用户名: 密码: 验证码:
光学断层分子成像定量分析及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近十年来,光学断层分子成像(Optical Molecular Tomography, OMT)因其在预临床的重大疾病研究应用中所表现出的良好性能,受到了学者们的广泛关注。光学断层分子成像由于具有灵敏度高、成本相对低廉、可能实现绝对定量等诸多优点,因而在预临床和临床的恶性肿瘤、心血管疾病、神经系统病变等重大疾病研究中得到了广泛的应用。作为光学断层分子成像的典型代表,生物发光断层成像及超高分辨率micro-CT混合成像系统以其高灵敏性、高特异性及高分辨的解剖结构等优点,在生物医学研究中具有广阔的应用前景。本文对光学断层分子成像的绝对定量分析方法进行了深入研究,并就生物发光断层分子成像和超高分辨率micro-CT混合成像系统对胃癌和干细胞移植治疗缺血性疾病的生物医学应用进行了系统的成像研究,本论文的主要研究内容包括:
     1.构建了生物发光断层分子成像和超高分辨率micro-CT混合成像系统,并对生物发光断层分子成像系统进行了定量校准。针对预临床小动物研究的需要,构建了生物发光断层分子成像系统,并对成像系统CCD相机进行了像元响应的非均匀性校准和绝对强度的定量校准。针对光学断层分子成像空间位置的差异构建了视场函数,对进入光学成像系统的光通量进行了定量分析。构建了超高分辨率micro-CT成像系统,为本论文的下肢缺血模型的血管新生定量研究奠定了基础。
     2.对生物发光断层分子成像定量重建方法进行了研究。基于有限元网格剖分方法,提出了总能量定量重建的策略。通过已知光源移植到小动物体内,验证了总能量重建的可行性。建立了基于报告基因系统的光学探针所反映的生物学参数与成像系统中总能量重建的物理参数之间的内在联系,实现了生物发光断层分子成像系统对肿瘤细胞和干细胞的细胞数量的定量分析。通过PC-3M-luc-C6前列腺癌和A549-luc-C8非小细胞肺癌细胞系以及脂肪来源的间充质干细胞的在体定量研究,证实了细胞水平定量分析的可行性和适用性。
     3.研究了光学断层分子成像在光学探针峰值波长偏移及解剖结构模型偏差等情况下引入的重建误差及其贡献率的大小。以生物发光断层成像为例分析了光学断层分子成像的重建误差的主要来源。(1)在假定光学参数准确的前提下,研究了动物模型解剖结构偏差带来的光学重建在定位和定量上的偏差。(2)在假定解剖结构准确的情况下,研究了光学探针峰值波长偏移对重建误差在定位和定量方面的影响。通过对解剖结构偏差以及峰值波长偏移的实验数据的系统测试、重建及数据分析,表明二者均会对重建的定位和定量带来较大的影响;其中,当光学探针峰值波长在640nm以下时,解剖结构的偏差对重建在定位和定量有更大的影响。实验数据也揭示了光学探针峰值波长漂移量在±10nm范围内、动物模型的解剖结构偏差在亚毫米级别以内时都可以得到较理想的定位和定量重建结果。
     4.利用自主研发的混合成像系统对胃癌的生物学行为进行定量成像研究。利用生物发光断层分子成像对胃癌原位动物模型实现在体定量分析以及肿瘤模型的长程动态观测,为胃癌的预临床研究提供了新的成像方法和成像工具。通过micro-CT造影成像精确计算出肿瘤的实际体积大小,同时在研究中提出了新颖的低成本欧乃派克时间累积对比增强造影方法,可以实现微小胃癌转移灶的在体定位和定量分析。
     5.对干细胞移植治疗缺血性疾病促进血管新生开展了混合成像系统的定量示踪和基于空间血管体积因数SVVF定量评估的成像研究。(1)采用生物发光断层分子成像及超高分辨率micro-CT混合成像系统在三维空间实现干细胞的在体定量示踪以及血管新生的血管灌注分析,实现对干细胞在体空间分布和细胞数量的定量示踪;并根据干细胞的迁移、存活数量和空间分布,进一步交互式实施高分辨的微血管网络密度的定量评估。(2)提出了空间血管体积因数(Spatial VascularVolume Fraction, SVVF)的概念,并将其用于小鼠下肢缺血模型血管新生的定量评估。(3)通过血管体积因数SVVF的系列成像研究发现在时间和空间上血管新生的量化指标,进而探讨性地分析了干细胞移植后旁分泌的作用效果和作用半径。(4)通过多种传统的方法对干细胞移植后的血管新生进行了交叉验证。利用血管铸型验证血管新生的宏观变化情况;通过扫描电镜成像证实了在干细胞移植后促进血管新生作用的不同时间点血管新生的微观结构及发芽情况;通过共聚焦荧光显微成像证实了eGFP转基因小鼠来源的脂肪间充质干细胞在缺血组织的存在性和血管新生的情况;通过激光多普勒成像观测血流灌注的恢复情况。本文提出的SVVF方法以及交叉验证的结果一致发现,脂肪来源的间充质干细胞移植与对照组相比可以明显地增大了血管密度,进而证实脂肪来源的间充质干细胞移植促进了血管新生。综上,在三维空间的血管体积因数成像以干细胞在三维空间的在体示踪存活的数量和空间分布作为反馈信息,进而对血管新生进行定量成像研究。生物发光断层成像及超高分辨率micro-CT混合成像系统在三维空间为基于细胞移植治疗的机制研究和长程监测研究提供了新颖的成像工具和功能评估手段。
     本论文的研究涉及到的动物实验均按照动物操作规程执行,并得到了本单位实验动物保护委员会的批准。
In recent years, Optical Molecular Tomography technologies and the applicationsin serious diseases have brought into focus owing to good performances and effects.Due to optical molecular tomography possesses their several advantages such as highsenstivity, cost-effectiveness and potential absolute quantification characteristics. Untilnowadays, optical molecular tomography has been widely used in tumors,cardiovascular diseases, neuroscience etc. As one of the optical tomography,Bioluminescence Tomography also has the advantages of high-senstivity,high-sepcificity, and high-resolution for anatomical structure etc. It has abroad potentialfor biomedical applications, realization of absolute quantification analysis. The gastriccancer and stem cell transplantation for the therapy of ischemic diseases have beensystematic researched. The author’s major researches are outlined as follows:
     1. Hybrid system of high-resilution micro-CT and Bioluminescence Tomography(BLT) was developed for application research such as tumor and hindlimb ischemiadeseases. Quantitative calibrations were performed for BLT system, the calibrationsinclude non-uniformity calibration for the pixel response and absolute intensitycalibration for quantitative imaging. Moreover, a view-field function was constructedfor consideration of the spatial location of the tomographic optical imaging system, thus,the luminous flux could be quantified by passing through the optical lens. All aboveworks would promote the research for quantitative angiogenesis of hindlimb ischemia.
     2. Quantitative reconstruction method was studied for BioluminescenceTomography. A total power reconstruction strategy was provided based on finiteelement mesh generation method. We constructed the relationship between thebiological parameters and optical reporter gene characteristics and confirmed thefeasibility of total power reconstruction through transplanting a given source into mousebody. Cell number level quantification analysis was set up for tumor cell line and stemcell through PC-3M-luc-C6prostate cancer line, A549-luc-C8non-small cell lungcancer line and adipose-derived mesenchymal stem cells (AD-MSCs).
     3. We concentrated on the analysis of quantitative reconstruction deviation anddeviation contribution rate from peak wavelength shift of luminescent source and theanatomical structure deviation of animal models. Firstly, reconstruction deviations inlocalization and quantification were studied based on the hypothesis of the accurateoptical parameters of the emission peak wavelength. Secondly, reconstruction deviationwith peak wavelength shift was investigated based on the hppothesis of the accurate anatomical structure of animal model. Experimantal data suggested both the emissionpeak wavelength shift of luminescent light and deviation of anatomical structure modellead to errors in localization and quantification for BLT reconstruction. We find thatsub-millimeter accuracy for anntomical structure animal model and less than±10nmpeak wavelength shift are expected to be used in BLT reconstruction. Futhermore, theexperiments suggested that the deviation of the annotimcal structure model has muchmore influence on the reconstruction precision than the emission peak wavelength shiftdoes.
     4. Noninvasive monitoring and quantitative imaging research have been studied forthe multistep process of gastric cancer. Bioluminescence Tomography techniques wereused for longitudinal observation of orthotopic gastric cancer model and some signaldevelopments during tumor progression in the first time. We also evaluated thefeasibility of the detection for micro-metastasis of gastric carcinoma by high-resolutionmicro-CT system with omnipaque accumulative contrast enhancement method in theorgans. Moreover, this method not only privides high-quality anatomical information ofthe metastasis in vivo, but also reveals the accurate solid tumors volume of the etastasis.Hybrid imaging system of high-resolution micro-CT and Bioluminescence Tomographybecomes a useful tool for preclinical gastric cancer research.
     5. Quantitative assessment of angiogenesis has been studied through SpatialVascular Volume Fraction (SVVF) accompanying tracking AD-MSCs using hybridimaging system in vivo. Firstly, Noninvasive imaging of the AD-MSCs distribution andsurvival cells allows three-dimensional spatial visualization of the angiogenic perfusionand stem cells in vivo quantitative tracking in mice. In addition, angiogenesisassessment and quantification of stem cells with interactive imaging were performedusing hybrid system. Secondly, we reported a novel serial imaging of SVVF to exploreangiogenesis and this method could be used for quantitative assessment theangiogenesis in hindlimb mouse model. Thirdly, we discussed the strong active radii ofAD-MSCs through serial SVVF imaging analysis in spatiotemporal distribution.Fourthly, cross-validation was performed by several traditional methods to comfirm theangiogenesis after AD-MSCs transportation. a) Vascular corrosion casting validated thevascular density enhancement after AD-MSCs treatments. b) Scanning electronmicroscopic imaging performed visualization of the remarkably detailed narrativesabout some vascular sprouting. c) Confocal photomicrographs revealed the vasculardensity at the ischemic region and AD-MSCs presence in the ischemic tissue. d) Laser Doppler perfusion imaging (LDPI) was performed to assess tissue perfusion in theischemic hindlimb. Experimental data suggested significant enhancements of vasculardensity comparing between the treatment and control groups. In a word, this studyprovides an interactive SVVF quantification method for angiogenesis in3D space,which combined with BLT imaging analysis of the survival numbers and spatialdistribution of stem cells as a feedback. This combination of hybrid imagingmethodology and functional evaluation is suitable for the longitudinal mechanisticinvestigations of cellular therapy in vivo in3D space.
     Animal protocols were approved by the Institutional Administrative Panel onLaboratory Animal Care.
引文
[1] Weissleder R, Mahmood U. Molecular imaging. Radiology2001,219(2),316-333.
    [2] Kagalwala MN, Singh SK, Majumder S. Stemness Is Only a State of the Cell. In:Stillman B, Stewart S, Grodzicker T, editors. Control and Regulation of Stem Cells.Cold Spring Harb Symp Quan Biol;2008,73(1),227-234.
    [3] Bremer C, Ntziachristos V, Weissleder R. Optical-based molecular imaging:contrast agents and potential medical applications. Eur Radiol2003,13(2),231-243.
    [4] Ray P, Wu AM, Gambhir SS. Optical bioluminescence and positron emissiontomography imaging of a novel fusion reporter gene in tumor xenografts of livingmice. Cancer Res2003,63(6),1160-1165.
    [5] De A, Lewis XZ, Gambhir SS. Noninvasive imaging of lentiviral-mediated reportergene expression in living mice. Mol Ther2003,7(5),681-691.
    [6] Weissleder R. Molecular imaging: Exploring the next frontier. Radiology1999,212(3),609-614.
    [7] Cherry SR. In vivo molecular and genomic imaging: new challenges for imagingphysics. Phys Med Biol2004,49(3), R13-R48.
    [8] Weissleder R, Pittet MJ. Imaging in the era of molecular oncology. Nature2008,452(7187),580-589.
    [9] Blasberg RG. In vivo molecular-genetic imaging: multi-modality nuclear andoptical combinations. Nucl Med Biol2003,30(8),879-888.
    [10] Cuccia DJ, Bevilacqua F, Durkin AJ, et al. In vivo quantification of optical contrastagent dynamics in rat tumors by use of diffuse optical spectroscopy with magneticresonance imaging coregistration. Appl Optics2003,42(16),2940-2950.
    [11] Doubrovin M, Serganova I, Mayer-Kuckuk P, et al. Multimodality in vivomolecular-genetic imaging. Bioconjugate Chem2004,15(6),1376-1388.
    [12] Wu JC, Chen IY, Sundaresan G, et al. Molecular imaging of cardiac celltransplantation in living animals using optical bioluminescence and positronemission tomography. Circulation2003,108(11),1302-1305.
    [13] Contag PR, Olomu IN, Stevenson DK, et al. Bioluminescent indicators in livingmammals. Nat Med1998,4(2),245-247.
    [14] Sokolov K, Follen M, Aaron J, et al. Real-time vital optical imaging of precancerusing anti-epidermal growth factor receptor antibodies conjugated to goldnanoparticles. Cancer Res2003,63(9),1999-2004.
    [15] van Dam GM, Themelis G, Crane LMA, et al. Intraoperative tumor-specificfluorescence imaging in ovarian cancer by folate receptor-alpha targeting: firstin-human results. Nat Med2011,17(10),1315-U1202.
    [16] Willmann JK, van Bruggen N, Dinkelborg LM, et al. Molecular imaging in drugdevelopment. Nat Rev Drug Discov2008,7(7),591-607.
    [17] Bydder GM, Steiner RE, Young IR, et al. Clinical NMR imaging of the brain:140cases. AJR Am J Roentgenol1982,139(2),215-236.
    [18] Correas JM, Bridal L, Lesavre A, et al. Ultrasound contrast agents: properties,principles of action, tolerance, and artifacts. Eur Radiol2001,11(8),1316-1328.
    [19] Steiner H, Staudach A, Spitzer D, et al. Three-dimensional ultrasound in obstetricsand gynaecology: technique, possibilities and limitations. Human reprod (Oxford,England)1994,9(9),1773-1778.
    [20] Filler A. The history, development, and impact of computed imaging inneurological diagnosis and neurosurgery: CT. MRI, DTI.. Nat Prec2009,10(3),1-76.
    [21] Wyss C, Schaefer SC, Juillerat-Jeanneret L, et al. Molecular imaging by micro-CT:specific E-selectin imaging. Eur Radiol2009,19(10),2487-2494.
    [22] Blasberg RG. Molecular imaging and cancer. Mol Cancer Ther2003,2(3),335-343.
    [23] Min JJ, Gambhir SS. Gene therapy progress and prospects: Noninvasive imaging ofgene therapy in living subjects. Gene Ther2004,11(2),115-125.
    [24] Miller JC, Thrall JH, Commission of Molecular Imaging ACoR. Clinical molecularimaging. J Am Coll Radiol2004,1(1Suppl),4-23.
    [25] Nahrendorf M, Sosnovik DE, Waterman P, et al. Dual channel optical tomographicimaging of leukocyte recruitment and protease activity in the healing myocardialinfarct. Circ Res2007,100(8),1218-1225.
    [26] Schirner M, Menrad A, Stephens A, et al. Molecular imaging of tumor angiogenesis.In: Wiedenmann B, Christofori GM, Hocker M, Reubi JC, editors.Gastroenteropancreatic Neuroendocrine Tumor Disease: Molecular and CellBiological Aspects. Volume1014, Ann NY Acad Sci. New York2004.67-75.
    [27] Couffinhal T, Silver M, Zheng LP, et al. Mouse model of angiogenesis. Am JPathol1998,152(6),1667-1679.
    [28] Mahmood U, Tung CH, Bogdanov A, et al. Near-infrared optical imaging ofprotease activity for tumor detection. Radiology1999,213(3),866-870.
    [29] Contag CH, Jenkins D, Contag FR, et al. Use of reporter genes for opticalmeasurements of neoplastic disease in vivo. Neoplasia2000,2(1-2),41-52.
    [30] Benaron DA. The future of cancer imaging. Cancer Metastasis Rev2002,21(1),45-78.
    [31] Wetterwald A, van der Pluijm G, Que I, et al. Optical Imaging of cancer metastasisto bone marrow-A mouse model of minimal residual disease. Am J Pathol2002,160(3),1143-1153.
    [32] Ray P, Pimenta H, Paulmurugan R, et al. Noninvasive quantitative imaging ofprotein-protein interactions in living subjects. Proc Natl Acad Sci U S A2002,99(5),3105-3110.
    [33] Contag CH, Ross BD. It's not just about anatomy: In vivo bioluminescence imagingas an eyepiece into biology. J Magn Reson Imaging2002,16(4),378-387.
    [34] Jacobs AH, Dittmar C, Winkeler A, et al. Molecular imaging of gliomas. Molimaging2002,1(4),309-335.
    [35] De Grand AM, Frangioni JV. An operational near-infrared fluorescence imagingsystem prototype for large animal surgery. Technol Cancer Res Treat2003,2(6),553-562.
    [36] Sokolov K, Aaron J, Hsu B, et al. Optical systems for In vivo molecular imaging ofcancer. Technol Cancer Res Treat2003,2(6),491-504.
    [37] Ntziachristos V, Chance B. Probing physiology and molecular function usingoptical imaging: applications to breast cancer. Breast Cancer Res2001,3(1),41-46.
    [38] Bhaumik S, Gambhir SS. Optical imaging of Renilla luciferase reporter geneexpression in living mice. Proc Natl Acad Sci U S A2002,99(1),377-382.
    [39] Gurfinkel M, Ke S, Wen XX, et al. Near-infrared fluorescence optical imaging andtomography. Dis Markers2003,19(2-3),107-121.
    [40] Wang LHV. Ultrasound-mediated biophotonic imaging: A review of acousto-opticaltomography and photo-acoustic tomography. Dis Markers2003,19(2-3),123-138.
    [41] Klose AD, Hielscher AH. Fluorescence tomography with simulated data based onthe equation of radiative transfer. Opt Lett2003,28(12),1019-1021.
    [42] Ntziachristos V, Bremer C, Weissleder R. Fluorescence imaging with near-infraredlight: new technological advances that enable in vivo molecular imaging. EurRadiol2003,13(1),195-208.
    [43] Graves EE, Ripoll J, Weissleder R, et al. A submillimeter resolution fluorescencemolecular imaging system for small animal imaging. Med Phys2003,30(5),901-911.
    [44] Hielscher AH. Optical tomographic imaging of small animals. Curr OpinBiotechnol2005,16(1),79-88.
    [45] Montet X, Ntziachristos V, Grimm J, et al. Tomographic fluorescence mapping oftumor targets. Cancer Res2005,65(14),6330-6336.
    [46] Montet X, Figueiredo JL, Alencar H, et al. Tomographic fluorescence imaging oftumor vascular volume in mice. Radiology2007,242(3),751-758.
    [47] Sosnovik DE, Nahrendorf M, Deliolanis N, et al. Fluorescence tomography andmagnetic resonance imaging of myocardial macrophage infiltration in infarctedmyocardium in vivo. Circulation2007,115(11),1384-1391.
    [48] Hyde D, de Kleine R, MacLaurin SA, et al. Hybrid FMT-CT imaging ofamyloid-beta plaques in a murine Alzheimer's disease model. Neuroimage2009,44(4),1304-1311.
    [49] Niedre M, Ntziachristos V. Comparison of fluorescence tomographic imaging inmice with early-arriving and quasi-continuous-wave photons. Opt Lett2010,35(3),369-371.
    [50] Deliolanis NC, Wurdinger T, Pike L, et al. In vivo tomographic imaging ofred-shifted fluorescent proteins. Biomed Opt Express2011,2(4),887-900.
    [51] Zerhouni E. The NIH roadmap. Science2003,302(5642),63-72.
    [52] Saar BG, Freudiger CW, Reichman J, et al. Video-Rate Molecular Imaging in Vivowith Stimulated Raman Scattering. Science2010,330(6009),1368-1370.
    [53] Wang LV, Hu S. Photoacoustic Tomography: In Vivo Imaging from Organelles toOrgans. Science2012,335(6075),1458-1462.
    [54] Richard Sun X, Giovannucci A, Sgro AE, et al. SnapShot: Optical control andimaging of brain activity. Cell2012,149(7),1650-1650.e1652.
    [55] Ale A, Ermolayev V, Herzog E, et al. FMT-XCT: in vivo animal studies with hybridfluorescence molecular tomography-X-ray computed tomography. Nat Methods2012,9(6),615-622.
    [56] McLaughlin W, Vizard D. Kodak in vivo imaging system: precise coregistration ofmolecular imaging with anatomical X-ray imaging in animals. Nat Methods2006,26-28.
    [57] Jares-Erijman EA, Jovin TM. FRET imaging. Nat Biotechnol2003,21(11),1387-1395.
    [58] Gao XH, Cui YY, Levenson RM, et al. In vivo cancer targeting and imaging withsemiconductor quantum dots. Nat Biotechnol2004,22(8),969-976.
    [59] Lindsay AC, Choudhury RP. Form to function: current and future roles foratherosclerosis imaging in drug development. Nat Rev Drug Discov2008,7(6),517-U514.
    [60] Gatenby RA, Gillies RJ, Brown JS. Of cancer and cave fish. Nat Rev Cancer2011,11(4),237-238.
    [61] Gillies RJ, Verduzco D, Gatenby RA. Evolutionary dynamics of carcinogenesis andwhy targeted therapy does not work. Nat Rev Cancer2012,12(7),487-493.
    [62] Weissleder R, Ntziachristos V. Shedding light onto live molecular targets. Nat Med2003,9(1),123-128.
    [63] Ideguchi T, Holzner S, Bernhardt B, et al. Coherent Raman spectro-imaging withlaser frequency combs. Nature2013,502(7471),355-358.
    [64] Herwig P, Zawatzky K, Grieser M, et al. Imaging the Absolute Configuration of aChiral Epoxide in the Gas Phase. Science2013,342(6162),1084-1086.
    [65] Jobsis FF. Noninvasive, infrared monitoring of cerebral and myocardial oxygensufficiency and circulatory parameters. Science1977,198(4323),1264-1267.
    [66] Dierolf M, Menzel A, Thibault P, et al. Ptychographic X-ray computed tomographyat the nanoscale. Nature2010,467(7314),436-U482.
    [67] Wang G, Cong WX, Durairaj K, et al. In vivo mouse studies with bioluminescencetomography. Opt Express2006,14(17),7801-7809.
    [68] Zhao H, Doyle TC, Coquoz O, et al. Emission spectra of bioluminescent reportersand interaction with mammalian tissue determine the sensitivity of detection invivo. J Biomed Opt2005,10(4),041210.
    [69] Wang G, Shen H, Cong W, et al. Temperature-modulated bioluminescencetomography. Opt Express2006,14(17),7852-7871.
    [70] Planat-Chretien A, Koenig A, Coutard JG, et al. Toward absolute quantification inCW-FDOT systems: use of a priori information. In: Hielscher AH, Taroni P, editors.Diffuse Optical Imaging Iii. Proc of SPIE. Bellingham: Spie-Int Soc OpticalEngineering2011,8088.
    [71] Gibson AP, Hebden JC, Arridge SR. Recent advances in diffuse optical imaging.Phys Med Biol2005;50(4):R1-R43.
    [72] Xue W, Zender L, Miething C, et al. Senescence and tumour clearance is triggeredby p53restoration in murine liver carcinomas. Nature2007,445(7128),656-660.
    [73] Kim YJ, Dubey P, Ray P, et al. Multimodality imaging of lymphocytic migrationusing lentiviral-based transduction of a tri-fusion reporter gene. Mol Imaging Biol2004,6(5),331-340.
    [74] Deroose CM, De A, Loening AM, et al. Multimodality imaging of tumor xenograftsand metastases in mice with combined small-animal PET, small-animal CT, andbioluminescence imaging. J Nucl Med2007,48(2),295-303.
    [75] Culver J, Akers W, Achilefu S. Multimodality molecular imaging with combinedoptical and SPECT/PET modalities. J Nucl Med2008,49(2),169-172.
    [76] Tian J, Bai J, Yan XP, et al. Multimodality molecular imaging-Improving imagequality. IEEE Eng Med Biol Mag2008,27(5),48-57.
    [77] Park JM, Gambhir SS. Multimodality radionuclide, fluorescence, andbioluminescence small-animal imaging. Proc IEEE2005,93(4),771-783.
    [78] Aikawa E, Nahrendorf M, Sosnovik D, et al. Multimodality molecular imagingidentifies proteolytic and osteogenic activities in early aortic valve disease.Circulation2007,115(3),377-386.
    [79] Sinusas AJ, Bengel F, Nahrendorf M, et al. Multimodality CardiovascularMolecular Imaging, Part I. Circ-Cardiovasc Imaging2008,1(3),244-256.
    [80] Jaffer FA, Libby P, Weissleder R. Optical and Multimodality Molecular ImagingInsights Into Atherosclerosis. Arterioscler Thromb Vasc Biol2009,29(7),1017-U1098.
    [81] Cho ZH. PET-MRI hybrid imaging scanner-An emerging new tool for molecularneuroimaging. Choi HK, editor. New York: IEEE Proc7thInt workshop;2005.5-5.
    [82] Brooksby B, Pogue BW, Jiang SD, et al. Imaging breast adipose and fibroglandulartissue molecular signatures by using hybrid MRI-guided near-infrared spectraltomography. Proc Natl Acad Sci U S A2006,103(23),8828-8833.
    [83] Hicks R, Lau E, Binns D. Hybrid imaging is the future of molecular imaging.Biomed imaging intervention J2007,3(3), e49.
    [84] Hoareau R, Scott PJH. Synthesis of perfluorinated analogs of DOTA and NOTA:bifunctional chelating groups with potential applications in hybrid molecularimaging. Tetrahedron Lett2013,54(42),5755-5757.
    [85] Liu J, Fan W, Liu M, et al. Spatial Vascular Volume Fraction Imaging forQuantitative Assessment of Angiogenesis. Mol Imaging Biol2014,16(3),362-371.
    [1] Rice BW, Cable MD, Nelson MB. In vivo imaging of light-emitting probes. JBiomed Opt2001,6(4),432-440.
    [2] Instruments P.h4Http://www.princetoninstruments.com.2012.
    [3] Chaudhari AJ. Hyperspectral and multispectral optical bioluminescence andfluorescence tomography in small animal imaging: Univ Southern California;2007.
    [4] Wang G, Shen H, Durairaj K, et al. The first bioluminescence tomography systemfor simultaneous acquisition of multi-view and multi-spectral data. Int J BiomedImaging2006,1,58601.
    [5] Yan G, Tian J, Zhu S, et al. Fast cone-beam CT image reconstruction using GPUhardware. J X-Ray Sci Technol2008,16(4),225-234.
    [6] Daugherty AL, Rangell LK, Eckert R, et al. Sustained release formulations ofrhVEGF(165) produce a durable response in a murine model of peripheralangiogenesis. Eur J Pharm Biopharm2011,78(2),289-297.
    [7] J. FM, S.M. H, D.A. R, et al. Microfocus X-ray sources for3D microtomography.Nucl Instrum Methods Phys Res A1994,352(3),312-315.
    [8] Kalender WA. Computed tomography. Wiley-VCH2011.
    [9] Troy T, Jekic-McMullen D, Sambucetti L, et al. Quantitative comparison of thesensitivity of detection of fluorescent and bioluminescent reporters in animalmodels. Imaging2004,3,9-23.
    [10] Xu Y, Graber HL, Pei YL, et al. Improved accuracy of reconstructed diffuse opticaltomographic images by means of spatial deconvolution: two-dimensionalquantitative characterization. Appl Optics2005,44(11),2115-2139.
    [11] Dehghani H, Pogue BW, Jiang SD, et al. Three-dimensional optical tomography:resolution in small-object imaging. Appl Optics2003,42(16),3117-3128.
    [12] Guggenheim JA, Basevi HRA, Frampton J, et al. Multi-modal molecular diffuseoptical tomography system for small animal imaging. Meas Sci Technol2013,24(10),105405.
    [13] Patachia M. CALIBRATION AND ARTEFACT MINIMIZATION IN A TWOWAVELENGTH CW DIFFUSE OPTICAL TOMOGRAPHY SYSTEM. UnivPolitehnica Bucharest Sci Bulletin-Series a-Appl Mathematics Phys2013,75(2),161-170.
    [14] Nelson M, Rice B, Bates B, et al.2005-07-19. Light calibration device for use inlow level light imaging systems.美国专利, US1,006,573.
    [15]田捷,刘俊廷,梁继民等.2011-08-24. CCD相机成像应用的校准方法.中国发明专利, ZL200910022186.X.
    [16] Weissleder R, Pittet MJ. Imaging in the era of molecular oncology. Nature2008,452(7187),580-589.
    [17] Kumar D, Cong W, Bohenkamp F, et al. Development of lung tissue phantoms forbioluminescent imaging. Develop X-ray Tomography2004,5535,687-693.
    [18] Liu K, Yang X, Liu D, et al. Spectrally resolved three-dimensional bioluminescencetomography with a level-set strategy. J Opt Soc Am A-Opt Image Sci Vis2010;27(6):1413-1423.
    [19] Young M.2000. Optics and lasers: including fibers and optical waveguides. NewYork: Springer.
    [20]梁继民,刘俊廷,田捷等.2011-08-24.定量光学分子断层成像装置和重建方法.中国发明专利, ZL201010173473.3.
    [1] Cong W, Wang G, Kumar D, et al. Practical reconstruction method forbioluminescence tomography. Opt Express2005,13(17),6756-6771.
    [2] Lv Y, Jie T, Wenxiang C, et al. A multilevel adaptive finite element algorithm forbioluminescence tomography. Opt Express2006,14(18),8211-8223.
    [3] Feng J, Jia K, Yan G, et al. An optimal permissible source region strategy formultispectral bioluminescence tomography. Opt Express2008,16(20),15640-15654.
    [4] Wang DF, Qiao HT, Song XL, et al. Fluorescence molecular tomography using atwo-step three-dimensional shape-based reconstruction with graphics processingunit acceleration. Appl optics2012,51(36),8731-8744.
    [5] Wu P, Liu K, Zhang Q, et al. Detection of mouse liver cancer via a parallel iterativeshrinkage method in hybrid optical/microcomputed tomography imaging. J BiomedOpt2012,17(12),126012.
    [6] Cong A, Cong W, Lu Y, et al. Differential Evolution Approach for RegularizedBioluminescence Tomography. IEEE T Bio-med Eng2010,57(9),2229-2238.
    [7] Cong W, Wang G. Bioluminescence tomography based on the phase approximationmodel. J Opt Soc Am A-Optics Image Science and Vision2010,27(2),174-179.
    [8] Lu Y, Machado HB, Douraghy A, et al. Experimental BioluminescenceTomography with Fully Parallel Radiative-transfer-based ReconstructionFramework. Opt Express2009,17(19),16681-16695.
    [9] Gu XJ, Zhang QH, Larcom L, et al. Three-dimensional bioluminescencetomography with model-based reconstruction. Opt Express2004,12(17),3996-4000.
    [10] Lv Y, Tian J, Cong W, et al. Spectrally resolved bioluminescence tomography withadaptive finite element analysis: methodology and simulation. Phys Med Biol2007,52(15),4497-4512.
    [11] Zhang X, Badea CT, Johnson GA. Three-dimensional reconstruction in free-spacewhole-body fluorescence tomography of mice using optically reconstructed surfaceand atlas anatomy. J Biomed Opt2009,14(6),064010.
    [12] Schweiger M, Arridge SR, Hiraoka M, et al. The finite element method for thepropagation of light in scattering media: boundary and source conditions. MedPhys1995,22(11Pt1),1779-1792.
    [13] Alexandrakis G, Rannou FR, Chatziioannou AF. Tomographic bioluminescenceimaging by use of a combined optical-PET (OPET) system: a computer simulationfeasibility study. Phys Med Biol2005,50(17),4225-4241.
    [14] Wang G, Cong WX, Durairaj K, et al. In vivo mouse studies with bioluminescencetomography. Opt Express2006,14(17),7801-7809.
    [15] Ahn S, Chaudhari AJ, Darvas F, et al. Fast iterative image reconstruction methodsfor fully3D multispectral bioluminescence tomography. Phys Med Biol2008,53(14),3921-3942.
    [16] Han R, Liang J, Qu X, et al. A source reconstruction algorithm based on adaptivehp-FEM for bioluminescence tomography. Opt Express2009,17(17):,14481-14494.
    [17] Yi HJ, Chen DF, Li W, et al. Reconstruction algorithms based on l(1)-norm andl(2)-norm for two imaging models of fluorescence molecular tomography: acomparative study. J Biomed Opt2013;18(5).
    [18] Darne C, Lu YJ, Sevick-Muraca EM. Small animal fluorescence andbioluminescence tomography: a review of approaches, algorithms and technologyupdate. Phys Med Biol2014,59(1), R1-60.
    [19] Qin CH, Feng JC, Zhu SP, et al. Recent advances in bioluminescence tomography:methodology and system as well as application. Laser Photonics Rev2014,8(1),94-114.
    [20] Mitic G, Kolzer J, Otto J, et al. Time-gated transillumination of biological tissuesand tissuelike phantoms. Appl optics1994,33(28),6699-6710.
    [21] Kienle A, Lilge L, Patterson MS, et al. Spatially resolved absolute diffusereflectance measurements for noninvasive determination of the optical scatteringand absorption coefficients of biological tissue. Appl optics1996,35(13),2304-2314.
    [22] Holboke MJ, Tromberg BJ, Li X, et al. Three-dimensional diffuse opticalmammography with ultrasound localization in a human subject. J Biomed Opt2000,5(2),237-247.
    [23] Srinivasan S, Pogue BW, Jiang SD, et al. Interpreting hemoglobin and waterconcentration, oxygen saturation, and scattering measured in vivo by near-infraredbreast tomography. P Natl Acad Sci U S A2003,100(21),12349-12354.
    [24] Firbank M, Hiraoka M, Essenpreis M, et al. Measurement of the optical propertiesof the skull in the wavelength range650-950nm. Phys Med Biol1993,38(4),503-510.
    [25] Beek JF, Blokland P, Posthumus P, et al. In vitro double-integrating-sphere opticalproperties of tissues between630and1064nm. Phys Med Biol1997,42(11),2255-2261.
    [26] Pifferi A, Torricelli A, Taroni P, et al. Optical biopsy of bone tissue: a step towardthe diagnosis of bone pathologies. J Biomed Opt2004,9(3),474-480.
    [27] Ugryumova N, Matcher SJ, Attenburrow DP. Measurement of bone mineral densityvia light scattering. Phys Med Biol2004,49(3),469-483.
    [28] Matern U, Haberstroh J, el Saman A, et al. Emergency laparoscopy. Technicalsupport for the laparoscopic diagnosis of intestinal ischemia. Surg endosc1996,10(9),883-887.
    [29] Torricelli A, Pifferi A, Taroni P, et al. In vivo optical characterization of humantissues from610to1010nm by time-resolved reflectance spectroscopy. Phys MedBiol2001,46(8),2227-2237.
    [30] Solonenko M, Cheung R, Busch TM, et al. In vivo reflectance measurement ofoptical properties, blood oxygenation and motexafin lutetium uptake in canine largebowels, kidneys and prostates. Phys Med Biol2002,47(6),857-873.
    [31] Wei HJ, Xing D, Wu GY, et al. Optical properties of human normal small intestinetissue determined by Kubelka-Munk method in vitro. World J Gastroentero2003,9(9),2068-2072.
    [32] Swartling J, Palsson S, Platonov P, et al. Changes in tissue optical properties due toradio-frequency ablation of myocardium. Med Biol Eng Comput2003,41(4),403-409.
    [33] Karagiannes JL, Zhang Z, Grossweiner B, et al. Applications of the1-D diffusionapproximation to the optics of tissues and tissue phantoms. Appl optics1989,28(12),2311-2317.
    [34] Marchesini R, Bertoni A, Andreola S, et al. Extinction and absorption coefficientsand scattering phase functions of human tissues in vitro. Appl optics1989,28(12),2318-2324.
    [35] Parsa P, Jacques SL, Nishioka NS. Optical properties of rat liver between350and2200nm. Appl optics1989,28(12),2325-2330.
    [36] Beek JF, vanStaveren HJ, Posthumus P, et al. The optical properties of lung as afunction of respiration. Phys Med Biol1997,42(11),2263-2272.
    [37] Ritz JP, Roggan A, Germer CT, et al. Continuous changes in the optical propertiesof liver tissue during laser-induced interstitial thermotherapy. Laser Surg Med2001,28(4),307-312.
    [38] Zijp JR, ten Bosch JJ. Optical properties of bovine muscle tissue in vitro; acomparison of methods. Phys Med Biol1998,43(10),3065-3081.
    [39] Torricelli A, Quaresima V, Pifferi A, et al. Mapping of calf muscle oxygenation andhaemoglobin content during dynamic plantar flexion exercise by multi-channeltime-resolved near-infrared spectroscopy. Phys Med Biol2004,49(5),685-699.
    [40] Jacques SL, Prahl SA. Modeling optical and thermal distributions in tissue duringlaser irradiation. Laser Surg Med1987,6(6),494-503.
    [41] Doornbos RMP, Lang R, Aalders MC, et al. The determination of in vivo humantissue optical properties and absolute chromophore concentrations using spatiallyresolved steady-state diffuse reflectance spectroscopy. Phys Med Biol1999,44(4),967-981.
    [42] Lualdi M, Colombo A, Farina B, et al. A phantom with tissue-like optical propertiesin the visible and near infrared for use in photomedicine. Laser Surg Med2001,28(3),237-243.
    [43] Thueler P, Charvet I, Bevilacqua F, et al. In vivo endoscopic tissue diagnosticsbased on spectroscopic absorption, scattering, and phase function properties. JBiomed Opt2003,8(3),495-503.
    [44] Enejder AMK, Swartling J, Aruna P, et al. Influence of cell shape and aggregateformation on the optical properties of flowing whole blood. Appl optics2003,42(7),1384-1394.
    [45] Liu J, Tian J, Liang J, et al. Detecting metastasis of gastric carcinoma usinghigh-resolution micro-CT system: in vivo small animal study. Medical ImagingBiomedical Applications in Molecular, Structural, and Functional Imaging.Proceedings of SPIE2011,7965,79650L.
    [46] Jenkins DE, Oei Y, Hornig YS, et al. Bioluminescent imaging (BLI) to improve andrefine traditional murine models of tumor growth and metastasis. Clin ExpMetastas2003,20(8),733-744.
    [1] Wang G, Shen H, Durairaj K, et al. The first bioluminescence tomography systemfor simultaneous acquisition of multi-view and multi-spectral data. Int J BiomedImaging2006,1,58601.
    [2] Wang G, Hoffman E, McLennan G, et al. Development of the first bioluminescentCT scanner. Radiology2003;229:566.
    [3] Wang G, Li Y, Jiang M. Uniqueness theorems in bioluminescence tomography. MedPhys2004,31,2289-2299.
    [4] Cong W, Shen H, Cong AX, et al. Integral equations of the photon fluence rate andflux based on a generalized Delta-Eddington phase function. J Biomed Opt2008,13(2),024016.
    [5] Gu XJ, Zhang QH, Larcom L, et al. Three-dimensional bioluminescencetomography with model-based reconstruction. Opt Express2004,12(17),3996-4000.
    [6] Cong W, Wang G, Kumar D, et al. Practical reconstruction method forbioluminescence tomography. Opt Express2005,13(17),6756-6771.
    [7] Lv Y, Jie T, Wenxiang C, et al. A multilevel adaptive finite element algorithm forbioluminescence tomography. Opt Express2006,14(18),8211-8223.
    [8] Wang G, Qian X, Cong W, et al. Recent development in bioluminescencetomography. Current Medical Imaging Reviews2006;2(4):453-457.
    [9] Ahn S, Chaudhari AJ, Darvas F, et al. Fast iterative image reconstruction methodsfor fully3D multispectral bioluminescence tomography. Phys Med Biol2008,53(14),3921-3942.
    [10] Han R, Liang J, Qu X, et al. A source reconstruction algorithm based on adaptivehp-FEM for bioluminescence tomography. Opt Express2009;17(17):14481-14494.
    [11] Feng J, Jia K, Yan G, et al. An optimal permissible source region strategy formultispectral bioluminescence tomography. Opt Express2008,16(20),15640-15654.
    [12] Qin CH, Tian J, Yang X, et al. Galerkin-based meshless methods for photontransport in the biological tissue. Opt Express2008,16(25),20317-20333.
    [13] Lu Y, Zhang X, Douraghy A, et al. Source reconstruction for spectrally-resolvedbioluminescence tomography with sparse a priori information. Opt Express2009,17(10),8062-8080.
    [14] Qin C, Yang X, Feng J, et al. Adaptive improved element free Galerkin method forquasi-or multi-spectral bioluminescence tomography. Opt Express2009,17(24),21925-21934.
    [15] Feng J, Jia K, Qin C, et al. Three-dimensional bioluminescence tomography basedon Bayesian approach. Opt Express2009,17(19),16834-16848.
    [16] Han WM, Gong RF, Cheng XL. A general framework for integration ofbioluminescence tomography and diffuse optical tomography. Inverse Probl Sci En2014,22(3),458-482.
    [17] He X, Liang J, Wang X, et al. Sparse reconstruction for quantitativebioluminescence tomography based on the incomplete variables truncatedconjugate gradient method. Opt Express2010,18(24),24825-24841.
    [18] Chen X, Yang D, Qu X, et al. Comparisons of hybrid radiosity-diffusion model anddiffusion equation for bioluminescence tomography in cavity cancer detection. JBiomed Opt2012,17(6),066015-066015.
    [19] Ge W, Wenxiang C, Durairaj K, et al. In vivo mouse studies with bioluminescencetomography. Opt Express2006,14(17),7801-7809.
    [20] Yang DF, Chen XL, Peng Z, et al. Light transport in turbid media withnon-scattering, low-scattering and high absorption heterogeneities based on hybridsimplified spherical harmonics with radiosity model. Biomed Opt Express2013,4(10),2209-2223.
    [21] Alexandrakis G, Rannou FR, Chatziioannou AF. Tomographic bioluminescenceimaging by use of a combined optical-PET (OPET) system: a computer simulationfeasibility study. Phys Med Biol2005,50(17),4225-4241.
    [22] Chen X, Liang J, Qu X, et al. Mapping of bioluminescent images onto CT volumesurface for dual-modality BLT and CT imaging. J X-Ray Sci Technol2012,20(1),31-44.
    [23] Chen X, Gao X, Qu X, et al. A study of photon propagation in free-space based onhybrid radiosity-radiance theorem. Opt Express2009,17(18),16266-16280.
    [24] Liu JT, Wang YB, Qu XC, et al. In vivo quantitative bioluminescence tomographyusing heterogeneous and homogeneous mouse models. Opt Express2010,18(12),13102-13113.
    [25] Liu JT, Chen DF, Li XS, et al. In Vivo Quantitative Reconstruction Studies ofBioluminescence Tomography: Effects of Peak-Wavelength Shift and ModelDeviation. IEEE T Bio-med Eng2010,57(10),2579-2582.
    [26] Rice BW, Cable MD, Nelson MB. In vivo imaging of light-emitting probes. JBiomed Opt2001,6,432-440.
    [27] Wang G, Shen H, Cong W, et al. Temperature-modulated bioluminescencetomography. Opt Express2006,14(17),7852-7871.
    [28] Cong W, Shen H, Cong AX, et al. Integral equations of the photon fluence rate andflux based on a generalized Delta-Eddington phase function. J Biomed Opt2008,13(2).
    [29] Soubret A, Ripoll J, Ntziachristos V. Accuracy of fluorescent tomography in thepresence of heterogeneities: Study of the normalized born ratio. IEEE T MedImaging2005,24(10),1377-1386.
    [30] Shi Z, Zhao H, Xu K. Hybrid diffusion-P3equation in N-layered turbid media:steady-state domain. J Biomed Opt2011,16(10),105002.
    [31] Darne C, Lu YJ, Sevick-Muraca EM. Small animal fluorescence andbioluminescence tomography: a review of approaches, algorithms and technologyupdate. Phys Med Biol2014,59(1), R1-60.
    [1] Jemal A, Bray F, Center MM, et al. Global Cancer Statistics. Ca Cancer J Clin2011,61(2),69-90.
    [2] Mita K, Ito H, Hashimoto M, et al. Postoperative Complications and Survival afterGastric Cancer Surgery in Patients Older than80Years of Age. J Gastrointest Surg2013,17(12),2067-2073.
    [3] De Vita F, Giuliani F, Galizia G, et al. Neo-adjuvant and adjuvant chemotherapy ofgastric cancer. Ann Oncol2007,18Suppl6,120-123.
    [4] Nishida T. Treatment of gastric cancer in Asia: the missing link. Lancet Oncol2009,10(11),1027-1028.
    [5] Bouvard V, Baan R, Straif K, et al. A review of human carcinogens-Part B:biological agents. Lancet Oncol2009,10(4),321-322.
    [6] Sjostrom L, Gummesson A, Sjostrom CD, et al. Effects of bariatric surgery oncancer incidence in obese patients in Sweden (Swedish Obese Subjects Study): aprospective, controlled intervention trial. Lancet Oncol2009,10(7),653-662.
    [7] Jankowski JA, Odze RD. Biomarkers in Gastroenterology: Between Hope and HypeComes Histopathology. Am J Gastroenterol2009,104(5),1093-1096.
    [8] Wesolowski R, Lee C, Kim R. Is there a role for second-line chemotherapy inadvanced gastric cancer? Lancet Oncol2009,10(9),903-912.
    [9] Paoletti X, Oba K, Burzykowski T, et al. Benefit of Adjuvant Chemotherapy forResectable Gastric Cancer A Meta-analysis. Jama J Am Med Assoc2010,303(17),1729-1737.
    [10]Gambhir SS. Molecular imaging of cancer: From molecules to humans-Introduction. J Nucl Med2008,49,1S-4S.
    [11]Weissleder R. Molecular imaging in cancer. Science2006;312(5777):1168-1171.
    [12]Jaffer FA, Weissleder R. Molecular imaging in the clinical arena. Jama J Am MedAssoc2005,293(7),855-862.
    [13]Weissleder R, Pittet MJ. Imaging in the era of molecular oncology. Nature2008,452(7187),580-589.
    [14]Gomez Dorronsoro ML, Vera R, Ortega L, et al. Recommendations of a group ofexperts for the pathological assessment of tumour regression of liver metastases ofcolorectal cancer and damage of non-tumour liver tissue after neoadjuvant therapy.Clin Transl Oncol2014,16(3),234-242.
    [15]Malviya G, Nayak TK. PET Imaging to Monitor Cancer Therapy. Curr PharmBiotechno2013,14(7),669-682.
    [16]Eberlin LS, Tibshirani RJ, Zhang J, et al. Molecular assessment ofsurgical-resection margins of gastric cancer by mass-spectrometric imaging.Proceedings of the Natl Acad Sci U S A2014,111(7),2436-2441.
    [17]Liu JT, Tian J, Liang JM, et al. Detecting metastasis of gastric carcinoma usinghigh-resolution micro-CT system: in vivo small animal study. Medical Imaging2011: Biomedical Applications in Molecular, Structural, and Functional Imaging.Proceedings of SPIE-Intl Soc Opt Eng;2011,7965,79650L.
    [18]Hu H, Liu J, Yao L, et al. Real-time bioluminescence and tomographic imaging ofgastric cancer in a novel orthotopic mouse model. Oncol Rep2012,27(6),1937-1943.
    [19]Killion JJ, Radinsky R, Fidler IJ. Orthotopic models are necessary to predict therapyof transplantable tumors in mice. Cancer Metast Rev1998,17(3),279-284.
    [20]Hoffman RM. Orthotopic metastatic mouse models for anticancer drug discoveryand evaluation: A bridge to the clinic. Invest New Drug1999,17(4),343-359.
    [21]Bibby MC. Orthotopic models of cancer for preclinical drug evaluation: advantagesand disadvantages. Eur J Cancer2004,40(6),852-857.
    [22]Nakajima TE, Yanagihara K, Takigahira M, et al. Antitumor Effect ofSN-38-Releasing Polymeric Micelles, NK012, on Spontaneous PeritonealMetastases from Orthotopic Gastric Cancer in Mice Compared with Irinotecan.Cancer Res2008,68(22),9318-9322.
    [23]Sumida T, Kitadai Y, Shinagawa K, et al. Anti-stromal therapy with imatinibinhibits growth and metastasis of gastric carcinoma in an orthotopic nude mousemodel. Int J Cancer2011,128(9),2050-2062.
    [24]Yang K, Kwan ALC, Miller DF, et al. A geometric calibration method for conebeam CT systems. Med Phys2006,33(6),1695-1706.
    [25]Zeamari S, Rumping G, Floot B, et al. In vivo bioluminescence imaging of locallydisseminated colon carcinoma in rats. Brit J Cancer2004,90(6),1259-1264.
    [26]Doubrovin M, Serganova I, Mayer-Kuckuk P, et al. Multimodality in vivomolecular-genetic imaging. Bioconjugate Chem2004,15(6),1376-1388.
    [27]Bogenrieder T, Herlyn M. Axis of evil: molecular mechanisms of cancer metastasis.Oncogene2003,22(42),6524-6536.
    [28]Francia G, Cruz-Munoz W, Man S, et al. Mouse models of advanced spontaneousmetastasis for experimental therapeutics. Nat Rev Cancer2011,11(2),135-141.
    [29]Ito H, Hatori M, Kinugasa Y, et al. Comparison of the expression profile ofmetastasis-associated genes between primary and circulating cancer cells in oralsquamous cell carcinoma. Anticancer Res2003,23(2B),1425-1431.
    [30]Fidler IJ, Balch CM. The biology of cancer metastasis and implications for therapy.Curr Prob Surg1987,24(3),129-209.
    [31]El-Deiry WS, Sigman CC, Kelloff GJ. Imaging and oncologic drug development. JClin Oncol2006,24(20),3261-3273.
    [32]Ohtsu A. Chemotherapy for metastatic gastric cancer: past, present, and future. JGastroenterol2008,43(4),256-264.
    [33]Leung WK, Wu M-s, Kakugawa Y, et al. Screening for gastric cancer in Asia:current evidence and practice. Lancet Oncol2008,9(3),279-287.
    [34]Willekens I, Lahoutte T, Buls N, et al. Time-Course of Contrast Enhancement inSpleen and Liver with Exia160, Fenestra LC, and VC. Mol Imaging Biol2009,11(2),128-135.
    [35]Hainfeld JF, O'Connor MJ, Dilmanian FA, et al. Micro-CT enablesmicrolocalisation and quantification of Her2-targeted gold nanoparticles withintumour regions. Brit J Radiol2011,84(1002),526-533.
    [36]Graham KC, Detombe SA, MacKenzie LT, et al. Contrast-enhanced microcomputedtomography using intraperitoneal contrast injection for the assessment oftumor-burden in liver metastasis models. Invest Radiol2008,43(7),488-495.
    [37]Zhu S, Tian J, Yan G, et al. Cone beam micro-CT system for small animal imagingand performance evaluation. Intl J Biomed imaging2009,960573-960573.
    [38]Yan G, Tian J, Zhu S, et al. Fast Katsevich Algorithm Based on GPU for HelicalCone-Beam Computed Tomography. IEEE T Inf Technol B2010,14(4),1053-1061.
    [39]Dong D, Tian J, Dai Y, et al. Unified reconstruction framework for multi-modalmedical imaging. J X-Ray Sci Technol2011,19(1),111-126.
    [1] Tardif JC. Coronary artery disease in2010. Eur Heart J Suppl2010,12(C),C2-C10.
    [2] Ruel M, Wu GF, Khan TA, et al. Inhibition of the cardiac angiogenic response tosurgical FGF-2therapy in a swine endothelial dysfunction model. Circulation2003,108(10),335-340.
    [3] Voisine P, Li J, Bianchi C, et al. Effects of L-arginine on fibroblast growth factor2-induced angiogenesis in a model of endothelial dysfunction. Circulation2005,112(9), I202-I207.
    [4] Rubina K, Kalinina N, Efimenko A, et al. Adipose Stromal Cells StimulateAngiogenesis via Promoting Progenitor Cell Differentiation, Secretion ofAngiogenic Factors, and Enhancing Vessel Maturation. Tissue Eng Part A2009,15(8),2039-2050.
    [5] Pittenger MF, Martin BJ. Mesenchymal stem cells and their potential as cardiactherapeutics. Circ Res2004,95(1),9-20.
    [6] Kachgal S, Putnam AJ. Mesenchymal stem cells from adipose and bone marrowpromote angiogenesis via distinct cytokine and protease expression mechanisms.Angiogenesis2011,14(1),47-59.
    [7] Attanasio S, Snell J. Therapeutic Angiogenesis in the Management of Critical LimbIschemia Current Concepts and Review. Cardiol Rev2009,17(3),115-120.
    [8] Sherwood LM, Parris EE, Folkman J. Tumor angiogenesis: therapeutic implications.New Engl J Med1971,285(21),1182-1186.
    [9] Carmeliet P. Angiogenesis in life, disease and medicine. Nature2005,438(7070),932-936.
    [10] Allard B, Turcotte M, Spring K, et al. Anti-CD73therapy impairs tumorangiogenesis. Int J Cancer2014,134(6),1466-1473.
    [11] Kaur S, Bajwa P. A 'tete-a tete' between cancer stem cells and endothelialprogenitor cells in tumor angiogenesis. Clin Transl Oncol2014,16(2),115-121.
    [12] Lu H, Xu X, Zhang M, et al. Combinatorial protein therapy of angiogenic andarteriogenic factors remarkably improves collaterogenesis and cardiac function inpigs. P Natl Acad Sci U S A2007,104(29),12140-12145.
    [13] Takeshita S, Zheng LP, Brogi E, et al. Therapeutic angiogenesis. A singleintraarterial bolus of vascular endothelial growth factor augments revascularizationin a rabbit ischemic hind limb model. J Clin Invest1994,93(2),662-670.
    [14] Taniyama Y, Morishita R, Aoki M, et al. Therapeutic angiogenesis induced byhuman hepatocyte growth factor gene in rat and rabbit hindlimb ischemia models:preclinical study for treatment of peripheral arterial disease. Gene Ther2001,8(3),181-189.
    [15] Freedman SB, Isner JM. Therapeutic angiogenesis for ischemic cardiovasculardisease. J Mol Cell Cardiol2001,33(3),379-393.
    [16] Nieminen T, Toivanen PI, Rintanen N, et al. The impact of the receptor bindingprofiles of the vascular endothelial growth factors on their angiogenic features.Biochimi E2014,1840(1),454-463.
    [17] Giacca M, Zacchigna S. VEGF gene therapy: therapeutic angiogenesis in the clinicand beyond. Gene Ther2012,19(6),622-629.
    [18] Tiong A, Freedman SB. Gene therapy for cardiovascular disease: The potential ofVEGF. Curr Opin Mol Ther2004,6(2),151-159.
    [19] Rasmussen HS, Rasmussen CS, Macko J. VEGF gene therapy for coronary arterydisease and peripheral vascular disease. Cardiovasc Radiat Med2002,3(2),114-117.
    [20] Li J, Wei YQ, Liu K, et al. Synergistic effects of FGF-2and PDGF-BB onangiogenesis and muscle regeneration in rabbit hindlimb ischemia model.Microvasc Res2010,80(1),10-17.
    [21] Khurana R, Simons M. Endothelial progenitor cells: precursors for angiogenesis.Semin Thorac Cardiovasc Surg2003,15(3),250-258.
    [22] Kinnaird T, Stabile E, Epstein SE, et al. Current perspectives in therapeuticmyocardial angiogenesis. J Interv Cardiol2003,16(4),289-297.
    [23] Sunkomat JNE, Gaballa MA. Stem cell therapy in ischemic heart disease.Cardiovasc Drug Rev2003,21(4),327-342.
    [24] Alessandri G, Emanueli C, Madeddu P. Genetically engineered stem cell therapy fortissue regeneration. In: Sideman S, Beyar R, editors. Cardiac Engineering: FromGenes and Cells to Structure and Function. Ann NY Acad Sci2004,1015,271-284.
    [25] Ceccaldi C, Bushkalova R, Alfarano C, et al. Evaluation of polyelectrolytecomplex-based scaffolds for mesenchymal stem cell therapy in cardiac ischemiatreatment. Acta Biomater2014,10(2),901-911.
    [26] Li J, Qiao X, Yu M, et al. Secretory Factors From Rat Adipose Tissue ExplantsPromote Adipogenesis and Angiogenesis. Artif Organs2014,38(2), E33-E45.
    [27] Lange C, Togel F, Ittrich H, et al. Administered mesenchymal stem cells enhancerecovery from ischemia/reperfusion-induced acute renal failure in rats. Kidney Int2005,68(4),1613-1617.
    [28] Togel F, Hu ZM, Weiss K, et al. Administered mesenchymal stem cells protectagainst ischemic acute renal failure through differentiation-independentmechanisms. Am J Physiol-Renal2005,289(1), F31-F42.
    [29] Silva GV, Litovsky S, Assad JAR, et al. Mesenchymal stem cells differentiate intoan endothelial phenotype, enhance vascular density, and improve heart function in acanine chronic ischemia model. Circulation2005,111(2),150-156.
    [30] Yue WM, Liu W, Bi YW, et al. Mesenchymal stem cells differentiate into anendothelial phenotype, reduce neointimal formation, and enhance endothelialfunction in a rat vein grafting model. Stem Cells Dev2008,17(4),785-793.
    [31] Tatsumi T, Matsubara H. Therapeutic angiogenesis for peripheral arterial diseaseand ischemic heart disease by autologous bone marrow cells implantation. NihonRinsho Jpn J Clin Med2006,64(11),2126-2134.
    [32] Cho H-J, Lee J, Wecker A, et al. Bone marrow-derived stem cell therapy inischemic heart disease. Regen Med2006,1(3),337-345.
    [33] Hattori R, Matsubara H. Therapeutic angiogenesis for severe ischemic heartdiseases by autologous bone marrow cells transplantation. Mol Cell Biochem2004,264(1-2),151-155.
    [34] Kinnaird T, Stabile E, Burnett MS, et al. Local delivery of marrow-derived stromalcells augments collateral perfusion through paracrine mechanisms. Circulation2004,109(12),1543-1549.
    [35] Kinnaird. Local delivery of marrow-derived stromal cells augments collateralperfusion through paracrine mechanisms (vol109, pg1543,2004). Circulation2005,112(4), E73-E73.
    [36] Hahn J-Y, Cho H-J, Kang H-J, et al. Pre-treatment of mesenchymal stem cells witha combination of growth factors enhances gap junction formation, cytoprotectiveeffect on cardiomyocytes, and therapeutic efficacy for myocardial infarction. J AmColl Cardiol2008,51(9),933-943.
    [37] Abarbanell AM, Coffey AC, Fehrenbacher JW, et al. Proinflammatory CytokineEffects on Mesenchymal Stem Cell Therapy for the Ischemic Heart. Ann ThoracSurg2009,88(3),1036-1043.
    [38] Putman DM, Liu KY, Broughton HC, et al. Umbilical Cord Blood-DerivedAldehyde Dehydrogenase-Expressing Progenitor Cells Promote Recovery fromAcute Ischemic Injury. Stem Cells2012,30(10),2248-2260.
    [39] Li L, Zeng H, Chen J-X. Apelin-13increases myocardial progenitor cells andimproves repair postmyocardial infarction. Am J Physiol-Heart C2012,303(5),H605-H618.
    [40] Xiong Q, Ye L, Zhang P, et al. Bioenergetic and Functional Consequences ofCellular Therapy Activation of Endogenous Cardiovascular Progenitor Cells. CircRes2012,111(4),455-468.
    [41] Eggleson KK. STEM CELL-BASED THERAPIES promises, obstacles,discordance, and the agora. Perspect Biol Med2012,55(1),1-25.
    [42] Xiong Y, Mahmood A, Chopp M. Angiogenesis, neurogenesis and brain recovery offunction following injury. Curr Opin Invest Dr2010,11(3),298-308.
    [43] Zou Z, Zhang Y, Hao L, et al. More insight into mesenchymal stem cells and theireffects inside the body. Expert Opinion on Biological Therapy2010;10(2):215-230.
    [44] van der Laan AM, Piek JJ, van Royen N. Targeting angiogenesis to restore themicrocirculation after reperfused MI. Nat Rev Cardiol2009,6(8),515-523.
    [45] Chen J, Park H-C, Addabbo F, et al. Kidney-derived mesenchymal stem cellscontribute to vasculogenesis, angiogenesis and endothelial repair. Kidney Int2008,74(7),879-889.
    [46] Losordo DW, Dimmeler S. Therapeutic angiogenesis and vasculogenesis forischemic disease-Part II: Cell-based therapies. Circulation2004,109(22),2692-2697.
    [47] Follin B, Tratwal J, Haack-Sorensen M, et al. Identical effects of VEGF andserum-deprivation on phenotype and function of adipose-derived stromal cells fromhealthy donors and patients with ischemic heart disease. J Transl Med2013,11,219.
    [48] Fischer C, Schneider M, Carmeliet P. Principles and therapeutic implications ofangiogenesis, vasculogenesis and arteriogenesis. Handb Exp Pharmacol2006,(176Pt2),157-212.
    [49] Monneret G. Mesenchymal stem cells: another anti-inflammatory treatment forsepsis? Nat Med2009,15(6),601-602.
    [50] Mizuno H, Tobita M, Uysal AC. Concise Review: Adipose-Derived Stem Cells as aNovel Tool for Future Regenerative Medicine. Stem Cells2012,30(5),804-810.
    [51] Krumholz HM, Peterson ED, Ayanian JZ, et al. Report of the National Heart, Lung,and Blood Institute working group on outcomes research in cardiovascular disease.Circulation2005,111(23),3158-3166.
    [52] Buxton DB, Antman M, Danthi N, et al. Report of the National Heart, Lung, andBlood Institute Working Group on the Translation of Cardiovascular MolecularImaging. Circulation2011,123(19),2157-2163.
    [53] van der Bogt KEA, Hellingman AA, Lijkwan MA, et al. Molecular Imaging ofBone Marrow Mononuclear Cell Survival and Homing in Murine Peripheral ArteryDisease. Jacc Cardiovasc Imaging2012,5(1),46-55.
    [54] Cao F, Lin S, Xie XY, et al. In vivo visualization of embryonic stem cell survival,proliferation, and migration after cardiac delivery. Circulation2006,113(7),1005-1014.
    [55] Gu E, Chen W-Y, Gu J, et al. Molecular Imaging of Stem Cells: Tracking Survival,Biodistribution, Tumorigenicity, and Immunogenicity. Theranostics2012,2(4),335-345.
    [56] Jiang H, Cheng Z, Tian M, et al. In vivo imaging of embryonic stem cell therapy.Eur J Nucl Med Mol I2011,38(4),774-784.
    [57] Sheikh AY, van der Bogt KEA, Doyle TC, et al. Micro-CT for Characterization ofMurine CV Disease Models. Jacc Cardiovasc Imaging2010,3(7),783-785.
    [58] Kaijzel EL, Snoeks TJA, Buijs JT, et al. Multimodal imaging and treatment of bonemetastasis. Clin Exp Metastas2009,26(4),371-379.
    [59] Culver J, Akers W, Achilefu S. Multimodality molecular imaging with combinedoptical and SPECT/PET modalities. J Nucl Med2008,49(2),169-172.
    [60] Weissleder R, Pittet MJ. Imaging in the era of molecular oncology. Nature2008,452(7187),580-589.
    [61] Hricak H, Choi BI, Scott AM, et al. Global Trends in Hybrid Imaging. Radiology2010,257(2),498-506.
    [62] Hyde D, Miller E, Brooks D, et al. New techniques for data fusion in multimodalFMT-CT imaging.2008IEEE International Symposium on Biomedical Imaging:From Nano to Macro, Identical effects of VEGF and serum-deprivation onphenotype and function of adipose-derived stromal cells from healthy donors andpatients with ischemic heart disease. IEEE Int Symp Biomed Imaging2008,1-4,1597-1600.
    [63] Townsend DW. Dual-modality imaging: Combining anatomy and function. J NuclMed2008,49(6),938-955.
    [64] Townsend DW. Multimodality imaging of structure and function. Phys Med Biol2008,53(4), R1-R39.
    [65] Xia Z, Huang X, Zhou X, et al. Registration of3-D CT and2-d flat images ofmouse via affine transformation. IEEE T Inf Technol B2008,12(5),569-578.
    [66] Klose AD, Beattie BJ. Bioluminescence Tomography with CT/MRICo-Registration. Ann int conference IEEE, Eng Med Biol2009,1-20,6327-6330.
    [67] Kern S, Eichler H, Stoeve J, et al. Comparative analysis of mesenchymal stem cellsfrom bone marrow, umbilical cord blood, or adipose tissue. Stem Cells2006,24(5),1294-1301.
    [68] Kinnaird T, Stabile E, Burnett MS, et al. Marrow-derived stromal cells expressgenes encoding a broad spectrum of arteriogenic cytokines and promote in vitroand in vivo arteriogenesis through paracrine mechanisms. Circ Res2004,94(5),678-685.
    [69] Darkazalli A, Levenson CW. Tracking stem cell migration and survival in braininjury: Current approaches and future prospects. Histol Histopathol2012,27(10),1255-1261.
    [70] Newton IG, Plaisted WC, Messina-Graham S, et al. Optical imaging of progenitorcell homing to patient-derived tumors. Contrast Media Mol Imaging2012,7(6),525-536.
    [71] Zeamari S, Rumping G, Floot B, et al. In vivo bioluminescence imaging of locallydisseminated colon carcinoma in rats. Brit J Cancer2004,90(6),1259-1264.
    [72] Doubrovin M, Serganova I, Mayer-Kuckuk P, et al. Multimodality in vivomolecular-genetic imaging. Bioconjugate Chem2004,15(6),1376-1388.
    [73] Terrovitis JV, Smith RR, Marban E. Assessment and Optimization of CellEngraftment After Transplantation Into the Heart. Circ Res2010,106(3),479-494.
    [74] Wang J, Zhang S, Rabinovich B, et al. Human CD34(+) Cells in ExperimentalMyocardial Infarction Long-Term Survival, Sustained Functional Improvement,and Mechanism of Action. Circ Res2010,106(12),1904-U1267.
    [75] Liu J, Fan W, Liu M, et al. Spatial Vascular Volume Fraction Imaging forQuantitative Assessment of Angiogenesis. Mol Imaging Biol2014,16(3),362-371.
    [76] Ferrara N, Kerbel RS. Angiogenesis as a therapeutic target. Nature2005,438(7070),967-974.
    [77] Carmeliet P, Jain RK. Molecular mechanisms and clinical applications ofangiogenesis. Nature2011,473(7347),298-307.
    [78] Yang F, Cho S-W, Son SM, et al. Genetic engineering of human stem cells forenhanced angiogenesis using biodegradable polymeric nanoparticles. P Natl AcadSci U S A2010,107(8),3317-3322.
    [79] Arany Z, Foo S-Y, Ma Y, et al. HIF-independent regulation of VEGF andangiogenesis by the transcriptional coactivator PGC-1alpha. Nature2008,451(7181),1008-U1008.
    [80] Montet X, Figueiredo J-L, Alencar H, et al. Tomographic fluorescence imaging oftumor vascular volume in mice. Radiology2007,242(3),751-758.
    [81] Orimo A, Gupta PB, Sgroi DC, et al. Stromal fibroblasts present in invasive humanbreast carcinomas promote tumor growth and angiogenesis through elevatedSDF-1/CXCL12secretion. Cell2005,121(3),335-348.
    [82] Shen Q, Goderie SK, Jin L, et al. Endothelial cells stimulate self-renewal andexpand neurogenesis of neural stem cells. Science2004,304(5675),1338-1340.
    [83] Kang HJ, Kim HS, Zhang SY, et al. Effects of intracoronary infusion of peripheralblood stem-cells mobilised with granulocyte-colony stimulating factor on leftventricular systolic function and restenosis after coronary stenting in myocardialinfarction: the MAGIC cell randomised clinical trial. Lancet2004,363(9411),751-756.
    [84] Yan G, Tian J, Zhu S, et al. Fast cone-beam CT image reconstruction using GPUhardware. J X-Ray Sci Technol2008,16(4),225-234.
    [85] Yan G, Tian J, Zhu S, et al. Fast Katsevich Algorithm Based on GPU for HelicalCone-Beam Computed Tomography. IEEE T Inf Technol B2010,14(4),1053-1061.
    [86] Vandeghinste B, Trachet B, Renard M, et al. Replacing Vascular Corrosion Castingby In Vivo Micro-CT Imaging for Building3D Cardiovascular Models in Mice.Mol Imaging Biol2011,13(1),78-86.
    [87] Teanby NA. An icosahedron-based method for even binning of globally distributedremote sensing data. Comput Geosci2006,32(9),1442-1450.
    [88] Blais JAR. Discrete Spherical Harmonic Transforms of Nearly EquidistributedGlobal Data. J Geodet Sci2011,1(3),251-258.
    [89] Hurley LA, Stein SN. Embedding of corrosion casts of the vascular tree; technic forproduction of transparent plastic anatomic models. Lab Invest; A J Tech MethodsPathol1957,6(2),162-170.
    [90] Bonner-Weir S, Orci L. New perspectives on the microvasculature of the islets ofLangerhans in the rat. Diabetes1982,31(10),883-889.
    [91] Lahvis GP, Lindell SL, Thomas RS, et al. Portosystemic shunting and persistentfetal vascular structures in aryl hydrocarbon receptor-deficient mice. P Natl AcadSci U S A2000,97(19),10442-10447.
    [92] Sekhon LHS, Fehlings MG. Epidemiology, demographics, and pathophysiology ofacute spinal cord injury. Spine2001,26(24), S2-S12.
    [93] Choi IH, Ahn JH, Chung CY, et al. Vascular proliferation and blood supply duringdistraction osteogenesis: A scanning electron microscopic observation. J OrthopRes2000,18(5),698-705.
    [94] McDonald DM, Choyke PL. Imaging of angiogenesis: from microscope to clinic.Nat Med2003,9(6),713-725.
    [95] Gao H, Lang L, Guo N, et al. PET imaging of angiogenesis after myocardialinfarction/reperfusion using a one-step labeled integrin-targeted tracerF-18-AlF-NOTA-PRGD2. Eur J Nucl Med Mol I2012,39(4),683-692.
    [96] Gheysens O, Mottaghy FM. Method of bioluminescence imaging for molecularimaging of physiological and pathological processes. Methods2009,48(2),139-145.
    [97] Liu J, Wang Y, Qu X, et al. In vivo quantitative bioluminescence tomography usingheterogeneous and homogeneous mouse models. Opt Express2010,18(12),13102-13113.
    [98] Pittet MJ, Weissleder R. Intravital Imaging. Cell2011,147(5),983-991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700