用户名: 密码: 验证码:
X70管线钢针状铁素体组织形成机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以X70管线钢为实验材料,研究了不同变形量、冷却速度和加热温度对管线钢显微组织的影响规律,对大工业生产制定精细的控制轧制和控制冷却工艺有一定的指导作用。主要研究内容是制定了实验室模拟控轧控冷、金相显微组织观察、拉伸试验和EBSD扫描电镜观察等实验方案,以研究不同热加工工艺对管线钢显微组织的影响规律,管线钢组织与力学性能之间的关系以及夹杂物在针状铁素体形成中的作用,探讨了针状铁素体的形成机理,同时对针状铁素体组织的晶体学取向作了分析,得出的主要结论是:
     (1)加热温度900℃变形40%并油冷能够得到最佳的针状铁素体组织,能够满足工程上要求的组织中针状铁素体占80%以上的要求。
     (2)与同一冷速下未变形的连续冷却转变的组织相比,热变形后的组织中晶粒更加细小弥散,且变形量越大,晶粒越细小。
     (3)所观察X70管线钢板中的夹杂物多为球形,大约在1~2μm,可作为针状铁素体的形核核心。
     (4)在奥氏体未再结晶区适量的热变形,形成了以位错、形变带和胞状组织等形式的应变累积奥氏体,可以增加铁素体的形核位置和形核机率。
     (5)管线钢中针状铁素体主要是通过大量变形产生的高密度位错、形变带和胞状组织等以切变的方式在晶内形核,并受碳的扩散限制而长大,最后得到针状铁素体组织。
     (6)本研究中热轧变形后形成大量针状铁素体的机制有两种:一种是依靠夹杂物的感生形核,另一种是依靠热变形储存激发能的激发形核。
     (7)针状铁素体由一些取向角为1-2°的亚结构组成,而且一系列毗邻的取向角低于10°的晶粒构成了针状铁素体的晶体包。不同晶体包之间取向角差为55°左右,为大角度晶界。
This thesis used X70 pipeline steels as the experimental material, researching the influence of different deforming degree、cooling velocity and heating-up temperature on microscopic structure of pipeline steels, which has the derect significance of making fine controlling cooling and rolling technology to commercial run. The main contents contain that the simulation of controlling cooling and rolling in laboratory、observation of metallurgical structure、tensile test and electron backscatter diffraction (EBSD) technique, et al. Analysing the influence of different hot procedure on microscopic structure of pipeline steels, the relation between structure of pipeline steels and properties, the effect of inclusion forming in acerose ferrite. Discussing the formed mechanics of acerose ferrite. At the meantime analyzing crystallography orientation of acerose ferrite, the main conclusion as follows:
     (1)when the temperature and deforming reach to 900℃and 40%, it can obtain the best acerose ferrite by oil cooling, which can satisfy the requirement of acerose ferrite occupying 80% in project.
     (2)Comparing of undeformed continuous cooling transformation at same cooling velocity, grain in structure after thermal defotmation is more refined and disoerse, the more great of the deformation, the more refined of the grain.
     (3)Inclusiong in X70 pipeline steel is globular shape, about 1~2μm, which can as the nucleating center.
     (4)Proper forming happened in none recrystallization zone of austenite which gets the strain accumulation austenite formed as dislocation、deformation band and cellular structure, which can increase the nucleation site and nucleation rate of ferrite
     (5)Through the high density dislocation、deformation band and cellular structure under more deforming, acerose ferrite in pipeline steel nucleates intracrystalline by shear transformation. It is limited by diffuse of carbon, growing as acerose ferrite.
     (6)The mechanics of forming acerose ferrite after hot rolling and deforming have two point: one is nucleate depends on induced inclusion, another is depends on storage power of thermal deformation.
     (7)acerose ferrite constituted by some substructure with 1-2°orientation, and series of near grain below 10°orientation composes the crystal packet. Different crystal packet has the 55°orientation difference, which is called wide angle grain boundary.
引文
[1]焦百泉.管线钢性能的发展[J].焊管,1999,22(4):1-7.
    [2]王茂堂,牛冬梅,王丽,赵书远.高强度管线钢的发展和挑战[J].焊管,2006,29(5):9-16.
    [3]潘家华.全球能源变换及管线钢的发展趋势[J].焊管,2008,31(1):9-11.
    [4]庄传晶,冯耀荣,霍春勇等.国内X80级管线钢的发展及今后的研究方向[J].焊管,2005,28(2):10-14.
    [5]彭在美.论石油天然气输送钢管及其发展方向[J].冶金丛刊,2003(5):41-44.
    [6]郑瑞,李铁军.我国管线钢的生产与发展[J].重型机械科技,2003(4):47-51.
    [7]高惠临,董玉华.管线钢的发展趋势与展望[J].焊管,1999,22(3):4-8.
    [8]张庆国.管线钢的发展趋势及生产工艺评述[J].河北冶金,2003(5):12-17.
    [9]李建军.长输管线发展趋势与“西气东输”二线焊接[J].焊接技术,2008,37(5):5-8.
    [10]苗承武.西气东输工程及其管线管的选择.焊管,2000, 23(3):26~32
    [11]徐曙光.我国控制轧制控制冷却技术的新进展[J].特殊钢,1992,13(1):1-3.
    [12]高惠临,石凯.管线钢控制轧制与控制冷却技术的应用和进展[J].焊管,1995,18(3):7-11.
    [13] Rodrigues P C M,Pereloma E V,Santoc D B. Mechanical properties of an HSLA bainitac steel subjected to controlled rolling with accelerated rolling. Materials Science and Engineering, 2000, 283: 136-143.
    [14]小指军夫.控制轧制控制冷却.北京::冶金工业出版社,2002.
    [15] MingChun Zhao, Ke Yang, Yiying Shan. The effects of thermo-mechanical control process on microstructures and mechanical properties of a commercial pipeline steel. Materials Science and Engineering, 2002, A335: 14-20.
    [16]单以银,高珊.管线钢中针状铁素体的形成及其综合性能.宝钢管线钢新世纪技术与发展论坛,上海,2001,13(5):43-47
    [17]东涛,孟繁茂,王祖滨.神奇的Nb-09在钢铁中的应用:迄今经验和未来的发展.北京:中信美国钢铁公司,1999.
    [18]翁宇庆.超细晶钢—钢的组织细化理论与控制技术.冶金工业出版社,2003:339-340.
    [19] Coldren A P, Mihelich J L.Acicular Ferrite HSLA Sreels for Line Pipe Molybdenum-Con-taining Steels for Gas and Oil Industry Application, a State-of-the-Art-Review.In: Climax Molybdenum Company, 1976, 14.
    [20] Young Min Kim, Hakcheol Lee, Nack J.Kim. Transformation behavior and microstructural characteristics of acicular ferrite in pipeline steels.Matetial Science andEngineering, 2008, A478: 361-370.
    [21]郑磊.宝钢X70管线钢的开发及在西气东输工程中的应用[J].机械工人:热加工, 2003(5): 34-35.
    [22]冯耀荣,霍春勇,马秋荣等.管线钢及管线钢的研究进展与发展方向.中国金属学会轧钢年会,2004.
    [23] T.Araki, et al., Continuous-Cooled ZW Microstructures of Low-Carbon Steel, vol.1, ISIJ, Tokyo, 1992, pp. 4-5.
    [24]杨旭宁,康永林,于浩等. X70针状铁素体管线钢中M/A岛的工艺控制[J].轧钢,2007,24(4):7-10.
    [25]郭振,温永红,胡水平等. F40高强船板钢组织中针状铁素体形成及细化机制研究[J].热加工工艺,2008,37(2):38-41.
    [26]李维娟,杜林秀等.应变诱发铁素体相变对低碳钢晶粒细化的影响[J].钢铁研究学报,2000,12(5):36-39.
    [27]王晓刚,魏建国,刘生. X70管线钢控轧工艺与组织性能关系的研究[J].宽厚板,2003,9(5):21-25.
    [28]文慕冰.微合金化元素在钢中的作用及其应用.钢铁研究,1990,(1):39
    [29]周成,郑琳.管线钢控制冷却的试验室研究.武钢技术,1996, 3: 12~15.
    [30] Tanizawa Y,Kumakura S,Oka M.,et al.Development of thin slab casting technology with liquid core hard reduction.Iron Steelmaker,1999,26(9):73-75
    [31] Mabuchi H, Uemori R,Fujioka M. The role of Mn depletion in intragranular ferrite transformation in the heat affected zone of welded joints with large heat input in structure steels.ISIJ Int. 1995. 36(14): 06-12.
    [32] I.Madariaga and I.Gutierrez.Role of the particle-matrix interface on the nucleation of acicular ferrite in a medium carbon microalloyed steel.Acta mater.vol. 47, NO.3 pp. 951-960, 1999.
    [33] Krauklis P, Barbaro F J, Easterling K E. In:Proc Int Conf on Martensitic Transformations,Monterey: Monterey Institute for Advanced Studies, 1993, 439.
    [34] Zhang,Z., and Farrar,R.A. Role of Non-Metallic Inclusions in Formation of Acicular Ferrite in Low Alloy Weld Metals, Mater.Sci.and Tech.12(1996), pp. 237-260.
    [35] Tae-Kyu LEE, H.J. Kim, B.Y.Kang and S.K.Hwang. Effect of inclusion size on the nucleation of acicular ferrite in welds.ISIJ International, Vol.40,2000,1260-68.
    [36]余圣莆,雷毅,谢明立,黄安国,李志远.晶内铁素体的形核机理.钢铁研究学报,2005,17(1)期:47-50.
    [37]赵明纯,单以银,曲锦波,等.控制热加工下管线钢中针状铁素体的形成.金属学报,2001,No. 8:820.
    [38] Young Min Kim, Hakcheol Lee , Nack J. Kim, Transformation behavior andmicrostructural characteristics of acicular ferrite in line-pipe steels, Materials Science and Engineering A478 (2008) 361–370.
    [39] A.W. Wilson, G. Spanos, Mater. Charact. 46 (2001) 407–418.
    [40] B. Hwang, Y.G. Kim, S. Lee, Y.M. Kim, N.J. Kim, J.Y. Yoo, Metall. Mater.Trans. 36A (2005) 2107–2114.
    [41] D.J. Rowenhorst, A. Gupta, C.R. Feng, G. Spanos, Scipta Mater. 2006, 55 : 11.
    [42] A.F. Gourgues, H.M. Flower, T.C. Lindley, Mater. Sci. Technol. 2000, 16: 26–40.
    [43] M. Dfaz-Fuentes, A. Iza-Mendia, I. Gutierrez, Metall. Mater. Trans. 2003, 34A: 2505–2516.
    [44] T. Araki, et al. Continuous-Cooled Zw Microstructures of Low-Carbon Steel, vol. 1, ISIJ, Tokyo, 1992, pp. 4–5.
    [45] J.Y.Koo, M.J. Luton, N.V. Bangaru, R.A. Petkovic, Proc. 13th Int. Offshore and Polar Eng. Conf, vol. 4, 2003, pp. 10–18.
    [46] H.K.D.H. Bhadeshia, Bainite in Steels (Transformations, Microstructure and Properties), The Institute of Materials, London, 2001.
    [47] C.H. Lee, H.K.D.H. Bhadeshia, H.C. Lee, Mater. Sci. Eng. 2003, A360: 249–257.
    [48] Elwazri M, Wanjara P, Yue S. Dynamic recrystallization of austenite in microalloyed low carbon steels. Mater Sci Eng A 2003;339:209–15.
    [49] Sankaran S, Subramanya Sarma V, Kaushik V, Padmanabhan KA.Thermomechanical processing and characterisation of multi-phase microstructures in a V-bearing medium carbon micro-alloyed steel. J Mater Process Technol 2003, 139:642–7.
    [50] C.P. Reip, S. Shanmugam, R.D.K. Misra, Mater. Sci. Eng. 2006, A 424: 307–317.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700