用户名: 密码: 验证码:
智能分数阶滑模控制及系统参数整定方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
滑模变结构控制最突出的优点是系统状态一旦进入滑模运动,对系统扰动及参数变化具有完全鲁棒性。同时,设计方法简单,易于实现。这些优越特性使滑模控制理论成为控制界的重要研究分支。但是,滑模控制系统中的抖震问题限制了它在实际工程中的应用。因此,滑模变结构控制系统中抖震削弱或消除一直是工程实际问题的实时控制中一个研究热点,本文的研究具有重要的意义。
     针对传统滑模变结构控制系统中的抖震问题,本文把分数阶微积分理论引入到滑模控制方法当中,提出了分数阶滑模控制策略,给出了分数阶系统的稳定性分析及其削减抖震的机理分析。考虑不确定系统上界难于测量以及开关增益对抖震的影响,利用智能控制算法的优点,给出了分数阶滑模控制系统的参数整定方法。深入分析传统滑模控制系统抖震产生的机理,提出了无抖震分数阶滑模控制算法,给出了控制系统相对一定控制对象的参数整定规则。本文结合分数阶微积分理论、智能控制算法和滑模控制算法,深入研究了消除抖震并具有完全鲁棒性的滑模控制系统以及其参数整定方法,具体研究内容如下:
     深入分析了传统一阶滑模控制系统中的抖震现象,根据一阶滑模抖震产生机理,提出混合一阶与二阶滑模控制系统,给出了稳定性证明和该混合控制器的滑模逼近条件,分析了该混合控制系统相对于单一一阶或二阶滑模控制系统在削减抖震的优势。基于永磁同步电机伺服系统进行了仿真分析和实验验证,结果说明了该控制方法相对单一阶滑模控制系统减少了抖震。
     纵然采用混合一阶与二阶滑模控制方法,系统的抖震也相当剧烈。利用分数阶系统在滑模运动中能以比整数阶系统较慢的能量传递速度特性,设计分数阶切换流形,驱使系统状态较为缓慢地收敛到零点。分数阶微积分的引入在提高系统性能的同时也增加了系统参数的整定难度,基于经典控制理论,给出了分数阶滑模等效控制器的参数整定规则;利用模糊推理算法,给出了切换增益的整定方法。考虑到分数阶滑模控制系统在滑模逼近阶段对系统扰动和参数变化不具有很强的鲁棒性,设计全控制域的完全鲁棒性分数阶滑模控制策略。仿真和实验结果说明了分数阶滑模控制系统能有效地削减抖震。
     传统滑模控制系统滑模运动逼近条件的建立依赖于被控对象的数学模型,然而对于未知上界的不确定系统或者高阶系统,滑模逼近条件的建立显得过于复杂。考虑到模糊控制系统不依赖系统数学模型,且能利用专家经验,把滑模控制理论的优点融合到模糊控制当中,并利用分数阶微积分的优越特性,建立基于分数阶滑模面的模糊滑模控制系统。针对扰动和系统参数变化的不确定性,利用模糊推理算法实时整定不确定参数值,使得基于等效控制的分数阶滑模控制系统保持在最小抖震状态。仿真和实验结果说明,基于分数阶滑模面的模糊控制系统能柔化系统的抖震,并保证系统在最少输入信号的情况下也能保持传统滑模控制系统的鲁棒性;基于等效控制的模糊分数阶滑模系统能根据系统参数和扰动的变化实现最小抖震的控制。
     考虑到模糊规则的建立要求一定的专家经验,利用神经网络的学习功能,设计基于神经网络参数整定的分数阶滑模控制系统。深入分析分数阶系统与整数阶系统的稳定性,提出利用整数阶系统的镇定方法研究分数阶系统的稳定性。尽管模糊推理系统不依赖被控对象数学模型,但存在一定的静差。利用神经网络能逼近任意非线性函数的优点,提出基于分数阶切换流形的神经网络控制系统。仿真和实验结果说明了神经网络分数阶滑模控制系统不但能削减抖震,而且能达到较高的综合控制性能。
     尽管采用模糊推理和神经网络控制等人工智能算法,基于开关切换作用的滑模控制系统依然存在抖震问题。采用分数阶PI~λD~μ控制律驱使系统在任意初始状态都能达到给定的滑模面,理论证明了系统状态轨迹进入滑模运动后,在满足一定条件下,控制系统对扰动和参数变化具有完全鲁棒性。给出了基于经典控制理论的控制器参数整定方法和基于模糊推理机制的滑模面参数自整定算法。仿真和实验结果说明了该基于滑模面的分数阶控制系统不但能根除抖震,而且保持了传统滑模控制系统对扰动和参数变化的鲁棒性。
One of the most distinguished features of the sliding mode control(SMC) is that afterreaching the sliding mode, the system is robust to parameter uncertainties and disturbances.And the control algorithm is simple and easy to be realized. All these fetures of SMC lead tothe importamt position of SMC theory. However, the chattering existed in SMC system limitsits application. Thus, counteracting the chattering for SMC system interests many researchers.And the study of this paper focusing on reducing the chattering is valuable.
     For dealing with the chaterring, this paper integrates the advantage of fractional ordercalculus and SMC to propose a fractional order calculus SMC system. The stability andmechanism for descring the chaterring are analysed. Considering the uncertainties impact onchattering, a tuning method based on intenlegent algorithm is proposed to obtain the gain offractional order SMC system. Based on a deep analysis of the chaterring occurring, afractional order SMC is propsed, which is robust with regard to parameters variations anddisturbances as well as eliminating the chaterring. And a tuning method is proposed for thiscontrol scheme. This paper integrates the fractional calculus and intelligent algorithm intoSMC to deal with chattering and give the parameters tuning methods. The research contentsare as follow:
     Based on depth analysis of chattering phenomenon existing in the traditional firstorder SMC systems, a hybrid first order and second order SMC system isproposed, the stability proof of the hybrid SMC system is given. The advantages of the hybridcontrol system in descring the chaterring is superior to that of a single first order or secondorder SMC system. Simulations and experiments based on permanent magnet synchronousmotor servo system verificate that the control method is effective.
     Using the unique convergence properties that the energy transmission speed of fractionalorder systems is slower than that of integer order system in the sliding phase,a fractional order sliding mode interface is designed to drive the systemstatus slowly converge to zero. Fractional calculus is introduced to enhance the controlperformance, but it also adds the difficulty in parameters tuning. Based on the tradicionalcontrol theory, this paper gives the tuning rules for the control law. And using fuzzy inference algorithm, a tuning method is proposed for switching gain. Since the reaching phase of SMCis sencetive to parameters variations and disturbances, a control scheme based on overallrobustness sliding mode interface is proposed. Simulations and experiments basedon permanent magnet synchronous motor servo system verificate that the control methodrudecues the chaterring effectively.
     Since the design of SMC relaies on dynamic model, it is difficult for complex system toyield the control law. Using the advantages of fuzzy inference system and fractional calculus,a fuzzy controller based on fractional order sliding mode interface is proposed. Consideringthe uncertainties, a fuzzy logic inference sysem is adopted to obtain the gain of SMC based onequivalent control law. Simulations and experiments based on permanent magnet synchronousmotor servo system verificate that the control schemes are not only robust to disturbance, butachieve high control performance.
     The building of fuzzy controller requires some experiences. It is not easy to apply.Instead, using the learning function of neural network, a tuning method based on neuralnetwork control algorithm is designed to obtain the gain of fractional order SMC system. Anda neural network controller is proposed to deal with the static error existing in fuzzy controlsystem. The stability sproof is given for fractional order system with the stability theory ofinteger order system. Simulations results show that the control schemes achieve high controlperformance under the existence of external disturbances and parameters variations.
     Even though the intelligent algorithm is used to design the fractional order SMC, thechaterring can not be elminated. This paper proposed a continue PI~λD~μcontrol law to replacethe switching control action. It can drive the system states to given sliding interface whereverthe initial states are. The given lemma shows validate that when some conditions are satisfied,this control schem is robut with regard to disturbances and parameters variations. And thetuning method for controller parameters is given. Simulations results show that the controlschemes achieve high control performance under the existence of external disturbances andparameters variations.
引文
[1] V.Emelyanov, N.E.KOstyleva. Design of variable structure control systems withdiscontinuous switching funetion.Engineering Cybemeties.1964,2(1):156-160.
    [2] V.I.Utkin.Variable structure systems with sliding mode. IEEE Transaetions onAntomatic Control,1977,22(2):212-220.
    [3] K.D.Young, V.I.Utkin, U.Ozquner. Control engineer's guide to sliding mode control.IEEE Transactions on Control Systems Technology.1999,7(3):328-342
    [4] U.Itkis.Control Systems of Variable Strueture. NewYork, Wlley,976.
    [5] O.Boubaker,J.P.Babary. on SISO and MIMO variable structure control of nonlineardistributed Parameter systems: Application to fixed bed reactors. Joumal of ProcesControl.2003,13(8):729-737.
    [6] K.K.ShyU, W.J.Uu, KC.Hsu. Design of large-scale time-delayed systems withdead-zone inPut via variable structure control.Antomatica,2005,41(7):1239-1246.
    [7] C.H.Chou,C.C.Cheng. Design of adaptive variable structure controllers for Perturbedtime-varying state delay systems. Joumal of the Franklin Institute,2001,338(1):35-46.
    [8] Juhng-Perng Su, Tung-Min Chen, Chun-Chieh Wang. Adaptive fuzzy sliding modecontrol with GA-based reaching laws. Fuzzy Sets and Systems.2001,120:145–158.
    [9]高为炳.变结构控制的理论及设计方法[M].科学出版社.1996.
    [10] Edwards C.A practical method for the design of sliding mode controllers using linearmatrix inequalities.Automatic.2004,40(1):1-9.
    [11] Slotine J J, Sastry S S.Tracking control of nonlinear systems using sliding surfaceswith application to robot manipulator.International Journal of Control.1983,38(2):465-492.
    [12] Vadim Utkin, Jurgen Guldner, Jingxin Shi.Sliding mode control in electromechanicalsystems.Taylor&Franics.1999.
    [13]胡跃明.变结构控制理论与应用[M].北京:科学出版社,2003.
    [14] Lin, F. J. and Shen, P. H. Robust fuzzy neural network sliding-mode control fortwo-axis motion control system. IEEE Transactions on Industrial Electronics.2006,53(3),1209-1225.
    [15] I. Boikoa, L. Fridmanb, R. Iriarteb, A. Pisanoc, E. Usai. Parameter tuning ofsecond-order sliding mode controllers for linear plants with dynamic actuators.Automatica.2006,42(3)833–839.
    [16] Christopher Edwards, Sarah K. Spurgeon, Ron J. Patton."Sliding mode observers forfault detection and isolation". Automatica.2000,36,541-553.
    [17] M.Zribi, H.Siar-Ramierz and A.N gai. Static and dynamic sliding mode controlschemes for Pemrnaent manget stepper motor. Internatioanl journal ofcontrol.2001,74(2):103-117.
    [18] Francesco Dinuzzo and Antonella Ferrara,Higher Order Sliding Mode ControllersWith Optimal Reaching. IEEE Transactions on Automatic Control,2009,54(9),43-56.
    [19] Da Lin, Xingyuan Wang. Observer-based decentralized fuzzy neural sliding modecontrol for interconnected unknown chaotic systems via network structure adaptation.Fuzzy Sets and Systems.1(61),(2010),2066–2080.
    [20] YangQuan Chen and Ying Luo. Discussion on the paper ‘Simple Fractional OrderModel Structures and Their Applications in Control System Design by MahsanTavakoli-Kakhki, Mohammad Haeri, and Mohammad Saleh Tavazoei. EuropeanJournal of Control,2010,6,695-699.
    [21] Miller KS, Ross B. An introduction to the fractional calculus and fractional differentialequations. New York: Wiley;1993
    [22] K. B. Oldham and J. Spanier, The Fractional Calculus[M], Academic Press, New Yorkand London,1974.
    [23] S. Ladaci and A. Charef, On fractional adaptive control[J], Nonlinear Dynam.2006,43(4),365–378.
    [24] A. Oustaloup, J. Sabatier, and P. Lanusse, From fractional robustness to CRONEcontrol[J], Fractional Calculus and Applied Analysis.1999,2(1), pp:1–30.
    [25] Feliu-Batlle, V., Rivas-Perez, R., Sanchez-Rodriguez, L., and Ruiz-Torija, M. A.,Robust fractional-order PI controller implemented on a laboratory hydraulic canal[J],Journal of Hydraulic Engineering,2009,135(4),271–282.
    [26] Ladaci, S., Charef, A., and Loiseau, J. J, Robust fractional adaptive control based onthe strictly positive realness condition[J], International Journal of AppliedMathematics and Computer Science,2009,19(1),69–76.
    [27] B. M. Vinagre, I. Petras, I. Podlubny, and Y. Q. Chen, Using fractional orderadjustment rules and fractional order reference models in model reference adaptivecontrol[J], Nonlinear Dynam,2002,29, pp:269–279.
    [28] S. Ladaci and A. Charef, On fractional adaptive control[J], Nonlinear Dynam.,2006,43(4), pp:365–378.
    [29] B.J. Lurie,“Three-parameter tunable tilt-integral-derivative (TID) controller,” USPatent US5371670,1994.
    [30] I. Podlubny,“Fractional-order systems and PIuDrcontroller”, IEEE Trans. AutomaticControl,1999,44(1),208-214.
    [31] R.L. Magin,“Fractional Calculus in Bioengineering,” Begell House Publishers Inc.,2006
    [32] B.J. West, M. Bologna, P. Grigolini, Physics of Fractal Operators[M], Springer, NewYork,2003.
    [33] I. Petras and I. Podlubny, Analogue realization of fractional order controller[J],Nonlinear Dynamics,2002,29(4), pp:281–296.
    [34]吴玉香,滑模控制理论及在移动机械臂中的应用,博士论文,2006.03
    [35]姚琼荟,黄继起,吴汉松.变结构控制系统[M].重庆:重庆大学出版社,1995
    [36] Karanjit Kalsi, Jianming Lian, Stefen Hui, Stanislaw H.aka. Sliding-mode observersfor systems with unknown inputs: A high-gain approach[J]. Automatica,2010,46,347-353.
    [37] Rong-Jong Wai, Fuzzy Sliding-Mode Control Using Adaptive TuningTechnique[J].IEEE Transactions on Industrial Electronics,2007,54(1):78-87.
    [38] Magdy M. Abdelhameed,Enhancement of Sliding Mode Controller by Fuzzy Logicwith Application to Robotic Manipulators[J]. Mechatronics,2005,15(4):439–458.
    [39] Baik, I. C., Kim, K. H.&Youn, M. J. Robust nonlinear speed control of PMsynchronous motor using boundary layer integral sliding mode control technique[J].IEEE Transactions on Control Systems Technology,2000,8,pp:47-54.
    [40]胡跃明,变结构控制理论与应用[M].北京:科学出版社,2003
    [41] Boiko, I., Fridman, L.,&Castellanos, M. I. Analysis of Second Order Sliding ModeAlgorithms in the Frequency Domain[J]. IEEE Transactions on Automatic Control,2004,49(6):946–950
    [42] I. Podlubny, Fractional Differential Equations, Academic Press, NewYork,1999.
    [43] Schiavone, W.Lamb. Fractional power approach to fractional caculas. Journal ofMethematical Analysis and Application[J].1990(2):377-401.
    [44] YangQuan Chen, No Petras, Vinagre B.M. A List of Laplace and InverseLaplaceTransforms Related to Fractional Order Calculus. PDF file.2001.
    [45] Nakagawa, M.,&Sorimachi, K.. Basic characteristics of a fractance device[J]. IEICETransactions on Fundamentals E75-A,1992,12,1814-1819.
    [46] Torvik P J, Bagley R L. On the appearance of the fractional derivative in the behaviorof real material[J]. Transaction of the ASMF,984,51(2):294-298.
    [47] Podlubny I. Geometrical and physical interpretation of fractional integration andfractional differentiation[J]. Fractional Calculus&Applied Analysis,2002,5(4):357-366.
    [48]刘式达,时少英,刘式适等.天气和气候之间的桥梁--分数阶导数[J].气象科技,2007,35(1):15-19.
    [49] Chen Y Q, Vinagr e Blas M. A new IIR-type digital fractional order differentiator[J].Signal Processing[J],2003,83(11):2359-2365.
    [50] Chen Y Q, Vinagr e Blas M, Po dlubny I. A new discretization method for fractionalorder differentiators via continued fraction expansion[C]. DETC2003/VIB48391.Chicago,2003:1-8.
    [51] Vinagre B.M, L.Podlubny, A.Hernandez,V.Feliu. Some Approximations ofFractional Order Operators Used in Control Theory and Applications[J]. FractionalCalculus and Applied Analysis.2000(3):231-248.
    [52] Yangquan Chen, Moore, L.Kevin. Discretization schemes for fractional-orderdifferentiators and integrators[J]. IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications.2002(3):363-367
    [53] Vinagre B.M, YangQuan Chen, No Petras. Two direct Tustin discretization methodsfor fractional-order differentiator/integrator[J]. Journal of the Franklin Institute.2003(51):349-462.
    [54] J.A.Machado, Tenreiro. Fractional-order derivative approximations in discrete-timecontrol systems[J]. Systems Analysis Modeling Simulation.1999(4):419-434.
    [55] K.D.Young,V.I.Utkin,U.Ozguner. A control engineer’s guide to sliding modecontrol[J]. IEEE Transactions on Control Systems Technology,1999,7(3):328-342.
    [56] Christopher Edwards, Sarah K. Spurgeon, Ron J. Patton. Sliding Mode Observers for FaultDetection and Isolation[J]. Automatica.2000,36(3):541-553
    [57] Baik, I. C., Kim, K. H.&Youn, M. J. Robust Nonlinear Speed Control of PMSynchronous Motor Using Boundary Layer Integral Sliding Mode ControlTechnique[J]. IEEE Transactions on Control Systems Technology,2000,8(3):47-54.
    [58] Elmas C., Ustun O. A hybrid controler for the speed control of a permanent magnetsynchronous motor drive[J]. Control Engineering Practice,2008,16(3):260-270.
    [59] Arie Levant. Homogeneity Approach to High-Order Sliding Mode Design[J].Automatica,2005,41(5):823–830.
    [60] Chen,Y.(2008a). Impulse response invariant discretization of fractionalorderintegrators/differentiators compute a discrete-time finite dimensional ztransferfunction to approximate sr with r a real number. Category: Filter Designand Analysis,MATLAB Central.http://www. mathworks.com/matlabcentral/fileexchange/loadFile.doobjectId D21342objectType DFILE.
    [61] Eker,I. Second-order sliding mode control with experimental application[J]. IsaTransactions,2010,49:394-405.
    [62] Wai, R. J. and Su, K. H. Adaptive enhanced fuzzy sliding-mode control for electricalservo drive[J]. IEEE Transactions on Industrial Electronics,2006,53,569-580
    [63]罗小元,朱志浩,关新平.非线性时滞系统的抖振削弱自适应滑模控制[J].控制与决策,2009,24(2):1429-1435.
    [64] Rong-Jong Wai,Chih-Min Lin, Chun-Fei Hsu. Adaptive fuzzy sliding-mode control forelectrical servo drive [J]. Fuzzy Sets and Systems,2004,143:295–310.
    [65] E.Ahmed, A.M.A. El-Sayed, H.A.A. El-Saka, Equilibrium points, stability andnumerical solutions of fractional-order predatorprey and rabies models[J], Journal ofMathematical Analysis and Applications.2007,325(22):542–553.
    [66]曾庆山,曹广益.分数阶线性系统的能观性研究[J],系统工程与电子技术,2004,26(11):1647–1650.
    [67] Canudas W C, Olsson H, Astrom K J, Lischinsky P. A new model for control ofsystem with friction[J]. IEEE Transactions on Automatic Control,1995,40:419–425.
    [68] Brain A.H., Pierre D., Carlos C.D. A survey of models, analysis tools andcompensation methods for the control of machines with friction[J]. Automatic,1994,30(7):1083-1138
    [69] M. O. Efe, Fractional Fuzzy Adaptive Sliding Mode Control of a2DOF Direct DriveRobot Arm[J], IEEE Transactions on Systems, Man and Cybernetics Part B:Cybernetics,2008,28(6)1561-1570.
    [70] M.O. Efe and C. Kasnakoglu. A Fractional Adaptation Law for Sliding ModeControl[J]. International Journal of Adaptive Control and Signal Processing,2008,22(10)968-986.
    [71] H. Delavari, R. Ghaderi, A. Ranjbar, S. Momani. Fuzzy Fractional Order SlidingMode Controller for Nonlinear Systems[J]. Communications in Nonlinear Science andNumerical Simulation,2010,15,963–978.
    [72]诸静.模糊控制原理与应用[M].北京:机械工业出版社,1995.
    [73]李士勇.模糊控制和智能控制理论与应用[M].哈尔滨:哈尔滨工业大学出版社,1990.
    [74] Calcev G. Some remarks on the stability of mamdani fuzzy control systems [J]. IEEETransactions on Fuzzy Systems.1998,6(3):436-442.
    [75]孙庚山.工程模糊控制[M].北京:机械工业出版社,1995.
    [76] Witold Pedrycz, Taunton, Somerset. Fuzzy control and fuzzy systems [M]. New York:Research Studies Press,1993.
    [77] Matignon D, Stability results for fractional differential equations with applications tocontrol processing[C]. Proceedings of Computational Engineering in Systems andApplication Multi-Conference. Lille: IEEE.1996:963–968
    [78]刘治钢,王军政,赵江波.永磁同步电机神经网络自适应滑模控制器设计[J].电机与控制学报,2009,13(2):290-295
    [79]刘金琨.滑模变结构控制Matlab仿真[J].北京:清华大学出版社,2005,10.
    [80] Niu Jianjun, Fu Yongling, Qi Xiaoye. Design and Application of Discrete SlidingMode Control with RBF Network-based Switching Law[J]. Chinese Journal ofAeronautics2009(22)279-284
    [81] Wang J, Rad A B, Chan P T. Indirect adaptive fuzzy sliding mode control: Part I: fuzzyswitching[J]. Fuzzy Sets and Systems2001122(1):21-30.
    [82] Zhang J J, Chen X L, Feng R P, et al. Design of variable structure controller based onfriction adaptive compensation[J]. Journal of Harbin Institute of Technology2000;32(4):92-95.
    [83] Huang S J, Huang K S, Chiou K C. Development and application of a novel radialbasis function sliding mode controller[J]. Mechatrolnics2003,13(4):313-329.
    [84]高为炳.变结构控制理论基础[M].北京:中国科学技术出版社,1990.
    [85]刘英敏,吴沧浦.一种使用RBF网络辨识不定性上界的滑模控制器[J].控制与决策.2001,16(4):507-509
    [86]罗婷婷,刘金琨.一种使用RBF网络的自适应滑模控制器[J].北京航空航天大学学报,2005,31(10):1106-1109
    [87] I. Boiko and L. Fridman. Analysis of Chattering in Continuous Sliding-ModeControllers [J]. IEEE Transactions on Automatic Control,2005,50(9):1442-1446.
    [88] G. Bartolini, A. Ferrara, and E. Usai. Chattering Avoidance by Second-Order SlidingMode Control [J]. IEEE Transactions on Automatic Control,1998,43(2):241-246
    [89] Arie Levant. Chattering Analysis [J]. IEEE Transactions on Automatic Control,2010,55(6):1380-1389
    [90] Arie Levant. Principles of2-sliding mode design [J]. Automatica.2005,48,576-586
    [91] Arie Levant. Quasi-Continuous High-Order Sliding-Mode Controllers [J]. IEEETransactions on Automatic Control,2005,50(11):1812-1816.
    [92] K. J. str m and T. H gglund. The future of PID control [J]. Control EngineeringPractice,2001,9,1163-1175
    [93] Fabrizio Padula and Antonio Visioli. On the Stabilizing PID Controllers for IntegralProcesses [J]. IEEE Transactions on Automatic Control,2012,57(2),494-499.
    [94] K. J. str m and T. H gglund, Advanced PID Control[M]. Research Triangle Park,NC: ISA Press,2006.
    [95] A. Visioli, Practical PID Control[M]. London, U.K.: Springer,2006.
    [96] K. J. str m and T. H gglund. Auto Tuning of PID Controllers[M]. Research TrianglePark, NC: ISA Press,1998.
    [97] K. J. str m and T. H gglund. PID Controllers: Theory,Design and Tuning[M].2thEdition.Research Triangle Park, NC: ISA Press,1995.
    [98] Ziegler J G and Nichols N B. Optimal setting for automatic controllers[J]. Transactionof ASME,1942,64:759-768.
    [99] Kiam Heong Ang, Gregory Chong and Yun Li. PID Control System Analysis, Design,and Technology[J], IEEE Transactions on Control Systems Technology,2005,13(4)559-576.
    [100] Abu El-Sebah MI. PMSM Position Control with a SUI PID Controller[M], Journal ofPower Electronics,2010,10(2)171-175
    [101] Jan, R.M, Tseng, C.S and Liu, R.J. Robust PID control design for permanent magnetsynchronous motor: A genetic approach[J], Electric Power Systems Research,2008,78(7)1161-1168.
    [102] YangQuan Chen and Ying Luo. Discussion on the paper 'Simple Fractional OrderModel Structures and Their Applications in Control System Design by MahsanTavakoli-Kakhki', Mohammad Haeri, and Mohammad Saleh Tavazoei[J], EuropeanJournal of Control,2010,6,695-699
    [103] Yeroglu, C.and Tan, N. Note on fractional-order proportional–integral–differentialcontroller design[J], IET Control Theory and Applications,2011,5,(17)1978–1989
    [104] Podlubny, I., Petras, I., Vinagre, B. M., O’Leary, P. and Dorcak, L. Modern controlsystems[J], Analogue Realizations of Fractional-Order Controllers,2002,29(1)281–296.
    [105] Concepcio, A. Monjea, Blas M. Vinagreb, Vicente Feliuc, YangQuan Chen. Tuningand auto-tuning of fractional order controllers for industry applications[J],ControlEngineering Practice,2008,16(23)798-812
    [106] Ching-Hung Lee, Fu-Kai Chang. Fractional-order PID controller optimization viaimproved electromagnetism-like algorithm[J], Expert Systems with Applications,2010,37(63)8871-8878.
    [107] HongSheng Li, Ying Luo, and YangQuan Chen. A Fractional Order Proportional andDerivative (FOPD) Motion Controller:Tuning Rule and Experiments[J], IEEETransactions on Control Systems Technology,2010,18,(2)53-63
    [108] Ma, C., and Hori, Y., Fractional order control and its application of PID controller forrobust two-inertia speed control[C], In Proceedings of the4th international powerelectronics and motion control conference (pp.1477–1482), August14–16,2004.
    [109] A. Oustaloup, J. Sabatier, and P. Lanusse, From fractional robustness to CRONEcontrol[J], Fractional Calculus and Applied Analysis,1999,2(1)1–30
    [110] Ying Luo, Chunyang Wang, YangQuan Chen and YouGuo Pi, Tuning Fractional OrderProportional Integral Controllers for Fractional Order Systems[J], Journal of ProcessControl,2010,20(7)823-831.
    [111] Astrom,K.J. and Hagglund, T. Revisiting the Ziegler–Nichols step response methodfor PID control[J], Journal of Process Control,2004,(14)635–650.
    [112] Xue, D., Chen, Y.Q., Atherton, D.P. Linear feedback control analysis and design withMATLAB[C](SIAM Press,2007)
    [113] Sabatier, J., Poullain, S., Latteux, P., Thomas, J.L., Oustaloup, A. Robust speed controlof a low damped electromechanical system based on CRONE control: application to afour mass experimental testbench[J], Nonlinear Dyn.,2004,38, pp.383-400.
    [114] Chen, Y.Q., Ahn, H.S., Podlubny, I. Robust stability check of fractional order lineartime invariant systems with interval uncertainties[J], Signal Process.,2006,86, pp.2611-2618
    [115] Tan, N., Ozguven, O.F., Ozyetkin, M.M. Robust stability analysis of fractional orderinterval polynomials[J], ISA Trans.,2009,48, pp.166-172
    [116] Bettou, K., Charef, A., Mesquine, F. A new design method for fractional PIrDucontroller[J], IJ-STA,2008,2, pp.414-429
    [117] Vinagre, B.M., Monje, C.A., Calderon, A.J., Suarez, J.I. Fractional PID controllers forindustry application[J], J. Vibr. Control,2007,13,(9–10), pp.1419-1429.
    [118] Hamamci, S.E. An algorithm for stabilization of fractional-order time delay systemsusing fractional-order PID controllers[J], IEEE Trans. Autom. Control,2007,52, pp.1964-1969.
    [119] Barbosa, R.S., Machado, J.A.T., Ferreira, I.M. Tuning of PID controllers based Bode’s ideal transfer function[J], Nonlinear Dyn.,2004,38, pp.305-321.
    [120] Maione, G., Lino, P. New tuning rules for fractional PIacontrollers[J],Nonlinear Dyn.,2007,49,(1-2), pp.251-257.
    [121] Yeroglu, C., Onat, C., Tan, N. A new tuning method for PIrDucontroller[C]. ELECO2009Sixth Int. Conf. Electrical and Electronics Engineering, Bursa, Turkey,2009
    [122] Nataraj, P.S.V. Computation of spectral sets for uncertain linear fractional-ordersystems using interval constraints propagation[C]. Third IFAC Workshop onFractional Differentiation and its Application, Ankara,2008.
    [123] Junghui Chen, Tien-Chih Huang. Applying neural networks to on-line updated PIDcontrollers for nonlinear process control[J]. Journal of Process Control.2004,(14)211-230
    [124] LU Yingwei, Sundararajan,N., Saratchandran,P.. Performance evaluation of asequential minimal radial basis function neural network learning algorithm [J].IEEETransactions on Neural Networks,1998,9(2):308-318
    [125] HomikK,StinehcombeM,White H. Multilayer Feedforward Network are UniversalApproximators[J]. Neural Network,1989,2(6):359-366.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700