用户名: 密码: 验证码:
小麦籽粒锌营养品质的影响因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦是我国最重要的粮食作物之一,作为我国北方大部分居民的主食,是人体能量和矿质营养的主要来源。但由于小麦主要种植在我国北方大部分缺锌或潜在缺锌的石灰性土壤上,导致小麦籽粒锌缺乏现象比较普遍。此外,小麦籽粒中还含有较多能够降低锌生物有效性的化合物,其中植酸是最主要的抗营养因子。植酸是小麦籽粒中磷的主要储存形式,它能与锌结合,限制了锌在人体内的吸收,从而加剧了人体的锌缺乏症状。因此提高小麦籽粒中锌的含量和(或)降低抗营养物质植酸的含量对解决人体锌缺乏现象是非常重要的。本研究通过对目前北方地区部分小麦和小黑麦品种进行品质的分析测定以及一个田间肥料试验来评价小麦籽粒的锌营养品质,并探讨影响小麦籽粒锌营养品质的因素。主要结论如下:
     (1)通过选取不同小麦主产区的31种面包型小麦(Triticum aestivum L.)和6种小黑麦(×Triticosecale Wittmack),分析其籽粒中部分大量和微量元素、蛋白质以及抗营养因子-植酸的含量。结果表明不同小麦品种间籽粒矿质元素、蛋白质和植酸含量均存在显著差异,微量元素含量顺序为铁>锰>锌>铜;锌、铁、植酸含量的变异较大;大量元素磷和钾以及蛋白质含量较稳定。小黑麦籽粒矿质元素、蛋白质含量与小麦的规律基本相同;籽粒中植酸含量高但同时磷含量也高。不同地区间小麦和小黑麦的主要矿质元素、植酸以及蛋白质含量差异显著,青海的锌铁含量、山东的锰含量以及新疆的铜含量相对较高。所有测试品种中植酸与锌的摩尔比值均高于20。小麦籽粒中植酸与锌、蛋白质之间均呈负相关。综上所述,供试品种中微量元素含量较低且变异大,通过生物强化提高的潜力较大;籽粒中锌铁含量呈显著正相关,因此可以同时提高;植酸蛋白质含量呈负相关,表明选育低植酸品种时有可能同时得到高蛋白含量的品种。(2)在潜在缺锌土壤上,选用5个冬小麦品种进行了土施和喷施锌肥的田间裂区试验。结果表明,供试土壤条件下不同施锌方式对小麦产量均无显著影响,但是,在一定施锌方式下小麦籽粒锌含量大幅度提高。与对照相比,土施、喷施及土施+喷施锌肥提高小麦籽粒锌含量幅度分别为-6.1%、64%和83%,提高小麦籽粒锌携出量幅度分别为-3.6%、69%和83%;同时三个施锌处理降低籽粒中植酸含量的幅度分别为-2.4%、7.2%和1.5%,降低植酸与锌摩尔比的幅度分别为-25%、41%和44%,且不同品种之间也存在一定差异;虽然植酸与锌的摩尔比有所下降,但均高于20,还需进一步降低。此外,单独土施锌肥虽可大幅度提高耕层土壤有效Zn含量,但对籽粒锌含量及生物有效性的影响很小。总之,在小麦生长后期喷施锌肥是提高潜在缺锌土壤上小麦籽粒锌含量和生物有效性的最经济方式,对改善小麦锌营养品质具有重要意义。
     (3)在田间试验的基础上,对小麦地上部不同部位的锌铁含量进行了分析测定。结果表明,喷施锌肥能显著提高小麦籽粒锌的含量和吸收量,而土施锌肥则受到一定限制;铁的含量和吸收量略微降低,但不显著,因此提倡通过喷施锌肥来提高小麦籽粒锌铁含量和吸收量,从而改善小麦籽粒的锌营养品质;小麦地上部不同器官锌含量一般顺序为籽粒>叶>颖壳>茎,由此表明小麦地上部其他器官的锌含量大部分都转移至籽粒中,有利于锌在籽粒中的累积。
Wheat, as the second crop in China, covers daily caloric and mineral nutrition requirement of our northern people. However, wheat mainly distributes in calcareous soil area which is zinc (Zn) deficient or potentially Zn-deficiency, resulting in a lower Zn concentration of wheat grain. Besides, some substances, especially phytic acid, have an inhibitory effect on the utilization (bioavailability) of Zn in the human digestive tract. Phytic acid, as the major anti-nutritional factor, is the storage compound of phosphorus in grain. Phytic acid could bind Zn, resulting in reduce in solubility of Zn in food and finally restricts its utilization in human body. So it is very important to improve Zn concentration and (or) decrease phytic acid concentration. To evaluate wheat Zn nutritional quality, grains of triticale and some variety of wheat grown in northern part were measured. A field experiment was carried out by application of Zn fertilizer to investigate the best method to improve Zn nutritional quality in wheat grain. Conclusions as follows:
     (1) Variation for microelements, protein and phytic acid in wheat grain existed among different cultivars, in which were large variation among Zn, Fe and phytic acid concentrations, and the concentrations of total P, total K and protein in wheat grain were steady comparatively. Concentrations of the microelements in triticale grain were low, but the concentrations of phytic acid in triticale grain were higher compared with that of wheat grain. Large variations and low concentrations of major mineral elements existed in different regions, and the phytic acid concentrations in Xinjiang and Qinghai provinces were high. The amount of substance of phytic acid to Zn ratios in wheat and triticale grain of all tested cultivars were higher than 20. The correlations among PA and many mineral elements were positive or negative, and the correlation between Zn and Fe concentrations was positive. In Conclusion, there was a low concentration and a large variation for microelements of tested cultivars, and the potential of increasing the concentration of microelements through biofortification was large. The amount of substance of phytic acid to Zn ratios of all tested varieties were higher than 20, resulted in the low bioavailability of Zn, it should be decreased instantly. In view of the significant variation for major mineral elements and phytic acid concentrations of wheat and triticale grain existed in different regions, indicated breeders should consider region factor. The correlation between Zn and Fe concentration was significant, so we can increase Zn and Fe concentrations in wheat grain at the same time.
     (2) A field experiment with a split plot design was conducted in potentially Zn-deficient calcareous soil, in order to investigate the effect of different Zn application methods (soil application or foliar spray) on increasing grain Zn concentration and Zn bioavailability of 5 winter wheat cultivars. Results showed that, applying Zn fertilizer had little effects on grain yield; however, certain methods of Zn application could increase grain Zn concentration significantly. Compared with the control treatment (no Zn application), the methods of soil application, foliar spray and soil + foliar application of Zn increased grain Zn concentration by -6.1%, 63.9% and 82.6%, and increased grain Zn uptake by -3.6%, 69% and 83%, respectively. The phytic acid concentration was decreased by -2.4%, 7.2% and 1.5%, and the phytic acid to Zn molar ratios were decreased by -25%, 41% and 44%, respectively, under the three treatments of applying Zn. And there were also differences among wheat cultivars. Although the molar ratios of phytic acid to Zn were decreased by Zn application, the ratios were still higher than 20, and it needs a further decrease. The soil application of Zn significantly increased the content of soil DTPA-Zn, however, the effect of soil application of Zn on grain Zn concentration and bioavailability was not significant. In conclusion, comparing with the 3 Zn application methods, the foliar application of Zn fertilizer to wheat at late growth stage (for example: milk and dough stage) is the economical and effective method to attain high Zn concentration and bioavailability in potentially Zn-deficiency calcareous soil, with improving the Zn quality of wheat grain.
     (3) To investigate the relationship between Zn and Fe concentration in wheat grain, a field experiment was carried out. Results show that foliar application of Zn increased the Zn concentration and content in wheat grain. However, apply Zn fertilizer to soil had no significant effect on wheat grain Zn concentration. Foliar application of Zn was the idea fertilization to improve the Zn nutritional quality of wheat grain. The order of Zn concentration in wheat shoots reduced as grain>leaf>glume>stem, suggesting that most of Zn accumulated in grains.
引文
保琼莉,田霄鸿,杨习文,李生秀. 2007.不同供Zn量对三种小麦基因型幼苗生长和养分吸收的影响.植物营养与肥料学报, 13(5): 816-823.
    鲍士旦.土壤农化分析. 2005.第3版.北京:中国农业出版社, 279-282.
    陈清,卢国呈. 1989.微量元素与健康.北京:北京大学出版社.
    陈自惠,田霄鸿,王晓峰,曹玉贤. 2009.螯合–缓冲营养液培养条件下不同小麦品种的锌效率比较.西北农林科技大学学报(自然科学版), 37(6): 65-72.
    董爱平,周建民,俞林祥. 1995.施锌对玉米产量和品质的影响.土壤肥料, 5:封3.
    高明,车福才,魏朝富等. 2000.长期施用有机肥对紫色水稻土锰铁铜锌形态的影响.植物营养与肥料学报, 6 (1): 256-260.
    高永清,秦树阳,阙惠芬,彭世理,蒋建华. 1995.常见食物中植酸的含量.中国学校卫生, 16(1): 57-58.
    郭胜利,余存祖,戴鸣钧. 1996.有机肥对石灰性土壤中锌、锰生物有效性的影响.华北农学报, 11(4): 63-68.
    韩金玲,李雁鸣,马春英,等. 2006.施锌对小麦开花后氮、磷、钾、锌积累和运转的影响.植物营养与肥料学报, 12(3): 313-320.
    韩宗辉,王振林. 2006.可利用锌的摄入量与食物中植酸含量的关系.国外医学医学地理分册, 27(1): 28-29, 48.
    郝明德,魏孝荣,党廷辉. 2003.旱地小麦长期施用锌肥的增产作用及土壤效应.植物营养与肥料学报9(3): 377-380.
    何培之,王世驹,李续娥. 2001.普通化学.北京:科学出版社, 372-379.
    何忠俊,华珞,洪常青. 2004.氮锌交互作用对黄棕壤锌形态的影响.农业环境科学学报, 23(2): 209-212.
    黄文川,李录久,李文高. 2000.小麦氮锌配施效应及增产机理研究.核农学报, 14(4): 225-229.
    姜丽娜,蒿宝珍,侯飞,李春喜,王志敏. 2008.小麦籽粒灌浆期铁、锌、锰、铜积累动态的研究.麦类作物学报, 28(2): 301-306.
    金瑛,马冠生. 2005.植酸与矿物质的生物利用率.国外医学卫生学分册, 32(3): 141-144.
    金善宝. 1996.中国小麦学.北京:中国农业出版社, 177-178
    李春花,褚天铎,杨清等. 1997.灌溉水中HCO3-对菜豆吸收利用土壤有效养分的影响.植物营养与肥料学报, 3(4): 329-333
    李捷,龚桂友,王胜军,刘振刚. 1997.锌对作物生长发育的影响.吉林农业大学学报, 19(增刊): 85-88.
    李丽霞,郝明德. 2006.黄土高原地区长期施用微肥土壤Cu、Zn、Mn、Fe含量的时空变化.植物营养与肥料学报, 12(1): 44-48.
    李生秀主编. 1992.氮锌相互作用的初步研究[C].土壤-植物营养研究文集.
    李兴国. 2000.锌与人体健康.山西食品工业, 6: 45-46.
    李志刚,叶正钱,方云英,杨肖娥. 2003.供锌水平对水稻生长和锌累积和分配的影响.中国水稻科学, 17(1): 61-66.
    林玉锁,薛家骅. 1987.锌在石灰性土壤中的吸附.土壤学报, 24(2): 135-141.
    刘世全,张世熔,伍钧等. 2002.土壤pH与碳酸钙含量的关系.土壤, 5: 279-288.
    刘铮, 1980.吴兆明主编.中国科学院微量元素学术交流会会刊[C].北京:科学出版社.
    刘铮. 1994.我国土壤中锌含量的分布规律.中国农业科学, 27(1): 30-37.
    龙新宪,杨肖娥. 1998.植物育种途径改善人类的铁、锌营养.广东微量元素科学, 5(9): 5-10
    卢薇,何其章. 1999.医用化学.南京:东南大学出版社, 63- 70
    陆景陵主编. 2003.植物营养学(上册).中国农业大学出版社. 2003: 151-154.
    马娟娟,胡全才,王景华等. 2000.钾锌肥与氮肥配施对油菜产量的影响.山西农业大学学报, 20(2): 148-151.
    慕晓茹,劳家柽,祁明楣. 1990.大豆氮锌营养研究.土壤通报, 21(1): 30-32.
    钱金红,谢振翅. 1994.碳酸盐对土壤锌解吸影响的研究.土壤通报, 31(1): 105-108
    任学良,舒庆尧. 2004.低植酸作物的研究进展及展望.核农学报, 18(6): 438-442
    石荣丽,邹春琴,张福锁. 2006.籽粒铁、锌营养与人体健康研究进展.广东微量元素科学, 13(7): 1-8.
    孙敏,郭媛. 2003.小黑麦生物学特性、营养价值及利用前景.山西农业大学学报, 23(3): 200-203.
    田霄鸿,李生秀,宋书琴. 2002.碳酸氢根和铵态氮共同对菜豆生长及养分吸收的影响.园艺学报, 29(4): 337-342.
    田霄鸿,张茜,李生秀. 2005.生长介质中CaCO3质量分数及水分状况与HCO3-的关系.生态环境, 14(2): 230-233.
    王忠华. 2005.低植酸作物突变体研究进展.植物学通报, 22(4): 463-470.
    夏敏. 2003.必需微量元素的生理功能..微量元素与健康研究, 20(3): 41-44.
    徐晓燕,杨肖娥,杨玉爱. 2000.水稻品种对石灰性土壤缺Zn耐性机理的研究.土壤学报, 37(3): 396-401.
    徐晓燕,杨肖娥,杨玉爱. 2001. HCO3-对不同水稻品种Zn吸收运输的影响.应用与环境生物学报, 7(6): 532-535
    许庆方. 2008.小黑麦的特性及应用研究进展.草原与草坪, 4: 80-86.
    杨莉琳,刘小京,徐进,等. 2008.小麦籽粒微量元素研究进展.麦类作物学报, 28(6): 1113-1117.
    杨清,刘新保,褚天铎等. 1995.小麦氮、磷与锌配合施用的研究.中国农业科学, 28(1): 15-24.
    杨志敏,郑绍建,胡蔼堂,等. 1999. P、Zn在小麦细胞中的累积、分布和交互作用研究.应用生态学报, 10(5): 593-595.
    叶优良,韩燕来,王文亮. 2006.高产小麦氮肥施用研究进展.中国农学通报, 22(9): 264-267.
    曾昭华. 1996.长江中下游地区地下水中化学元素的背景特征及形成.地质学报, 3: 262-269.
    张建平,张永清. 2001.氮、锌、锰肥配施对油菜产量影响研究.北方园艺, (1): 15-17.
    张睿,郭月霞,南春芹. 2004.不同施肥水平下小麦籽粒中部分微量元素含量的研究.西北植物学报, 24(1): 125-129.
    张显东,单安山. 2004.不同锌源生物学效价的研究进展.动物营养, 10: 30-32
    张效仆. 1994.淮北砂姜黑土区小麦高产高效的施肥技术.土壤, 26(1): 13-16.
    张英华,周顺利,张凯,王志敏. 2008.源库调节对小麦不同品种籽粒微量元素及蛋白质含量的影响.作物学报, 34(9): 1629-1636.
    张勇,王德森,张艳,何中虎. 2007.北方冬麦区小麦品种籽粒主要矿物质元素含量分布及其相关性分析.中国农业科学, 40(9): 1871-1876.
    赵建军,许泽永,方小平. 2003.作物低植酸育种研究进展.中国油料作物学报, 25(2): 94-97
    赵宁春,张其芳,程方民,周伟军. 2007.氮、磷、锌营养对水稻籽粒植酸含量的影响及与几种矿质元素间的相关性.中国水稻科学, 21(2): 185-190.
    赵同科. 1996.植物锌营养研究综述与展望.河北农业大学学报, 19(1): 103-107
    赵秀兰,王勤,胡蔼堂. 1999.磷锌颉颃作用研究进展.土壤通报, 30(3): 136-137.
    郑绍建,杨志敏,胡霭堂. 1999.玉米、小麦细胞磷、锌营养及交互作用的研究.植物营养与肥料学报, 5(2): 150-155.
    郑振华,周培疆,吴振斌. 2001.复合污染研究新进展.应用生态学报, 12(3): 469-473.
    植物性食品中植酸的测定(GB/T 5009.153-2003).
    中国居民膳食指南2007[EB/OL]. http://www.cnsoc.org/. [2009.03.11].
    左余宝,李书田,谢晓红. 1995.夏玉米施用钾肥的增产效果及氮磷钾配合施用技术.土壤肥料, 1995, 2: 31.
    Alina K P and K P. Honry. 1996. Trace elements in soil and plants. CRC Press. London.
    Alloway B J. 2004. Znic in soil and crop nutrition. IZA Publications. International Znic Association, Brussels, 1-166.
    Angelone, M. and C. Bini. 1992. Trace elements concentrations in soil and plants of Western Europe. Chap 2 in Adriano, D.C. (ed) Biogeochemistry of Trace Metals, Lewis Publishers, Boca Raton.
    Balint A F, Kovacs G, Erdei L. 2001. Comparison of the Cu, Zn, Fe, Ca and Mg contents of the grains of wild , ancient and cultivated wheat species. Cereal Research Communications, 29: 375-382.
    Bertrand, L.J., R.E. Holloway, R.D. Armstrong and M.J. McLaughlin 2002. The rapid assessment of concentrations and solid phase associations of macro and micro nutrients in alkaline soils by mid - infrared diffuse reflectance spectroscopy. Australian Journal of Soil Research, 41, 61-76.
    Brar M. S., Sekhon G. S. 1996. Interaction of zinc with other micronutrient cations. Plant and Soil, 45: 137-143.
    Buerkert A, Haake C, Ruckwied M, et al. 1998. Phosphorus application affects the nutritional quality of millet grain in the Sahel. Field Crops Research, 57(2): 223-235.
    Cakmak I, Sari N, Marschner H, Kalayci M, Yilmaz A, Eker S, Gülüt K Y. 1996. Dry Matter Production and Distribution of Zinc in Bread and Durum Wheat Genotypes Differing n Zinc Efficiency. Plant Soil, 180, 173-181.
    Cakmark I, Yilmaz A, Kalayci M, et al. 1996. Zinc deficiency as a critical problem in wheat production in central anatolia. Plant and Soil, 180: 165-172.
    Cakmak I, Ekiz H, Yilmaz A, et al. 1997. Differential responses of rye, triticale, bread and durum wheats to zinc deficiency in calcareous soils . Plant and Soil, 188(1): 1-10.
    Cakmak I, Torun B, Erenoglu B, ?ztürk L, Marschner H, Kalayci M, Ekiz H, Yilmaz A. 1998. Morphological and physiological differences in response of cereals to zinc deficiency. Euphytica, 100, 349-357.
    Cakmak I, Kalayci M, Ekiz H, Braun H J, Kilinc Y, Yilmaz A. 1999. Zinc deficiency as a practical problem in plant and human nutrition in Turkey: A NATO-science for stability project. Field Crops Research. 60: 175-188.
    Cakmak I. 2002. Plant nutrition research: Priorities to meet human needs for food in sustainable ways. Plant Soil, 247: 3-24.
    Cakmak I, Torun A, Millet E, et al. 2004. Triticum dicoccoides: An important genetic resource for increasing zinc and iron concentration in modern cultivated wheat. Soil Sci., Plant Nutr., 50(7): 1047-1054.
    Cakmak I. 2008. Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant and Soil, 302: 1-17.
    Cakmak I. 2009. Enrichment of fertilizers with zinc: An excellent investment for humanity and crop production in India. Journal of Trace Elements in Medicine and Biology, 23: 281-289.
    Erdal I, Yilmaz A, Taban S. 2002. Phytic acid and phosphorus concentrations in seeds of wheat cultivars grown with and without zinc fertilization. Journal of Plant Nutrition, 2002, 25(1): 113-127.
    Erenoglu B, Cakmak I. 2000. Effect of Iron and Zinc deficiency on release of Phytosiderophores in Barley Cultivars differing. Journal of Plant Nutrition, 23(11&12): 1645-1656.
    Fei B, Moser S B, Jampatong S. 2005. Mineral composition of the grains of tropical maize varieties as affected by pre-an-thesis drought and rate of nitrogen fertilization. Crop Science, 45: 516-523.
    Ficco D B M, Riefolo C, Nicastro G, et al. 2009. Phytate and mineral elements concentration in a collection of Italian durum wheat cultivars. Field Crops Research, 2009, 111: 235-242.
    G Ma, Y Li, Y Jin, F Zhai, FJ Kok and X Yang. 2007. Phytate intake and molar ratios of phytate to zinc, iron and calcium in the diets of people in China. European Journal of Clinical Nutrition, 61: 368-374.
    Gene Y, Mcdonald G K. 2008. Domesticated emmer wheat [T. turgidum L. subsp. dicoccon (Schrank) Thell.] as a source for improvement of zinc efficiency in durum wheat. Plant and Soil, 310(1-2): 67-75.
    Gianquinto G, Azmi Abu-Rayyan, Livia Di Tola, et al. 2000. Interaction effects of phosphorus and zinc on photosynthesis, growth and yield of dwarf bean grown in two environments . Plant and Soil, 220: 219-228.
    Gibson R S. 2006. Zinc: the missing link in combating micronutrient malnutrition in developing countries. Proc Nutr. Soc., 65: 51-60.
    Goos, R. J., and B. E. Johanson. 2000. A comparison of three methods for reducing iron-deficiency chlorosis in soybean. Agronomy Journal 92: 1135-1139.
    Gorny, A., J. Uterman, and W. Eckelmann 2000. Germany: in Heavy Metal (Trace Element) and Organic Matter Contents of European Soils. European Comission, CEN Soil Team N 30, Secretariat, Nederlands Normalisatie - institute (NEN) Delft, The Netherlands.
    Goto F, Yoshihara T, Shigemoto N, et al. 1999. Iron fortification of rice seed by the soybean ferritin gene. Nature Biotechnology, 1999, 17: 282-286.
    Graham, R. D., J. S. Ascher and S. C. Hynes. 1992. Selecting zinc-efficient cereal genotypes for soils of low zinc status. Plant and Soil 146: 241-250.
    Graham R D, Rengel Z. 1993. Genotypic variation in Zn uptake and utilization by plants. In: Robson A D (ed). Zinc in Soils and Plants. Kluwer Academic Publishers, Dordrecht, 107-114.
    Graham R D, Welch RM. 1996. Breeding for staple-food crops with high micronutrient density: Working Papers on Agricultural Strategies for Micronutrients. No.3. International Food Policy Institute, Washington DC.
    Graham R, Senadhira D, Beebe S, et al. 1999. Breeding for micronutrient density in edible portions of staple food crops: conventional approaches. Field Crops Research, 60: 57-80.
    Graham R D, Welch R M, Bouis H E. 2001. Addressing micronutrient malnutrition through enhancing the nutritional quality of staple foods: principles, perspectives and knowledge gaps. Advances in Agronomy,70: 77-142.
    Hajiboland R, Yang X E, R?mheld V. 2003. Effects of bicarbonate and high pH on growth of Zn-efficiency and Zn-inefficient genotypes of rice, wheat and rye. Plant and Soil, 250: 349-357.
    Harland B F, Smith S A, Howard M P, et al. 1988. Nutritional status and phytate: zinc and phytate×calcium: zinc dietary molar ratios of lacto-ovo vegetarian Trappist monks: 10 years later. American Dietary, 88: 1562-1566.
    Hart J J, Norvell W A, Welch R M, et al. 1998. Characterization of zinc uptake, binding and translocation in intact seedlings of bread and durum wheat cultivars. Plant Physiology, 118: 219-226.
    Haug W, Lantzsch H J. Sensitive method for the rapid determination of phytate in cereals and cereal products. Journal of the Science of Food and Agricultural, 1983, 34(12): 1423-1426.
    Havlin, J. L., J. D. Beaton, S. L. Tisdale, and W. L. Nelson. 2005. Soil fertility and fertilizer: An introduction to nutrient management. Upper Saddle River, N.J.: Pearson Education, Inc.
    Hodgson, J.F. et al. 1996. Micronutriemt cation Complexing in soil solution from calcarous soil. Sci. Am. Proc, 30: 723-725.
    Holmgren, C.G.S., M.W. Meyer, R.L. Chaney, and R.B. Daniels, 1993. Cadmium, lead, zinc, copper and nickel in agricultural soils in the United States. Journal of Environmental Quality, 22, 335-348.
    Hotz C, Brown K H. 2005. Assessment of the risk of zinc deficiency in populations and options for its control. Food Nutr. Bull, 25: 94-204.
    John M K. 1975. In Proc intl conf on Heavy metals in the Environ [M], Tronto: Ontario, Canada, 365-377.
    Karunaratne A M, Amerasinghe P H, Ramanujam V M S, et al. 2008. Zinc, iron and phytic acid levels of some popular foods consumed by rural children in Sri Lanka. Journal of Food Composition and Analysis, 21: 481-488.
    Kiekens, L. 1995. Zinc. in Alloway, B.J. (ed) Heavy Metals in Soils (2nd edition). Blackie Academic and Professional, London, 284-305.
    Kumar V, Ahlawat V S, Antil R S. 1985. Interactions of nitrogen and Zinc in peart millet: 1. Effect of nitrogen and Zinc levels on dry matter yield and concentration and uptake of nitrogen and zinc in peart millet. Soil Sci, 139(4): 351-356.
    Kwun I S, Kwon C S. 2000 Dietary molar ratios of phytate: zinc and millimolar ratios of phytate×calcium: zinc in South Koreans. Biological Trace Element Research, 75: 29-41.
    Lao, B.Y. 1999. The element Zn and growth of children. Journal Guangdong Micronutrient Science, 6, 31-33.
    Liang J F, Li Z G, Tsuji K, et al. 2008. Milling characteristics and distribution of phytic acid and zinc in long-, medium- and short-grain rice. Journal of Cereal Science, 48: 83-91.
    Lindsay W L. 1979. Chemical equilibria in soils. New York: JohnWiley, Sons, 211-220.
    Liu Z H, Cheng F M, Zhang G P. 2005. Grain phytic acid content in japonica rice as affected by cultivar and environment and its relation to protein content. Food Chemistry, 89: 49-52.
    Liu Z H, Wang H Y, Wang X E, et al. 2006. Genotypic and spike positional difference in grain phytase activity, phytate, inorganic phosphorus, iron, and zinc contents in wheat (Triticum aestivum L.). Journal of Cereal Science, 44: 212-219.
    Liu Z H, Wang H Y, Wang X E, et al. 2007. Phytase activity, phytate, iron, and zinc contents in wheatpearling fractions and their variation across production locations. Journal of Cereal Science, 45: 319-326.
    Longnecker, N.E., Robson, A.D., 1993. Distribution and transport of zinc in plants. In: Robson, A.D. (Ed.). Zinc in Soils and Plants. Kluwer Academic Publishers, Dordrecht, 79-91.
    Lott J N A, Ockenden I, Raboy V, et al. 2000. Phytic acid and phosphorus in crop seeds and fruits: a global estimate. Seed Science Research, 10 (1): 11-33.
    Ma G, Li Y, Jin Y, et al. 2007. Phytate intake and molar ratios of phytate to zinc, iron and calcium in the diets of people in China. European Journal of Clinical Nutrition, 61: 368-374.
    McGuire J. 1993. Addressing micronutrient malnutrition. SCN News 9, 1-10.
    Miller R O. 1993. Aerial accumulation and partitioning of nutrients by hard red spring wheat. Communications in Soil Science and Plant Analysis, 24(17-18): 2389-2407.
    Mohammad R. Pahlavan-Rad, Mohammad Pessarakli. 2009. Response of Wheat Plants to Zinc, Iron, and Manganese Applications and Uptake and Concentration of Zinc, Iron, and Manganese in Wheat Grains. Communications in Soil Science and Plant Analysis, 40: 1322-1332.
    Morgounov A, Go′mez-Becerra H F, Abugalieva A, Mira D, Yessimbekova M, Muminjanov H, Zelenskiy Y, Ozturk L, Cakmak I. 2007. Iron and zinc grain density in common wheat grown in Central Asia. Euphytica, 155: 193-203.
    Morris ER, Ellis R. 1989. Usefulness of the dietary phytic acid/zinc molar ratio as an index of zinc bioavailability to rats and humans. Biol Trace Elem Res 19, 107-117.
    Nikolic M, R?mheld V. 2002. Does high bicarbonate supply to roots change availability of iron in the leaf apoplast? Plant and Soil, 241: 67-74
    Ozturk L, Yazici MA, Yucel C, et al. 2006. Concentration and localization of zinc during seed development and germination in wheat. Physiol. Plant, 128: 144-152.
    Parker D R, Aguilera J J, Thomason D N. 1992. Zinc-phosphorus in two cultivars of tomato grown in chelater - buffered nutrient solutions. Plant and Soil, 1992, 143: 163-177.
    Pearson, J.N., Rengel, Z., 1994. Distribution and remobilization of Zn and Mn during grain development in wheat. J. Exp. Bot. 45, 1829-1835.
    Peck A W, McDonald G K, Graham R D. 2008. Zinc nutrition influences the protein composition of flour in bread wheat (Triticum aestivum L.). Journal of Cereal Science, 47: 266-274.
    Peterson C J, Johnson V A, Mattern P J. 1983. Evaluation of variation in mineral element concentrations in wheat flour and bran of different cultivars. Cereal Chemistry, 60(6): 450-455.
    Prasad A S. 2007. Zinc: Mechanisms of host defense. Nutr., 137: 1345-1349.
    R. Ghasemi-Fasaei, A. Ronaghi. 2008. Interaction of Iron with Copper, Zinc, and Manganese in Wheat as Affected by Iron and Manganese in a Calcareous Soil Journal of Plant Nutrition, 31: 839-848.
    R.M. Welch. 1995. Micronutrient nutrition of plants, Crit. Rev. Plant Sci. 14: 49-82
    Raboy V, Gerbasi PF, Young KA, Stoneberg SD, Pickett SG, Bauman AT, MurthyPPN, Sheridan WF, Ertl DS. 2000. Origin and seed phenotype of maize low phytic acid1-1 and low phytic acid2-1.Plant Physiology, 124: 355-368.
    Raboy V, Young KA, Dorsch JA, Cook A. 2001. Genetics and breeding of seed phosphorus and phytic acid. Journal of Plant Physiology, 158: 489-497.
    Raboy V. 2001. Seeds for a better future:‘Low phytate’grains help to overcome malnutrition and reduce pollution. Trends in Plant Science, 6: 458-462.
    Ranjbar G A, Bahmaniar M A. 2007. Effects of soil and foliar application of Zn fertilizer on yield and growth characteristics of bread wheat (Triticum aestivum L.) cultivars. Asian Journal of Plant Sciences, 6(6): 1000-1005.
    Rengel Z, Graham R D. 1996. Uptake of zinc from Chelate-buffered nutrient solutions by wheat genotypes differing in zinc efficiency. Exp Bot., 47, 217-226.
    Sandberg AS, Anderson H, Carlesson NG, Sandstro¨m B. 1987. Degradation products of bran phytate formed during digestion in the human small intestine: effects of extrusion cooking on digestibility. J Nutr., 117, 2061-2065.
    Singh Shivay Y, Kumar D, Prasad R. 2008. Effect of zinc-enriched urea on productivity, zinc uptake and efficiency of an aromatic rice-wheat cropping system. Nutr Cycl Agroecosyst., 81: 229-234.
    Somasundar P, Riggs D, Jackson B, et al. 2005. Inositol hexaphosphate (IP6): a novel treatment for pancreatic cancer. Surg. Res., 126(2): 199-203.
    Srivastava P C, Dobermann A, Ghosh D. 2000. Assessment of zinc availability to rice in Mollisols of North India. Commun. Soil. Sci. Plant Anal., 31(15 & 16): 2457-2471.
    Starks TL, Johnson PE. 1985. Techniques for intrinsically labeling wheat with 65Zn. Journal of Agricultural and Food Chemistry, 33: 691-698.
    Tanaka K, Kasai Z, Ogawa M. Physiology of ripening [C] //Matsue T, Kumazawa K, Ishii R, et al. 1995. Science of the Rice Plant Physiology: Tokyo: Food and Agriculture Policy Research Center, 2: 97-116.
    Tiller, K.G. 1983. Micronutrients. Chapter 25 in Division of Soils, CSIRO. Soils an Australian Viewpoint. CSIRO/Academic Press, Melbourne, 365-387.
    Treeby M, Marschner H, R?mheld V. 1989. Mobilization of Iron and other Micronutrients from a Calcareous Soil by Plant-Borne, Microbial, and Synthetic Metal Chelators. Plant Soil, 114, 217-226.
    Turnlund JR, King JC, Keyes WR, Gong B, Michel MC. 1984. A stable isotope study of zinc absorption in young men: effects on phytate and a–cellulose. Am J Clin Nutr 40, 1071-1077.
    Valle BL, Galdes A. 1984. The melallo-biochemistry of Zinc enzymes. Adv Enzymol, 56: 284-430.
    Vucenik I, Shamsuddin A M. 2003. Cancer inhibition by inositol hexaphosphate (IP6) and inositol: from laboratory to clinic. Nutr., 133: 3778-3784.
    Wang J, Evangelou B P. 1991. Nielsen M T and wagner G J Computer-simulated evaluation of possible mechanisms for sequestering metal ion activity in plant vacuoles I. Cadmium. Plant physiology, 97: 1154-116.
    Wang J, Evangelou B P. 1992. Nielsen M T and wanger G J Computer-simulated evaluation of possible mechanisms for sequestering metal ion activity in plant vacuoles II. Plant physiology, 99: 621-626.
    Webb MJ, Loneragan JF. 1990. Zinc translocation to wheat roots and its implications for a phosphorus/zinc interaction in wheat plants. Plant Nutr., 13: 1499-1512.
    Welch RM, Graham R D. 2002. Breeding crops for enhanced micronutrient content. Plant and Soil, 245(1): 205-214.
    Welch RM. 2002. Breeding strategies for biofortified staple plant foods to reduce micronutrient malnutrition globally. The Journal of Nutrition, 132(3): 495-499.
    Welch RM, Graham RD. 2004. Breeding for micronutrients in staple food crops from a human nutrition perspective. Journal of Experimental Botany, 55: 353-364.
    White P J, Broadley M R. 2005. Biofortifying crops with essential mineral elements . Plant Science, 12(10): 586-593.
    Xiao-E. Yang, Wen-Rong Chen, Ying Feng. 2007. Improving human micronutrient nutrition through biofortification in the soil-plant system: China as a case study. Environ Geochem Health, 29: 413-428.
    Yang X, R?mheld V, Marschner H. 1993. Effect of bicarbonate and root zone temperature on the uptake of Zn, Fe, Mn and Cu by different rice cultivars (Oryza sativa L.) grown in calcareous soil. Plant and Soil, 155/156: 441-445.
    Yang X, R?mheld V, Marschner H. 1994. Application of chelator-buffered nutrient solution technique in studies on zinc nutrition in rice plant (Oryza sativa L.). Plant and Soil, 163: 83-94.
    Yang X, R?mheld V, Marschner H. 1994. Effect of bicarbonate on root growth and accumulation of organic acids in Zn-inefficient and Zn-efficient rice cultivars (Oryza sativa L.). Plant and Soil, 164: 1-7.
    Yilmaz A, Ekizh H, Torun B, et al. 1997. Different zinc application methods on grain yield, and zinc concentrations in wheat grown on zinc-deficient calcareous soils in Central Anatolia. Journal of Plant Nutrition, 20: 461-471.
    Yip R and Scanlon K 1994. The burden of malnutrition: A population perspective. J. Nutr. 124 Suppl., 2043-2046

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700