Asmatulu, E., Yourdkhani, A. Toxicity of Nanomaterials and Recent Developments in the Protection Methods. Wichita:SAMPE Fall Technical Conference,2009, 1-12.
    [6]张立德,纳米材料,北京:化学工业出版社,2000版:39。
    [7]张立德,纳米材料,北京:化学工业出版社,2000版:41。
    [8]Somorjai, G.A. New model catalysts (platinum nanoparticles) and new techniques (SFG and STM) for studies of reaction intermediates and surface restructuring at high pressures during catalytic reactions. Appl.Surf.ScL.1997,121:1-19.
    [9]黄惠忠.纳米爱了分析,北京:化学工业出版社,2003版。
    [10]Chang, L.L., Esaki, L., Tsu, R. Resonant tunneling in semiconductor double barriers. Appl. Phys. Lett.1974,24:593-595.
    [11]Schaaff, T.G., Shafigullin, M.N., Khoury, J.T., Vezmar, I., Whetten, R.L., Cullen, W.G., First, P.N., Gutierrez-Wing, C., Ascensio, J., Jose-Yacaman, M.J. Isolation of smaller nanocrystal au molecules:Robust quantum effects in optical spectra. J. Phys. Chem. B.1997,101: 7885-7891.
    [12]刘吉平,廖莉玲,无机纳米材料,科学出版社2003版:21。
    [13]王天赤,路嫔,车丕智,辛显双,周百斌.纳米材料的特性及其在催化领域的应用.哈尔滨商业大学学报.2003,19:501-504.
    [14]Hvolbaek, B., Janssens, T.V.W., Clausen, B.S., Falsig, H., Christensen, C.H., Nerskov, J.K. Catalytic activity of Au nanoparticles. Nanotoday.2007,2:14-18.
    [15]Wang, F., Li, C., Sun, L., Xu, C., Wang, J., Yu, J.C., Yan, C. Porous Single-Crystalline Palladium Nanoparticles with High Catalytic Activities. Angew. Chem. Int. Ed..2012,51: 4872-4876.
    [16]Kim, S.C., Shim, W.G., Lee, M.S., Jung, S.C., Park, Y.K. Preparation of platinum nanoparticle and its catalytic activity for toluene oxidation. J. NanoscL NanotechnoL.2011 11:7347-7352.
    [17]Liu, X., Meng, C., Han, Y. Substrate-mediated enhanced activity of Ru nanoparticles in catalytic hydrogenation of benzene. Nanoscale.2012,4:2288-2295.
    [18]Snelders, D.J.M., Yan, N., Gan, W., Laurenczy, G., Dyson, P.J. Tuning the Chemoselectivity of Rh Nanoparticle Catalysts by Site-Selective Poisoning with Phosphine Ligands:The Hydrogenation of Functionalized Aromatic Compounds. ACS CataL.2012,2:201-207.
    [19]Choi, H.C., Kundaria, S., Wang, D., Javey, A., Wang, Q., Rolandi, M., Dai, H. Efficient formation of iron nanoparticle catalysts on silicon oxide by hydroxylamine for carbon nanotube synthesis and electronics. Nano Letters.2003,3:157-161.
    [20]Iablokov, V., Beaumont, S.K., Alayoglu, S., Pushkarev, V.V., Specht, C., Gao, J., Alivisatos, A.P., Kruse, N., Somorjai, G.A. Size-controlled model Co nanoparticle catalysts for CO2 hydrogenation:synthesis, characterization, and catalytic reactions. Nano Letters.2012,12: 3091-3096.
    [21]Saxena, A., Kumar, A., Mozumdar, S. Ni-nanoparticles:An efficient green catalyst for chemo-selective oxidative coupling of thiols. Journal of Molecular Catalysis A:Chemical. 2007,269:35-40.
    [22]冯丽娟,赵宇靖,陈诵英.超细粒子催化剂.石油化工.1991,9:633-639.
    [23]Joo, S.H., Park, J.Y., Tsung, C., Yamada, Y., Yang, P., Somorjai, G.A. Thermally stable Pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions. Nature Materials.2009,8:126-131.
    [24]Yoo, J.W., Lee, S., Kim, H., El-Sayed, M.A. Propylene Hydrogenation over Cubic Pt Nanoparticles Deposited on Alumina. Bull Korean Chem. Soc..2004,6:843-846.
    [25]Long, Q., Cai, M., Li, J., Rong, H., Jiang, L. Improving the electrical catalytic activity of Pt/TiO2 nanocomposites by a combination of electrospinning and microwave irradiation. Journal of Nanoparticle Research.2011,13:1655-1662.
    [26]Xu, J.B., Zhao, T.S. Synthesis of well-dispersed Pt/carbon nanotubes catalyst using dimethylformamide as a cross-link. Journal of Power Sources.2010,195:1071-1075.
    [27]Li, W., Waje, M., Chen, Z., Larsen, P., Yan, Y. Platinum nanopaticles supported on stacked-cup carbon nanofibers as electrocatalysts for proton exchange membrane fuel cell. Carbon.2010,48:995-1003.
    [28]Ha, H., Kim, I.Y., Hwang, S, Ruoff, R.S. One-Pot Synthesis of Platinum Nanoparticles Embedded on Reduced Graphene Oxide for Oxygen Reduction in Methanol Fuel Cells. Electrochemical and Solid-State Letters.2011,14:B70-B73.
    [29]Wang, C., Daimon, H., Sun, S. Dumbbell-like Pt-Fe3O4 nanoparticles and their enhanced catalysis for oxygen reduction reaction. Nano Lett.2009,9:1493-1496.
    [30]Bennett, C.O., Che, M. Some geometric aspects of structure sensitivity. Journal of Catalysis. 1989,120:293-302.
    [31]Lin, S., Shen, C., Lu, D., Wang, C., Gao, H. Synthesis of Pt nanoparticles anchored on graphene-encapsulated Fe3O4 magnetic nanospheres and their use as catalysts for methanol oxidation. Carbon.2013,53:112-119.
    [32]Zhang, Y., Gu, Y., Lin, S., Wei, J., Wang, Z., Wang, C., Du, Y., Ye, W. One-step synthesis of PtPdAu ternary alloy nanoparticles on graphene with superior methanol electrooxidation activity. Electrochimica Acta.2011,56:8746-8751.
    [33]Wu, Y, Chen, T. Preparation of Zr-Promoted Nano-NiO Catalyst and Its Catalytic Performance for Oxidative Dehydrogenation of Ethane to Ethylene. Chinese J. CataL.2003, 24:403-407.
    [34]Luo, J., Yartym, J., Hepel, M. Photoelectrochemical Degradation of Orange II Textile Dye on Nanostructured WO3 Film Electrodes. Journal of New Materials for Electrochemical Systems.2002,5:315-321.
    [35]Soltani, N., Saion, E., Hussein, M.Z., Erfani, M., Abedini, A., Bahmanrokh, G., Navasery, M., Vaziri, P. Visible Light-Induced Degradation of Methylene Blue in the Presence of Photocatalytic ZnS and CdS Nanoparticles. Int J. Mol Sci..2012,13:12242-12258.
    [36]Tao, Y., Cheng, Z.L., Ting, K.E., Yin, X.J. Photocatalytic degradation of phenol using a nanocatalyst:the mechanism and kinetics. Journal of Catalysts.2013, http://dx.doi.org/10.1155/2013/364275.
    [37]孙奉玉,吴呜,李文钊,李新勇,顾婉贞,王复东.二氧化钛表面光学特性与光催化活性的关系.催化学报.1998,19:121-124.
    [38]Mchenry, M.E., Laughlin, D.E. Nano-scale materials development for future magnetic applications. Acta Mater..2000,28:223-238.
    [39]Hausmann, U.P., Joerges, P., Heinzl, J., Talke, F.E. Nano-texturing of magnetic recording sliders via laser ablation. Microsyst Technol.2009,15:1747-1751.
    [40]Bai, J., Yang, Z., Wei, F., Matsumoto, M., Morisako, A. Nano-composite FePt-Al2O3 films for high-density magnetic recording. Journal of Magnetism and Magnetic Materials.2003, 257:132-137.
    [41]Zahn, M. Magnetic fluid and nanoparticle applications to nanotechnology. Journal of Nanoparticle Reseach.2001,3:73-78.
    [42]Chen, B., Fan, Y.G. Study on the Preparation of Fe3O4 Nano-Magnetic Fluid for Seal. Advanced Materials Research.2010,139-141:34-38.
    [43]Laurent, S., Dutz, S., Hafeli, U.O., Mahmoudi, M. Magnetic fluid hyperthermia:Focus on superparamagnetic iron oxide nanoparticles. Advances in Colloid and Interface Science.2011, 166:8-23.
    [44]Plank, C. Nanomagnetosols:magnetism opens up new perspectives for targeted aerosol delivery to the lung. Trends in Biotechnology.2008,26:59-63.
    [45]Ramanujan, R.V., Tan, C.K., Rumpel, H. Chapter 18:MRI in Nanotechnology: Nanomagnetic Probes for Bioimaging. Looking into Living Things through MRI. Chaughule, R.S., Ranade, S.S. (editors.) Prism Publications.2006,298-305.
    [46]Lin, B., Shen, X., Cui, S. Application of nanosized Fe3O4 inanticancer drug carriers with target-orientation and sustained-release properties. Biomed. Mater..2007,2:132-134.
    [47]Brazel, C.S. Magnetothermally-responsive Nanomaterials:Combining Magnetic Nanostructures and Thermally-Sensitive Polymers for Triggered Drug Release. Pharmaceutical Research.2009,26:644-656.
    [48]Malam, Y., Loizidou, M., Seifalian, A.M. Liposomes and nanoparticles:nanosized vehicles for drug delivery in cancer. Trends in Pharmacological Sciences.2009,30:592-599.
    [49]Gregoriadis, G. Engineering liposomes for drug delivery:progress and problems. Tibtech December.1995,13:527-537.
    [50]Yang, X., Wang, Y., Huang, X., Ma, Y., Huang, Y., Yang, R., Duan, H., Chen, Y. Multi-functionalized graphene oxide based anticancer drug-carrier with dual-targeting function and pH-sensitivity. Journal of Materials Chemistry.2011,21:3448-3454.
    [51]Liu, Z., Chen, K., Davis, C., Sherlock, S., Cao, Q., Chen, X., Dai, H. Durg delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res..2008,68:6652-6660.
    [52]Wan, W.K., Yang, L., Padavan, D.T. Use of degradable and nondegradable nanomaterials for controlled release. Nanomedicine.2007,2:483-509.
    [53]Han, G., Ghosh, P., De, M., Rotello, V.M. Drug and gene delivery using gold nanoparticles. NanoBiotechnology.2007,3:40-45.
    [54]Singh, R., Pantarotto, D., Lacerda, L., Pastorin, G., Klumpp, C., Prato, M., Bianco, A., Kostarelos, K. Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc. Natl. Acad. Sci..2006,103:3357-3362.
    [55]Dumortier, H., Lacotte, S., Pastorin, G., Marega, R., Wu, W., Bonifazi, D., Briand, J.P., Prato, M., Muller, S., Bianco, A. Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells. Nano Lett..2006,6:1522-1528.
    [56]Ju, P., Fan, H., Liu, T., Cui, L., Ai, S. Probing the interaction of flower-like CdSe nanostructure particles targeted to bovine serum albumin using spectroscopic techniques. Journal of Luminescence.2011,131:1724-1730.
    [57]Escorcia, F.E., McDevitt, M.R., Villa, C.H., Scheinberg, D.A. Targeted nanomaterials for radiotherapy. Nanomedicine.2007,2:805-815.
    [58]Yacoby, I., Benhar, I. Antibacterial nanomedicine. Nanomedicine.2008,3:329-341.
    [59]Xu, W., Zhang, L., Li, J., Lu, Y., Li, H., Ma, Y., Wang, W., Yu, S. Facile synthesis of silver@graphene oxide nanocomposites and their enhanced antibacterial properties. J. Mater. Chem..2011,21:4593-4597.
    [60]Cai, X., Lin, M., Tan, S., Mai, W., Zhang, Y., Liang, Z., Lin, Z., Zhang, X. The use of polyethyleneimine-modified reduced graphene oxide as a substrate for silver nanoparticles to produce a material with lower cytotoxicity and long-term antibacterial activity. Carbon.2012, 50:3407-3415.
    [61]Shukla, R., Bansal, V., Chaudhary, M., Basu, A., Bhonde, R.R., Sastry, M. Biocompatibility of gold nanoparticles and their endocytic fate inside the cellular compartment:a microscopic overview. Langmuir.2005,21:10644-10654.
    [62]Malugin, A., Ghandehari, H. Cellular uptake and toxicity of gold nanoparticles in prostate cancer cells:a comparative study of rods and spheres. Journal of Applied Toxicology.2010, 30:212-217.
    [63]曾令可,李秀艳.纳米陶瓷技术.广州:华南理工出版社.2006版.
    [64]Sternitzke, M. Structural ceramic nanocomposites. J. Eur. Ceram. Soc.,1997,17: 1061-1082.
    [65]Birriiner, R., Gleiter, H., Klein, H., Marquardt, P. Nanocrystalline materials an approach to a novel solid structure with gas-like disorder?. Phys.Lett. A.1984,102:365-369.
    [66]Yadav, T.P., Yadav, R.M., Singh, D.P. Mechanical Milling:a Top Down Approach for the Synthesis of Nanomaterials and Nanocomposites. Nanoscience and Nanotechnology.2012, 2:22-48.
    [67]Suryanarayana, C. Mechanical alloying and milling. Progress in Materials Science.2001,46: 1-184.
    [68]Benjamin, J.S., Volin, T.E. The mechanism of mechanical alloying. Metallurgical Transactions.1974,5:1929-1934.
    [69]董远达,马学呜.高能球磨法制备纳米材料.材料科学与工程.1993,11:50-54.
    [70]Shingu, P.H., Huang, B., Nishitani, S.R. and Nasu, S. Nano-meter Order Crystalline Structures of Al-Fe Alloys Produced by Mechanical Alloying. Suppl. to Trans. JIM..1988, 28:3-10.
    [71]Shingu, P.H., Ishihara, K.N., Uenishi, K., Kuyama, J., Huang, B., Nasu, S. Solid state powder processing. Clauer, A.H., Barbadillo, J.J. (editors). Warrendale, PA:TMS,1990,21-34.
    [72]Shingu, P.H., Huang, B., Kuyama, J., Ishihara, K.N. and Nasu, S., Amorphous and Nanometer Order Grained Structures of Al-Fe and Ag-Fe Alloys Formed by Mechanical Alloying., In New Materials by Mechanical Alloying Techniques.. Arzt, E., Schultz, L. (editors), Germany, Deutsche Geselleschaft fur Metallkunde,1989,319-327.
    [73]Kobayashi, K.F. Formation of amorphous Al-Cr alloys by mechanical alloying of elemental aluminium and chromium powders. Journal of Materials Science.1990,25:3149-3154.
    [74]Gordon, W.O., Morris, J.R., Tissue, B.M. Control of morphology in inert-gas condensation of metal oxide nanoparticles. J. Mater. Sci..2009,44:4286-4295.
    [75]鲍久圣,阴妍,刘同冈,杨志伊.蒸发冷凝法制备纳米粉体的研究进展.机械工程材料.2008,32:4-7.
    [76]Tian, J., Hui, C., Bao, L., Li, C, Tian, Y., Ding, H., Shen, C., Gao, H.-J. Patterned boron nanowires and field emission properties. Appl. Phys. Lett.2009,94:083101.
    [77]Tian, J.F., Xu,Z., Shen, C., Liu, F., Xu, N., Gao, H.J. One-dimensional boron nanostructures: Prediction, synthesis, characterizations, and applications. Nanoscale.2010,2:1375-1389.
    [78]舒磊,俞书宏,钱逸泰.半导体硫化物纳米微粒制备.无机化学学报,1999,15:1-17.
    [79]Lou, W., Chen, M., Wang, X., Liu, W. Novel Single-Source Precursors Approach to Prepare Highly Uniform Bi2S3 and Sb2S3 Nanorods via a Solvothermal Treatment. Chem. Mater.. 2007,19:872-878.
    [80]Murray, C.B., Norris, D.J., Bawendi, M.G. Synthesis and characterization of nearly monodisperse CdE (E=sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem.Soc..1993,115:8706-8715.
    [81]Hao, C., Wang, D., Zhang, W., Peng, Q. Growth and assembly of monodisperse Ag nanoparticles by exchanging the organic capping ligands. J. Mater. Res..2009,24:352-356.
    [82]Brinker, C.J., Scherer, G.W. Sol-Gel Science:The physicsand chemistry of sol-gel processing. Boston:Academic Press.1990.
    [83]Ebelmann, M. Ann. Chem. Phys.1846,16,129.
    [84]武志刚,高建峰.溶胶-凝胶法制备纳米材料的研究进展.精细化工.2010,27:21-25.
    [85]Brinker, C.J., Clark, D.E., Ulrich, D.R. Better ceramics through chemistry. New York: Elsevier Science Publishing Co Inc,1984
    [86]Searson, P.C., Electrochemical deposition of novel materials and structures. Solar Energy Materials and Solar Cells.1992,27:377-388.
    [87]Searson, P.C., Moffat, T.P. Electrochemical Surface Modification and Materials Processing. Critical Reviews in Surface Chemistry.1994,3:171-238.
    [88]Xu, X., Fei, G., Yu, W., Wang, X., Chen, L., Zhang, L. Preparation and formation mechanism of ZnS semiconductor nanowires made by the electrochemical deposition method. Nanotechnology.2006,17:426-429.
    [89]Lin, S., Zhang, X., Shi, X., Wei, J., Lu, D., Zhang, Y., Kou, H., Wang, C. Nanoscale semiconductor Pb1-xSnxSe (x=0.2) thin films synthesized by electrochemical atomic layer deposition. Applied Surface Science.2011,257:5803-5807.
    [90]Lin, S., Shi, X., Zhang, X., Kou, H., Wang, C. Ternary semiconductor compounds CuInS2 (CIS) thin films synthesized by electrochemical atomic layer deposition (EC-ALD). Applied Surface Science.2010,256:4365-4369.
    [91]Lensch-Falk, J.L., Banga, D., Hopkins, P.E., Robinson, D.B., Stavila, V., Sharma, P.A., Medlin, D.L. Electrodeposition and characterization of nano-crystalline antimony telluride thin films. Thin Solid Films.2012,520:6109-6117.
    [92]Penner, R.M., Martin, C.R. Preparation and electrochemical characterization of ultramicroelectrode ensembles. Anal. Chem..1987,59:2625-2630.
    [93]Wang, G., Chou, S. Electrophoretic deposition of uniformly distributed TiO2 nanoparticles using an anodic aluminum oxide template for efficient photoysis. Nanotechnology.2010,21: 115206.
    [94]Huang, C.J., Wang, Y.H., Chiu, P.H., Shi, M.C., Meen, T.H. Electrochemical synthesis of gold nanocubes. Materials Letters.2006,60:1896-1900.
    [95]Delplancke, J.L., Dille, J., Reisse, J., Long, G.J., Mohan, A., Grandjean, F. Magnetic nanopowders:ultrasound-assisted electrochemical preparation and properties. Chem. Matter. 2000,12:946-955.
    [96]Zhu, J.J., Aruna, S.T., Koltypin, Y., Gedanken, A. ChemInform abstract:a novel method for the preparation of lead selenide:pulse sonoelectrochemical synthesis of lead selenide nanoparticles. Chem. Matter.2000,31:143-147.
    [97]Zach, M.P., Kwokh, N., Penner, R.M. Molybdenum nanowires by electrodeposition. Science. 2000,290:2120-2123.
    [98]Chandra, S., Singh, D.P., Srivastava, P.C., Sahu, S.N. Electrodeposited semiconducting molybdenum selenide films. II. Optical, electrical, electrochemical and photoelectrochemical solar cell studies. J. Phys. D:Appl. Phys..1984,17:2125-2138.
    [99]Musiani, M.M., Paolucci, F. Electrodeposition of As-Sb alloys. Journal of Electro analytical Chemistry.1992,332:113-126.
    [100]王喜莲,李浴春,韩爱珍,高元恺.用电共沉积方法制符InGaAs薄膜.材料研究学报.2001,15:451-454.
    [101]Gregory, B. W., Stickney, J. L. Electrochemical Atomic Layer Epitaxy (ECALE). Journal of Electroanalytical Chemistry.1991,300:543-561.
    [102]Gregory, B.W., Suggs, D.W., Stickney, J.L. Conditions for the Deposition of CdTe by Electrochemical Atomic Layer Epitaxy. Journal of The Electrochemical Society.1991,138: 1279-1284.
    [103]樊玉微,李永祥,吴冲若.II-Ⅵ族化合物半导体电化学原子层外延.真空科学与技术1998,18:302-307.
    [104]Paunesku, T., Vogt, S., Maser, J., Lai, B., Woloschak, G. X-ray fluorescence microprobe imaging in biology and medicine. Journal of Cellular Biochemistry.2006,99: 1489-1502.
    [105]Bussy, C., Cambedouzou, J., Lanone, S., Leccia, E. Heresanu, V., Pinault, M., Mayne-L'Hermite, M., Brun, N., Mory, C., Cotte, M., Doucet, J., Boczkowski, J., Launois, P. Carbon nanotubes in macrophages:imaging and chemical analysis by X-ray fluorescence microscopy. Nano. Lett.2008,8:2659-2663.
    [106]Glick, D., Andersen, C.A. An introduction to the electron probe micro analyzer and its application to biochemistry in Methods of Biochemical Analysis. Glick, D. (editor). John Hoboken, NJ, USA. Wiley & Sons, Inc.2006,15.
    [107]Shukla, S., Seal, S. Cluster size effect observed for gold nanoparticles synthesized by sol-gel technique as studied by X-ray photoelectron spectroscopy. Nanostructured Materials. 1999,11:1181-1193.
    [108]Liu, Y., Liang, P., Guo, L. Nanometer titanium dioxide immobilized on silica gel as sorbent for preconcentration of metal ions prior to their determination by inductively coupled plasma atomic emission spectrometry. Talanta.2005,68:25-30.
    [109]Zhou, Q., Zhao, X., Xiao, J. Preconcentration of nickel and cadmium by TiO2 nanotubes as solid-phase extraction adsorbents coupled with flame atomic absorption spectrometry. Talanta.2009,77:1774-1777.
    [110]Alyamani, A., Lemine, O.M. FE-SEM characterization of some nanomateriaL Scanning Electron Microscopy. Kazmiruk, V. (editor).2012,463-472.
    [111]Dickson, M.J. The significance of texture parameters in phase analysis by X-ray diffraction. J. AppL Cryst.1969,2:176-180.
    [112]Guinier, A. X-ray diffraction in crystals, imperfect crystals, and amorphous bodies. New York, Dover,1994.
    [113]Kogermann, K., Veski, P., Rantanen, J., NNaelapaa, K. X-ray powder diffractometry in combination with principal component analysis-a tool for monitoring solid state changes. Eur JPharm ScL.2011,43:278-289.
    [114]Haase, M., Prost, W., Velling, P., Liu, Q., Tegude, F.J. HR-XRD for the analysis of ultrathin centrosymmetric strained DB-RTD heterostructures. Thin Solid Films.1998,319: 25-28.
    [115]Matsuzaki, K., Nomura, K., Yanagi, H., Kamiya, T., Hirano, M., Hosono, H. Epitaxial growth of high mobility Cu2O thin films and application to p-channel thin film transistor. AppL Phys. Lett.2008,93:202107-202109.
    [116]Neogy, S., Savalia, R.T., Tewari, R., Srivastava, D., Dey, G.K. Transmission electron microscopy of nanomaterials. Indian Journal of Pure & Applied Physics.2006,44: 119-124.
    [117]Somani, P.R., Umeno, M. Importance of Transmission Electron Microscopy for Carbon Nanomaterials Research. Modern Research and Educational Topics in Microscopy. Mendez-Vilas, A., Diaz, J. (editors).2007.
    [118]Koningsberger, D.C., Prins, R. X-ray absorption:principles, applications, techniques of EXAFS, SEXAFS and XANES. New York, John Wiley & Sons,1988, Chapters 1,6 and 9.
    [119]Guinier, A., Fournet, G. Small-angle Scattering of X-rays. New York, Wiley,1955.
    [120]Glatter, O., Kratky, O. Small-angle X-ray scattering. London. Academic Press,1982.
    [121]Margaritondo, G. Introduction to synchrotron radiation. Oxford, Oxford University Press,1988, Chapter 1.
    [122]Beaunier, L., Keddam, M., Garcia-Jareno, J.J., Vicente, F., Navarro-Laboulais, J. Surface structure determination by SEM image processing and electrochemical impedance of graphite+polyethylene composite electrodes. Journal of Electroanalytical Chemistry.2004, 566:159-167.
    [123]Kirk, S.E., Skepper, J.N., Donald, A.M. Application of environmental scanning electron microscopy to determine biological surface structure. Journal of Microscopy.2009,233: 205-224.
    [124]Hernandez, A., Calvo, J.I., Pradanos, P., Palacio, L., Rodriguez, M.L., de Saja, J.A. Surface structure of microporous membranes by computerized SEM image analysis applied to Anopore filters. Journal of Membrane Science.1997,137:89-97.
    [125]Hinton, H.E., Service, M.W. The surface structure of aedine eggs as seen with the scanning electron microscope. Annals of Tropical Medicine and Parasitology.1969,63: 409-411.
    [126]Anilkumar, P., Jayakannan, M. Single-Molecular-System-Based Selective Micellar Templates for Polyaniline Nanomaterials:Control of Shape, Size, Solid State Ordering, and Expanded Chain to Coillike Conformation. Macromolecules.2007,40:7311-7319.
    [127]腾飞,宁挂玲,田志坚,熊国兴.激光散射法测试超细颗粒粒度分布的研究.光散射学报.2004,16:172-176.
    [128]Huang, L., Pan, Y., Pan, L., Gao, M., Xu, W., Que, Y., Zhou, H., Wang, Y., Du, S., Gao, H.-J. Intercalation of metal islands and films at the interface of epitaxially grown graphene and Ru(0001) surfaces. AppL Phys. Lett.2011,99:163107.
    [129]Gao, L., Liu, Q., Zhang, Y.Y., Jiang, N., Zhang, H.G., Cheng, Z.H., Qiu, W.F., Du, S.X., Liu, Y.Q., Hofer, W.A., Gao, H.-J. Constructing an Array of Anchored Single-Molecule Rotors on Gold Surfaces. Physical Review Letters.2008,101:197209.
    [130]Wang, Y., Guo, H., Qin, Z., Ma, H., Gao, H.-J. Toward a Detailed Understanding of Si(111)-7×7 Surface and Adsorbed Ge Nanostructures:Fabrications, Structures, and Calculations. Journal of Nanomaterials.2008,2008:874213.
    [131]Perrella, A.C., Rippard, W.H., Mather, P.G., Plisch, M.J., Buhrman, R.A. Scanning tunneling spectroscopy and ballistic electron emission microscopy studies of aluminum-oxide surfaces. Physical Review B.2002,65:201403.
    [132]Hutagalung, S.D., Yaacob, K.A., Keat, Y.C. The Ballistic Electron Emission Microscopy in the Characterization of Quantum Dots. Solid State Phenomena.2007, 121-123:529-532.
    [133]Vanalme, G.M., Goubert, L., Meirhaeghe, R.L.V., Cardon, F., Daele, P.V. A ballistic electron emission microscopy study of barrier height inhomogeneities introduced in Au/Ⅲ-Ⅴ semiconductor Schottky barrier contacts by chemical pretreatments. Semicond. Sci. TechnoL. 1999,14:871-877.
    [134]Heinzelmann, H., Pohl, D.W. Scanning near-field optical microscopy. AppL Phys. A. 1994,59:89-101.
    [135]Burgos, P., Lu, Z., Ianoul, A., Hnatovsky, C., Viriot, M.-L., Johnston, L.J., Taylor, R.S. Near-field scanning optical microscopy probes:a comparison of pulled and double-etched bent NSOM probes for fluorescence imaging of biological samples. Journal of Microscopy. 2003,211:37-47.
    [136]Binning, G., Quate, C.F., Gerber, C. Atomic force microscope. Phys. Rev. Lett.1986, 56:930-933.
    [137]倪一,黄梅珍,袁波,赵海鹰,窦晓呜.紫外可见分光光度计的发展与现状.现代科学仪器.2003,3:11.
    [138]Jun, L., Shuping, X., Shiyang, G. FT-IR and raman spectroscopic study of hydrated borates. Spectrochimica Acta.1995,51 A:519-532.
    [139]Antonova, K., Katranchev, B., Petrov, M., Marcerou, J.P., Baran, J., Ratajczak, H. FT-far IR spectroscopy and microtextural polarization analysis of complexes:nematics with hydrogen-bonded dimmers of 4, n-alkyloxybenzoic acids with 4-hydroxypyridine. Journal of Molecular Structure.2004,694:105-113.
    [140]Lee, P.A., Citrin, P.H., Eisenberger, P., Kincaid, B.M. Extended X-ray absorption fine strcture-its strengths and limitations as a structural tool. Reviews of Modern Physics.1981, 53:769-806.
    [141]Window, B. Hyperfine field distributions from Mossbauer spectra.J. Phys. E:ScL Instrum.1971,4:401-402.
    [142]Pivkina, A., Ulyanova, P., Frolov, Y., Zavyalov, S., Schoonman, J. Nanomaterials for heterogeneous combustion. Propellants, Explosives, Pyrotechnics.2004,29:39-48.
    [143]Ohzuku, T., Tari, I., Hirai, T. Thermal gravimetric studies of manganese dioxide. Electrochimica Acta.1982,27:1049-1053.
    [144]Gill, P., Moghadam, T.T., Ranjbar, B. Differential scanning calorimetry techniques: applications in biology and nanoscience. J. BiomoL Tech..2010,21:167-193.
    [1]Klaer, J., Bruns, J., Henninger, R., Siemer, K., Klenk, R., Ellmer, K., Braunig, D. Efficient CuInS2 thin-film solar cells prepared by a sequential process. Semicond. Sci. Technol..1998, 13:1456-1458.
    [2]Park, G.C., Yoo, Y.T., Lee, J.μSR study of the nitronyl nitroxide p-CNPNN. Synth. Met.. 1995,71:1745-1746.
    [3]Park, J.H., Afzaal, M., Kemmler, M., O'Brien, P., Otway, D.J., Raftery, J., Waters, J. The deposition of thin films of CuME2 by CVD techniques (M=In, Ga and E=S, Se). J. Mater. Chem..2003,13:1942-1949.
    [4]Oja, I., Nanu, M., Katerski, A., Krunks, M., Mere, A., Raudoja, J., Goossens, A. Crystal quality studies of CuInS2 films prepared by spray pyrolysis. Thin Solid Films.2005, 480-481:82-86.
    [5]Kanzari, M., Rezig, B. Effect of deposition temperature on the optical and structural properties of as-deposited CuInS2 films. Semicond. Sci. Technol..2000,15:335-340.
    [6]Muller, K., Burkov, Y., Schmeiger, D. Spectromicroscopic characterisation of CuInS2 surfaces. Thin Solid Films.2005,480-481:291-294.
    [7]Gregory, B.W., Stickney, J.L. Electrochemical atomic layer epitaxy (ECALE). Electroanal. Chem..1991,300:543-561.
    [8]Villegas, I., Stickney, J.L. Preliminary Studies of GaAs Deposition on Au(100), (110), and (111) Surfaces by Electrochemical Atomic Layer Epitaxy.J. Electrochem. Soc.1992,139: 686-694.
    [9]Innocenti, M., Cattarin, S., Loglio, F., Cecconi, T., Seravalli, G., Foresti, M.L. Ternary cadmium and zinc sulfides:composition, morphology and photoelectrochemistry. Electrochim. Acta.2004,49:1327-1337.
    [10]Loglio, F., Innocenti, M., Pezzatini, G., Foresti, M.L. Ternary cadmium and zinc sulfides and selenides:electrodeposition by ECALE and electrochemical characterization. J. ElectroanaL Chem..2004,562:117-125.
    [11]Foresti, M.L., Milani, S., Loglio, F., Innocenti, M., Pezzatini, G., Cattarin, S. Ternary CdSxSe1-x Deposited on Ag (111) by ECALE:Synthesis and Characterization. Langmuir. 2005,21:6900-6907.
    [12]Streltsov, E.A., Poznyak, S.K., Osipovich, N.P. Photoinduced and dark underpotential deposition of lead on selenium. J. ElectroanaL Chem..2002,518:103-114.
    [13]Streltsov, E.A., Osipovich, N.P., Ivashkevich, L.S., Lyakhov, A.S., Sviridov, V.V. Electrochemical deposition of PbSe films. Electrochim. Acta.1998,43:869-873.
    [14]Streltsov, E.A., Osipovich, N.P., Ivashkevich, L.S., Lyakhov, A.S. Electrochemical deposition of PbSe1-xTex solid solutions. Electrochim. Acta.1998,44:407-413.
    [15]Loglio, F., Innocenti, M., D'Acapito, F., Felici, R., Pezzatini, G., Salvietti, E., Foresti, M.L. Cadmium selenide electrodeposited by ECALE:electrochemical characterization and preliminary results by EXAFS. J. ElectroanaL Chem..2005,575:161-167.
    [16]Yang, J.Y., Zhu, W., Gao, X.H., Bao, S.Q., Fan, X., Duan, X.K., Hou, J. Formation and Characterization of Sb2Te3 Nanofilms on Pt by Electrochemical Atomic Layer Epitaxy. J. Phys. Chem. B.2006,110:4599-4604.
    [17]Zhang, X., Shi, X.Z., Ye, W.C., Ma, C.L., Wang, C.M. Electrochemical deposition of quaternary Cu2ZnSnS4 thin films as potential solar cell material. AppL Phys. A.2009,94: 381-386.
    [18]Laukaitis, G., Lindroos, S., Tamulevicius, S., Leskela, M., Rackaitis, M. SILAR deposition of CdxZn1-xS thin films. AppL Surf. Sci..2000,161:396-405.
    [19]Kanniainen, T., Lindroos, S., Ihanus, J., Leskela, M. Growth of strongly orientated lead sulfide thin films by successive ionic layer adsorption and reaction (SILAR) technique. J. Mater. Chem..1996,6:161-164.
    [20]Mandale, A.B., Sathaye, S.D., Patil, K.R. Preparation of Q-copper indium sulfide thin films by liquid-liquid interface reaction technique (LLIRT). Mater. Lett..2002,55:30-33.
    [21]Zouaghia, M.C., BenNasrallaha, T., Marsillacb, S., Bernedeb, J.C., Belgacema, S. Physico-chemical characterization of spray-deposited CuInS2 thin films. Thin Solid Films. 2001,382:39-46.
    [22]Herrero, J., GuilEn, C. Study of the optical transitions in electrodeposited CuInSe2 thin films. J. Appl. Phys..1991,69:429-432.
    [23]Yue, G.H., Wang, L.S., Wang, X., Chen, Y.Z., Peng, D.L. Characterization and Optical Properties of the Single Crystalline SnS Nanowire Arrays. Nanoscale Res. Lett..2009,4: 359-363.
    [24]Lewerenz, H.J., Goslowsky, H., Husemann, K.D., Fiechter, S. Efficient solar energy conversion with CuInS2. Nature.1986,321:687-688.
    [25]Brini, R., Schmerber, G., Kanzari, M., Werckmann, J., Rezig, B. Study of the growth of CuAlS2 thin films on oriented silicon (111). Thin Solid Films.2009,517:2191-2194.
    [26]Martinez, A.M., Arriaga, L.G., Fernandez, A.M., Cano, U. Band edges determination of CuInS2 thin films prepared by electrodeposition. Mater. Chem. Phys..2004,88:417-420.
    [27]Wijesundera, R.P., Siripala, W. Preparation of CuInS2 thin films by electrodeposition and sulphurisation for applications in solar cells. SoL Energy Mater. SoL Cells.2004,81: 147-154.
    [28]Guha, P., Gorai, S., Ganguli, D., Chaudhuri, S. Ammonia-mediated wet chemical synthesis of CuInS2. Mater. Lett..2003,57:1786-1791.
    [29]Qiu, J.J., Jin, Z.G., Qian, J.W., Shi, Y., Wu, W.B. Influence of post-heat treatment on the properties of CuInS2 thin films deposited by an ion layer gas reaction (ILGAR). J. Cryst. Growth.2005,282:421-428.
    [1]Li, C.P., McCann, P.J., Fang, X.M. Strain relaxation in PbSnSe and PbSe/PbSnSe layers grown by liquid-phase epitaxy on (100)-oriented silicon. J. Cryst. Growth.2000,208: 423-430.
    [2]Wang, X.J, Fulk, C., Zhao, F.H., Li, D.H., Mukherjee, S., Chang, Y, Sporken, R., Klie, R., Shi, Z., Grein, C.H., Sivananthan, S. Characterization of PbSnSe/CdTe/Si (211) Epilayers Grown by Molecular Beam Epitaxy. J. Electron. Mater..2008,37:1200-1204.
    [3]Sachar, H.K., Chao, I., McCann, P.J., Fang, X.M. Growth and characterization of PbSe and Pb1-xSnxSe on Si (100). J. AppL Phys..1999,85:7398-7403.
    [4]Rudolph, A., Soda, M., Kiessling, M., Wojtowicz, T., Schuh, D., Wegscheider, W., Zweck, J., Back, C., Reiger, E. Ferromagnetic GaAs/GaMnAs Core-Shell Nanowires Grown by Molecular Beam Epitaxy. Nano Lett.2009,9:3860-3866.
    [5]Arthur, J.R. Molecular beam epitaxy. Surf. Sci..2002,500:189-217.
    [6]Herrero, E., Buller, L.J., Abrun, H.D. Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials. Chem. Rev..2001,101:1897-1930.
    [7]Gewirth, A.A., Niece, B.K. Electrochemical Applications of in Situ Scanning Probe Microscopy. Chem. Rev..1997,97:1129-1162.
    [8]Gregory, B.W., Stickney, J.L. Electrochemical atomic layer epitaxy (ECALE). J. ElectroanaL Chem..1991,300:543-561.
    [9]Villegas, I., Stickney, J.L. Preliminary studies of GaAs deposition on Au (100), (110), and (111) surfaces by electrochemical atomic layer epitaxy. J. Electrochem. Soc.1992,139: 686-694.
    [10]Innocenti, M., Pezzatini, G., Forni, F., Foresti, M.L. CdS and ZnS deposition on Ag (111) by electrochemical atomic layer epitaxy. J. Electrochem. Soc.2001,148:C357-C362.
    [11]Innocenti, M., Fomi, F., Pezzatini, G, Raiteri, R, Loglio, F., Foresti, M.L. Electrochemical behavior of As on silver single crystals and experimental conditions for InAs growth by ECALE. J. ElectroanaL Chem..2001,514:75-82.
    [12]Flowers, B.H., Wade, T.L., Garvey, J.W., Lay, M., Happek, U., Stickney, J.L. Atomic layer epitaxy of CdTe using an automated electrochemical thin-layer flow deposition reactor. J. ElectroanaL Chem..2002,524-525:273-285.
    [13]Wade, T.L., Vaidyanathan, R., Happek, U., Stickney, J.L. Electrochemical formation of a Ⅲ-Ⅴcompound semiconductor superlattice:InAs/InSb. J. ElectroanaL Chem..2001,500: 322-332.
    [14]Vaidyanathan, R., Stickney, J.L., Cox, S.M., Compton, S.P., Happek, U. Formation of In2Se3 thin films and nanostructures using electrochemical atomic layer epitaxy. J. ElectroanaL Chem..2003,559:55-61.
    [15]Qiao, Z.Q., Shang, W., Wang, C.M. Fabrication of Sn-Se compounds on a gold electrode by electrochemical atomic layer epitaxy. J. ElectroanaL Chem..2005,576:171-175.
    [16]Zhu, W., Yang, J.Y., Hou, J., Gao, X.H., Bao, S.Q., Fan, X.A. Optimization of the formation of bismuth telluride thin film by using ECALE. J. ElectroanaL Chem..2005,585:83-88.
    [17]Yang, J.Y, Zhu, W., Gao, X.H., Bao, S.Q., Fan, X., Duan, X.K., Hou, J. Formation and characterization of Sb2Te3 nanofilms on Pt by electrochemical atomic layer epitaxy. J. Phys. Chem. B.2006,110:4599-4604.
    [18]Innocenti, M., Cattarin, S., Loglio, F., Cecconi, T., Seravalli, G., Foresti, M.L. Ternary cadmium and zinc sulfides:composition, morphology and photoelectrochemistry. Electrochim. Acta.2004,49:1327-1337.
    [19]Loglio, F., Innocenti, M., Pezzatini, G., Foresti, M.L. Ternary cadmium and zinc sulfides and selenides:electrodeposition by ECALE and electrochemical characterization./. ElectroanaL Chem..2004,562:117-125.
    [20]Foresti, M.L., Milani, S., Loglio, F., Innocenti, M., Pezzatini, G., Cattarin, S. Ternary CdSxSe1-x Deposited on Ag (111) by ECALE:Synthesis and Characterization. Langmuir. 2005,21:6900-6907.
    [21]Huang, B.M., Lister, T.E., Stickney, J.L. Se adlattices formed on Au (100), studies by LEED, AES, STM and electrochemistry. Surf. Sci..1997,392:27-43.
    [22]Greenwood, N.N., Earnshaw, A. Chemistry of the Elements, Pergamon, Oxford,1984.
    [23]Herrero, E., Buller, L.J., Abruna, H.D. Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials. Chem. Rev..2001,101:1897-1930.
    [24]Loglio, F., Innocenti, M., Acapito, F.D., Felici, R., Pezzatini, G, Salvietti, E., Foresti, M.L. Cadmium selenide electrodeposited by ECALE:electrochemical characterization and preliminary results by EXAFS. J. Electroanal. Chem..2005,575:161-167.
    [25]Mao, B., Tang, J., Randler, R. Clustering and anisotropy in monolayer formation under potential control:Sn on Au (111). Langmuir.2002,18:5329-5332.
    [26]Zhang, X., Shi, X.Z., Ye, W.C., Ma, C.L., Wang, C.M. Electrochemical deposition of quaternary Cu2ZnSnS4 thin films as potential solar cell material. AppL Phys. A.2009,94: 381-386.
    [1]Schwarzenbach, R.P., Escher, B.I., Fenner, K., Hofstetter, T.B., Johnson, C.A., Gunten, U., Wehrli, B. The challenge of micropollutants in aquatic systems. Science.2006, 313:1072-1077.
    [2]Deng, Z.W., Chen, M., Gu, G.X., Wu, L.M. A facile method to fabricate ZnO hollow spheres and their photocatalytic property. J. Phys. Chem. B.2008,112:16-22.
    [3]Reife, A., Fremann, H.S. Environmental Chemistry of Dyes and Pigments. Wiley, New York, 1996.
    [4]Ghoreishi, S.M., Haghighi, R. Chemical catalytic reaction and biological oxidation for treatment of non-biodegradable textile effluent. Chem. Eng. J..2003,95:163-169.
    [5]Lee, D.W., Hong, W.H., Hwang, K.Y. Removal of an organic dye from water using a predispersed solvent extraction. Sep. ScL TechnoL.2000,35:1951-1962.
    [6]Wu, J.N., Eiteman, M.A., Law, S.E. Evaluation of membrane filtration and ozonation processes for treatment of reactive-dye wastewater. J. Environ. Eng..1998,124:272-277.
    [7]Garg, V.K., Gupta, R., Yadav, A.B., Kumar, R. Dye removal from aqueous solution by adsorption on treated sawdust. Bioresour. TechnoL.2003,89:121-124.
    [8]Kabil, M.A., Ghazy, S.E. Separation of some dyes from aqueous solutions by flotation. Sep. ScL TechnoL.1994,29:2533-2539.
    [9]Rauf, M.A., Ashraf, S.S. Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chem. Eng. J..2009,151:10-18.
    [10]Gouvea, C.A.K., Wypych, F., Moraes, S.G., Duran, N., Nagata, N., Peralta-Zamora, P. Semiconductor-assisted photocatalytic degradation of reactive dyes in aqueous solution. Chemosphere.2000,40:433-440.
    [11]Neppolian, B., Choi, H.C., Sakthivel, S., Arabindoo, B., Murugesan, V. Solar/UV-induced photocatalytic degradation of three commercial textile dyes. J. Hazard. Mater..2002, B89: 303-317.
    [12]Mahmoodi, N.M., Arami, M., Limaee, N.Y., Tabrizi, N.S. Decolorization and aromatic ring degradation kinetics of Direct Red 80 by UV oxidation in the presence of hydrogen peroxide utilizing TiO2 as a photocatalyst. Chem. Eng. J..2005,112:191-196.
    [13]Li, B.J., Cao, H.Q. ZnO@graphene composite with enhanced performance for the removal of dye from water. J. Mater. Chem..2011,21:3346-3349.
    [14]Li, S.K., Huang, F.Z., Wang, Y., Shen, Y.H., Qiu, L.G., Xie, A.J., Xu, S.J. Magnetic Fe3O4@C@Cu2O composites with bean-like core/shell nanostructures:Synthesis, properties and application in recyclable photocatalytic degradation of dye pollutants.J. Mater. Chem.. 2011,21:7459-7466.
    [15]Liu, Y., Zhou, L., Hu, Y, Guo, C.F., Qian, H.S., Zhang, F.M., Lou, X.W. Magnetic-field induced formation of 1D Fe3O4/C/CdS coaxial nanochains as highly efficient and reusable photocatalysts for water treatment. J. Mater. Chem..2011,21:18359-18364.
    [16]Fu, Y.S., Wang, X. Magnetically separable ZnFe2O4-graphene catalyst and its high photocatalytic performance under visible light irradiation. Ind. Eng. Chem. Res..2011,50: 7210-7218.
    [17]Akhavan, O., Azimirad, R. Photocatalytic property of Fe2O3 nanograin chains coated by TiO2 nanolayer in visible light irradiation. AppL Catal.A.2009,369:77-82.
    [18]Su, M.H., He, C., Sharma, V.K., Asi, M.A., Xia, D.H., Li, X.Z., Deng, H.Q., Xiong, Y. Mesoporous zinc ferrite:Synthesis, characterization, and photocatalytic activity with H2O2/visible light.J. Hazard. Mater..2012,211-212:95-103.
    [19]Tamaura, Y., Kaneko, H. Oxygen-releasing step of ZnFe204/(ZnO+Fe304)-system in air using concentrated solar energy for solar hydrogen production. Solar Energy.2005,78:616-622.
    [20]Yuan, Z.H., Zhang, L.D. Synthesis, characterization and photocatalytic activity of ZnFe2O4/TiO2 nanocomposite. J. Mater. Chem..2001,11:1265-1268.
    [21]Lv, H.J., Ma, L., Zeng, P., Ke, D.N., Peng, T.Y. Synthesis of floriated ZnFe2O4 with porous nanorod structures and its photocatalytic hydrogen production under visible light. J. Mater. Chem..2010,20:3665-3672.
    [22]Su, L., Feng, J., Zhou, X.M., Ren, C.L., Li, H.H., Chen, X.G Colorimetric detection of urine glucose based ZnFe2O4 magnetic nanoparticles. Anal Chem..2012,84:5753-5758.
    [23]Ponomarenko, L.A., Schedin, F., Katsnelson, M.I., Yang, R., Hill, E.W., Novoselov, K.S., Geim, A.K. Chaotic Dirac billiard in graphene quantum dots. Science.2008,320:356-358.
    [24]Li, D., Kaner, R.B. Graphene-based materials. Science.2008,320:1170-1171.
    [25]Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., Firsov, A.A. Two-dimensional gas of massless Dirac fermions in graphene. Nature.2005,438:197-200.
    [26]Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A. Electric field effect in atomically thin carbon films. Science.2004,306: 666-669.
    [27]Fu, Y.S., Chen, H.Q., Sun, X.Q., Wang, X. Combination of cobalt ferrite and graphene: High-performance and recyclable visible-light photocatalysis. AppL CataL B.2012,111-112: 280-287.
    [28]Hummers, W.S., Offeman, R.E. Preparation of graphite oxide. J. Am Chem. Soc..1958,80: 1339-1339.
    [29]Jeong, H.K., Lee, Y.P., Lahaye, R.J.W.E., Park, M.H., An, K.H., Kim, I.J., Yang, C.W., Park, C.Y., Ruoff, R.S., Lee, Y.H. Evidence of graphitic AB stacking order of graphite oxides. J. Am. Chem. Soc..2008,130:1362-1366.
    [30]Li, Y.J., Gao, W., Ci, L.J., Wang, C.M., Ajayan, P.M. Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation. Carbon.2010,48: 1124-1130.
    [31]Zhu, C.Z., Guo, S.J., Fang, Y.X., Dong, S.J. Reducing sugar:New functional molecules for the green synthesis of graphene nanosheets. ACS Nano.2010,4:2429-2437.
    [32]Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y, Wu, Y, Nguyen, S.T., Ruoff, R.S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon.2007,45:1558-1565.
    [33]Zhou, J.S., Song, H.H., Ma, L.L., Chen, X.H. Magnetite/graphene nanosheet composites: interfacial interaction and its impact on the durable high-rate performance in lithium-ion batteries. RSCAdv..2011,1:782-791.
    [34]Song, W.T., Xie, J., Liu, S.Y., Cao, GS., Zhu, T.J., Zhao, X.B. Self-assembly of a ZnFe2O4/graphene hybrid and its application as a high-performance anode material for Li-ion batteries. New J. Chenu.2012,36:2236-2241.
    [35]Hou, Y., Li, X.Y., Zhao, Q.D., Quan, X., Chen, G.H. Electrochemical method for synthesis of a ZnFe2O4/TiO2 composite nanotube array modified electrode with enhanced photoelectrochemical activity. Adv. Funct. Mater..2010,20:2165-2174.
    [36]Manga, K.K., Zhou, Y., Yan, Y.L., Loh, K.P. Multilayer hybrid films consisting of alternating graphene and titania nanosheets with ultrafast electron transfer and photoconversion properties. Adv. Funct. Mater..2009,19:3638-3643.
    [37]Akhavan, O., Azimirad, R. Photocatalytic property of Fe2O3 nanograin chains coated by TiO2 nanolayer in visible light irradiation. AppL Catal.A.2009,369:77-82.
    [38]Akhavan, O. Thickness dependent activity of nanostructured TiO2/a-Fe2O3 photocatalyst thin films. AppL Surf. Sci..2010,257:1724-1728.
    [39]Lightcap, I.V., Kosel, T.H., Kamat, P.V. Anchoring semiconductor and metal nanoparticles on a two-dimensional catalyst mat. storing and shuttling electrons with reduced graphene oxide. Nano Lett..2010,10:577-583.
    [I]Davis, R.J., Derouane, E.G. A non-porous supported platinum catalyst for aromatization of n-hexane. Nature.1991,349:313-315.
    [2]Bratlie, K.M., Lee, H., Komvopoulos, K., Yang, P., Somorjai, GA. Platinum nanoparticle shape effects on benzene hydrogenation selectivity. Nano Lett..2007,7:3097-3101.
    [3]An, W., Chuang, K.T., Sanger, A.R. Catalyst-support interaction in fluorinated carbon-supported Pt catalysts for reaction of NO with NH3. J. CataL.2002,211:308-315.
    [4]Steele, B.C.H., Heinzel, A. Materials for fuel-cell technologies. Nature.2001,414:345-352.
    [5]Zhao, M., Sun, L., Crooks, R.M. Preparation of Cu nanoclusters within dendrimer templates. J.Am. Chem. Soc..1998,120:4877-4878.
    [6]Sua, F., Poh, C.K., Zeng, J., Zhong, Z., Liu, Z., Lin, J. Pt nanoparticles supported on mesoporous carbon nanocomposites incorporated with Ni or Co nanoparticles for fuel cells. J. Power Sources.2012,205:136-144.
    [7]Wang, M., Xu, F., Sun, H., Liu, Q., Artyushkova, K., Stach, E.A., Xie, J. Nanoscale graphite-supported Pt catalysts for oxygen reduction reactions in fuel cells. Electrochim. Acta.2011,56:2566-2573.
    [8]He, D., Mu, S., Pan, M. Improved carbon nanotube supported Pt nanocatalysts with lyophilization. Int. J. Hydrogen Energy.2012,37:4699-4703.
    [9]Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieval, I.V., Firsov, A.A. Electric field effect in atomically thin carbon films. Science. 2004,306:666-669.
    [10]Xin, Y., Liu, J., Liu, W., Gao, J., Xie, Y., Yin Y, Zou, Z.G. Preparation and characterization of Pt supported on graphene with enhanced electrocatalytic activity in fuel cell. J. Power Sources.2010,196:1012-1018.
    [11]Tsang, S.C., Caps, V., Paraskevas, I., Chadwick, D., Thompsett, D. Magnetically separable, carbon-supported nanocatalysts for the manufacture of fine chemicals. Angew. Chem. Int. Ed..2004,43:5645-5649.
    [12]Lu, A.H., Li, W.C., Kiefer, A., Schmidt, W., Bill, E., Fink, G., Schuth F. Fabrication of magnetically separable mesostructured silica with an open pore system. J. Am. Chem. Soc. 2004,126:8616-8617.
    [13]Wu, S., He, Q., Zhou, C., Qi, X., Huang, X., Yin, Z., Yang, Y.H., Zhang, H. Synthesis of Fe3O4 and Pt nanoparticles on reduced graphene oxide and their use as a recyclable catalyst. Nanoscale.2012,4:2478-2483.
    [14]Nethravathi, C., Anumol, E.A., Rajamathi, M., Ravishankar, N. Highly dispersed ultrafine Pt and PtRu nanoparticles on graphene:formation mechanism and electrocatalytic activity. Nanoscale.2011,3:569-571.
    [15]Li, Y.J., Gao, W., Ci, L.J., Wang, C.M., Ajayan, P.M. Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation. Carbon.2010,48: 1124-1130.
    [16]Shang, N., Papakonstantinou, P., Wang, P., Silva, S.R.P. Platinum integrated graphene for methanol fuel cells. J. Phys. Chem. C.2010,114:15837-15841.
    [17]Panella, B., Vargas, A., Baiker, A. Magnetically separable Pt catalyst for asymmetric hydrogenation. J. Catal.2009,261:88-93.
    [18]Deng, H., Li, X., Peng, Q., Wang, X., Chen, J., Li, Y. Monodisperse magnetic single-crystal ferrite microspheres. Angew. Chem. Int. Ed..2005,44:2782-2785.
    [19]Xuan, S.H., Wang, Y.J., Leung, K.C., Shu, K.Y. Synthesis of Fe3O4@polyaniline core/shell microspheres with well-defined blackberry-like morphology. J. Phys. Chem. C.2008,112: 18804-18809.
    [20]Hui, C., Shen, C., Yang, T., Bao, L., Tian, J., Ding, H. Large-scale Fe3O4 nanoparticles soluble in water synthesized by a facile method. J. Phys. Chem. C.2008,112:11336-11339.
    [21]Hummers, W.S., Offeman, R.E. Preparation of graphitic oxide. J. Am. Chem. Soc.1958,80: 1338-1339.
    [22]Xu, Y.X., Bai, H., Lu, GW, Li, C, Shi, GQ. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets.J. Am. Chem. Soc.2008,130: 5856-5857.
    [23]Rourke, J.P., Pandey, P.A., Moore, J.J., Bates, M., Kinloch, I.A., Young, R.J., Wilson, N.R. The real graphene oxide revealed:stripping theoxidative debris fromthe graphene-like sheets. Angew. Chem. Int. Ed..2011,50:3173-3177.
    [24]Myung, S., Lee, M., Kim, GT., Ha, J.S., Hong, S. Large-scale "surface-programmed assembly" of pristine vanadium oxide nanowire-based devices. Adv. Mater..2005,17: 2361-2364.
    [25]Lee, M., Im, J., Lee, B.Y., Myung, S., Kang, J., Huang, L., Kwon, Y.K., Hong, S. Linker-free directed assembly of high-performance integrated devices based on nanotubes and nanowires. Nat. NanotechnoL.2006,1:66-71.
    [26]Wang, J.Z., Zhong, C., Wexler, D., Idris, N.H., Wang, Z.X., Chen, L.Q., Liu, H.K. Graphene-encapsulated Fe3O4 nanoparticles with 3D laminated structure as superior anode in lithium ion batteries. Chem. Eur. J..2011,17:661-667.
    [27]Zangmeister, C.D. Preparation and evaluation of graphite oxide reduced at 220℃. Chem. Mater..2010,22:5625-5629.
    [28]Shebanova, O.N., Lazor, P. Raman study of magnetite (Fe3O4):laser-induced thermal effects and oxidation. J. Raman Spectrosc.2003,34:845-852.
    [29]Cohen, H., Gedanken, A., Zhong, Z. One-Step synthesis and characterization of ultrastable and amorphous Fe3O4 colloids capped with cysteine molecules. J. Phys. Chem. C.2008,112: 15429-15438.
    [30]Tang, L., Wang, Y, Li, Y, Feng, H., Lu, J., Li, J. Preparation, structure, and electrochemical properties of reduced graphene sheet films. Adv. Fund. Mater..2009,19:2782-2789.
    [31]Zhou, K., Zhu, Y., Yang, X., Luo, J., Li, C., Luan, S. A novel hydrogen peroxide biosensor based on Au-graphene-HRP-chitosan biocomposites. Electrochim. Acta.2010,55: 3055-3060.
    [32]Shen, J., Zhu, Y., Zhou, K., Yang, X., Li, C. Tailored anisotropic magnetic conductive film assembled from graphene-encapsulated multifunctional magnetic composite microspheres. J. Mater. Chem..2012,22:545-550.
    [33]Sun, H., You, J., yang, M., Qu, F. Synthesis of Pt/Fe3O4-CeO2 catalyst with improved electrocatalytic activity for methanol oxidation. J. Power Sources.2012,205:231-234.
    [34]Chen, D., Ji, G., Ma, Y., Lee, J., Lu, J. Graphene-encapsulated hollow Fe3O4 nanoparticle aggregates as a high-performance anode material for lithium ion batteries. ACS AppL Mater. Interfaces.2011,3:3078-3083.
    [35]Girishkumar, G., Rettker, M., Underhile, R., Binz, D., Vinodgopal, K., Mcginn, P., Kamat, P. Single-wall carbon nanotube-based proton exchange membrane assembly for hydrogen fuel cells. Langmuir.2005,21:8487-8494.
    [36]Chang, Y., Han, G., Li, M., Gao, F. Graphene-modified carbon fiber mats used to improve the activity and stability of Pt catalyst for methanol electrochemical oxidation. Carbon.2011,49: 5158-5165.
    [37]Yoo, E., Okata, T., Akita, T., Kohyama, M., Nakamura, J., Honma, I. Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface. Nano Lett.. 2009,9:2255-2259.
    [1]Jow, J.J., Yang, S.W., Chen, H.R., Wu, M.S., Ling, T.R., Wei, T.Y. Coelectrodeposition of Pt-Ru electrocatalysts in electrolytes with varying compositions by a double-potential pulse method for the oxidation of MeOH and CO. Int. J. Hydrogen Energy.2009,34:665-671.
    [2]Xu, W.L., Lu, T.H., Liu, C.P., Xing, W. Nanostructured PtRu/C as anode catalysts prepared in a pseudomicroemulsion with ionic surfactant for direct methanol fuel cell.J. Phys. Chem. B. 2005,109:14325-14330.
    [3]Maiyalagan, T. Silicotungstic acid stabilized Pt-Ru nanoparticles supported on carbon nanofibers electrodes for methanol oxidation. Int. J. Hydrogen Energy.2009,34: 2874-2879.
    [4]Chen, T-Y., Lin, T-L., Chen, C-C., Chen, C-M., Chen, C-F. Improved catalytic performance of Pt supported on Multi-Wall carbon nanotubes as cathode for Direct Methanol Fuel Cell applications prepared by dual-stepped surface thiolation processes. Journal of the Chinese Chemical Society.2009,56:1236-1243.
    [5]Qiu, J-D., Wang, G-C., Liang, R-P., Xia, X-H., Yu, H-W. Controllable deposition of platinum nanoparticles on graphene as an electrocatalyst for Direct Methanol Fuel Cells. J. Phys. Chem. C.2011,115:15639-15645.
    [6]Jha, N., Reddy, A.L.M., Shaijumon, M.M., Rajalakshmi, N., Ramaprabhu, S. Pt-Ru/multi-walled carbon nanotubes as electrocatalysts for direct methanol fuel cell. Int J. Hydrogen Energy.2008,33:427-433.
    [7]Zhang, X., Shi, X.Z., Wang, C.M. Electrodeposition of Pt nanoparticles on carbon nanotubes-modified polyimide materials for electrocatalytic applications. Catalysis Commun..2009,10:610-613.
    [8]Ksar, F., Ramos, L., Keita, B., Nadjo, L., Beaunier P., Remita, H. Bimetallic Palladium-Gold Nanostructures:Application in Ethanol Oxidation. Chem. Mater..2009,21:3677-3683.
    [9]Lee, Y.W., Kim, M.J., Kim, Y, Kang, S.W., Lee J.H., Han, S.W. Site-Selective Excitation of "Exciplex Tuning" for Luminescent Nanoclusters of Dicyanoargentate (I) Ions Doped in Different Alkali Halide Crystals. J. Phys. Chem. C.2010,114:7689-7693.
    [10]Qi, Z., Geng, H.R., Wang, X.G., Zhao, C.C., Ji, H., Zhang, C., Xu, J.L., Zhang, Z.H. Novel nanocrystalline PdNi alloy catalyst for methanol and ethanol electro-oxidation in alkaline media. J. Power Sources.2011,196:5823-5828.
    [11]Zhao, M., Sun, L., Crooks, R.M. Preparation of Cu nanoclusters within dendrimer templates. J.Am Chem Soc..1998,120:4877-4878.
    [12]Sua, F., Poh, C.K., Zeng, J., Zhong, Z., Liu, Z., Lin, J. Pt nanoparticles supported on mesoporous carbon nanocomposites incorporated with Ni or Co nanoparticles for fuel cells. J. Power Sources.2012,205:136-144.
    [13]Kou, R., Shao, Y.Y., Wang, D.H., Engelhard, M.H., Kwak, J.H., Wang, J., Viswanathan, V.V., Wang, C.M., Lin, Y.H., Wang, Y., Aksay, I. A., Liu, J. Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction. Electrochem. Commun..2009,11:954-957.
    [14]He, D., Mu, S., Pan, M. Improved carbon nanotube supported Pt nanocatalysts with lyophilization. Int. J. Hydrogen Energy.2012,37:4699-4703.
    [15]Ponomarenko, L.A., Schedin, F., Katsnelson, M.I., Yang, R., Hill, E.W., Novoselov, K.S., Geim, A.K. Chaotic Dirac billiard in graphene quantum dots. Science.2008,320:356-358.
    [16]Li, D., Kaner, R.B. Graphene-Based Materials. Science.2008,320:1170-1171.
    [17]Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., Firsov, A.A. Two-dimensional gas of massless Dirac fermions in graphene. Nature.2005,438:197-200.
    [18]Gao, H.C., Xiao, F., Ching C.B., Duan, H.W. One-step electrochemical synthesis of PtNi nanoparticle-graphene nanocomposites for nonenzymatic amperometric glucose detection. ACSAppL Mater. Interfaces.2011,3:3049-3057.
    [19]Lin, S.X., Shen, C.M., Lu, D.B., Wang, C.M., Gao, H-J. Synthesis of Pt nanoparticles anchored on graphene-encapsulated Fe3O4 magnetic nanospheres and their use as catalysts for methanol oxidation. Carbon.2013,53:112-119.
    [20]Hui, C., Shen, C., Yang, T., Bao, L., Tian, J., Ding, H. Large-scale Fe3O4 nanoparticles soluble in water synthesized by a facile method. J. Phys. Chem. C.2008,112:11336-11339.
    [21]Hummers, W.S., Offeman, R.E. Preparation of graphitic oxide. J. Am. Chem. Soc..1958,80: 1338-1339.
    [22]Xu, Y.X, Bai, H., Lu, G.W., Li, C., Shi, G.Q. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J. Am. Chem. Soc..2008,130: 5856-5857.
    [23]Shi, J., Yang, G., Zhu, J. Sonoelectrochemical fabrication of PDDA-RGO-PdPt nanocomposites as electrocatalyst for DAFCs. J. Mater. Chem..2011,21:7343-7349.
    [24]Bianchini, C., Shen, P.K. Palladium-Based Electrocatalysts for Alcohol Oxidation in Half Cells and in Direct Alcohol Fuel Cells. Chem. Rev..2009,109:4183-4206.
    [25]Deng, H., Li, X., Peng, Q., Wang, X., Chen, J., Li, Y. Monodisperse magnetic single-crystal ferrite microspheres. Angew. Chem. Int. Ed..2005,44:2782-2785.
    [26]Shen, J., Zhu, Y., Zhou, K., Yang, X., Li, C. Tailored anisotropic magnetic conductive film assembled from graphene-encapsulated multifunctional magnetic composite microspheres. J. Mater. Chem.2012,22:545-550.
    [27]Sun, H., You, J., yang, M., Qu, F. Synthesis of Pt/Fe3O4-CeO2 catalyst with improved electrocatalytic activity for methanol oxidation.J. Power Sources.2012,205:231-234.
    [28]Zhou, K., Zhu, Y., Yang, X., Luo, J., Li, C., Luan, S. A novel hydrogen peroxide biosensor based on Au-graphene-HRP-chitosan biocomposites. Electrochim. Acta.2010,55: 3055-3060.
    [29]Chang, Y., Han, G., Li, M., Gao, F. Graphene-modified carbon fiber mats used to improve the activity and stability of Pt catalyst for methanol electrochemical oxidation. Carbon.2011,49: 5158-5165.
    [30]Lin, Y.H., Cui, X.L., Yen, C.Y., Wai, C.M. PtRu/carbon nanotubes nanocomposite synthesized in supercritical fluid:a novel electrocatalyst for direct methanol fuel cells. Langmuir.2005,21(24):11474-11479.
    [31]Lei, Y.Z., Zhao, GH., Tong, X.L., Liu, M.C., Li, D.M., Geng, R. High electrocatalytic activity of Pt-Pd binary spherocrystals chemically assembled in vertically aligned TiO2 nanotubes. Chem. Phys. Chem..2010,11:276-284.
    [32]Xu, C., Wang, X., Zhu, J.W. Graphene-metal particle nanocomposites. J. Phys. Chem. C. 2008,112:19841-19845.
    [33]Choi, J.H., Park, K.W., Kwon, B.K., Sung, Y.E. Methanol oxidation on Pt/Ru, Pt/Ni, and Pt/Ru/Ni anode electrocatalysts at different temperatures for DMFCs. J. Electrochem. Soc. 2003,50:A973-A978.
    [34]Qin, Y.H., Yang, H.H., Zhang, X.S., Li, P., Ma, C.A. Effect of carbon nanofibers microstructure on electrocatalytic activities of Pd electrocatalysts for ethanol oxidation in alkaline medium. Int. J. Hydrogen Energy.2010,33:7667-7674.
    [35]Chen, X.C., Wang, H., He, J.H., Cao, Y., Cui, Z.M., Liang, M.H. Preparation, structure and catalytic activity of Pt-Pd bimetallic nanoparticles on nulti-walled carbon nanotubes. J. Nanosci. Nanotechnol.. 2010,10:3138-3144.
    [36]Zhang, Y.Z., Gu, Y.E., Lin, S.X., Wei, J.P., Wang, Z.H., Wang, C.M., Du, Y.L., Ye, W.C. One-step synthesis of PtPdAu ternary alloy nanoparticles on graphene with superior methanol electrooxidation activity. Electrochim. Acta.2011,56:8746-8751.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700