用户名: 密码: 验证码:
基于同位素技术与灰色理论的常村矿水文地质特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
常村矿位于河南省义马市东南部,矿井主采侏罗系2-1煤层和2-3煤层,主采煤层顶板分布有侏罗系中统砂砾岩,是煤层顶板直接充水层。井下采掘过程中,遇到导水断层和裂隙水富集带,或当采动造成的“上三带”与上覆含水组(段)沟通时,就会造成顶板突水灾害发生,并且随着开采深度的逐渐加大,导水裂隙带的最大发育高度也逐渐加大,不仅可能沟通垂向分布的多个含水层组,甚至可能沟通采空区。一旦出现上述情况,难免发生大的水害事故。因此,所面临的水害隐患越加严重,突水危险越来越大。
     本文以生产过程中积累的丰富地质资料为基础,首先通过水文地质调查,查明了井田构造、裂隙以及裂隙水的发育和分布规律,得知煤层顶板裂隙发育较差且不均匀,赋存有裂隙水,通过构造裂隙和煤层顶板采动破坏裂隙进入矿井。其次,综合矿区水体同位素特征与矿井突水资料分析表明:矿井充水条件主要受大气降水、地表水、断裂构造、二二盘区积水、顶板砂砾岩厚度等因素的影响,并由此总结了突水规律,确定了井田富水区域为:二一盘区东翼煤层顶板砂岩与泥岩比例较高,是相对富水区,顶板水害问题较突出;二一盘区西翼煤层顶板砂砾岩厚度大,裂隙发育,富水性强,是二一盘区西翼深部开采的重要防治水区域。最后,基于灰色理论分析,建立了预测矿井涌水量的GM(1,1)模型与线性相关-时间序列混合模型,并对未来三年矿井涌水量进行了预测。
     利用同位素技术与灰色理论对常村矿水文地质特征作了详细分析,为常村矿制定准确有效的防治水措施提供可靠依据,并对保证煤矿安全开采,避免水害的发生,具有重要的参考意义。
Changcun coalmine locates in southeastern of Yima , Henan province, mine mainly owners to the 2-1 and 2-3 coal seam of jurassic, distribution of the main coal seam roof is the sandstone conglomerate in the Jurassic system, be that the coal seam roof charge water-course directly. Underground mining process, encounter with hydraulic fault and enrichment zone of fracture water, or when communicate the "upper three zones" caused by mining and overbite water group(segment), roof water will cause a sudden disaster, can bring about roof water inrush disaster, with the depth of exploitation and the roof water inrush disaster gradually increases, the largest development height of water flowing fractured zone also gradually enlarge, not only possible to communicate a number of aquifer formation of the vertical distribution, but also communicates mined-out area. Once appears, has the big flood accident unavoidably. It is inevitable that a major water inrush disaster. Therefore, the more serious is that faces the hidden water disaster, the larger water inrush is.
     In this paper, based on the rich geological data in the process of ammonium production, firstly, the author identifies mine field the development and distribution of structure, cracks and fissure water, passing the additional hydrogeological survey, it is known that roof fracture develops poor and uneven, and occurrence fissure water, by constructing cracks and fissures into the mining shaft.Secondly, by analysis of isotopic features and mine water inrushing information ,the results show that water-filled conditions are affected with precipitation, surface water, fracture structure, the 22 panel hydrops , thickness of roof glutenite and so on, sum up the water invasion regularity and determine the water-rich region:the coalseam roof has a higher proportion of sandstone and mudstone in the east wing of 21 panel, is the water-rich region , and has the prominent roof water hazard problem; the coalseam roof has large thickness of glutenite in the roof of west wing of 21 panel, its fracture and water abundance are strong.therefore, it is the water-rich region and the important regional of controlling water. Finally, based on the grey theory analysis, the author establishes the GM(1,1) model of forecast prediction mine inflow amount, linear-related and time sequence hybrid model, and precipitate mine discharges in the next three years.
     The author prepares the detailed analysis, making use of isotopic techniques and grey theory for hydrogeology features in Changcun coalmine, which may provide the reliable basis for accurate and effective measures in Changcun coalmine, and it has important reference sense, in order to ensure coalmine safety mining and avoid occurring the water damage.
引文
[1]王永红,沈文.中国煤矿水害预防及治理[M].北京:煤炭工业出版社,1996.24-28
    [2]武强,李周尧.矿井水灾防治[M].北京:中国矿业大学出版社.2002.110-116
    [3]王新.煤矿顶板突水机理探讨[J].煤矿开采,2007,12(5):4-76
    [4]李建新等.矿井水文地质条件复杂化原因分析[J].能源技术与管理,2006,1:37-39
    [5] Wang Jiyang,Sun Zhanxue. Brief review on the development of isotope hydrology in China[J], Science in China,2001,44:1-5
    [6] Zhou Lian,Liu Cunfu,Jiang Shan,Gao Shan. A study of 36 C1 age in quaternary groundwater of He bei Plain,China[J]. Science in China,2001,44:l1-15
    [7]于艳青,余秋生,薛忠歧等.同位素技术判定银川平原地下水补给模式[J].宁夏工程技术,2005,4(3):1
    [8]李发东.基于环境同位素方法结合水文观测的水循环研究—以太行山区流域为例: [博士学位论文].中国科学院, 2005.4
    [9]王恒纯.同位素水文地质概论[M].地质出版社,1991
    [10]宋献方,夏军,于静洁.应用环境同位素技术研究华北典型流域水循环机理的展望[J].地理科学进展,2002,21(6): 2-5
    [11] Abd El Samie, S.G. and Sadek, M.A. Groundwater recharge and flow in the Lower Cretaceous Nubian Sandstone aquifer in the Sinai Peninsula, using isotopic techniques and hydrochemistry[J]. Hydrogeology Journal, 2001, 9(4): 378-389
    [12] Afsin, M. Determination of the origin of the Helvadere drinking springs by means of hydrochemical and isotopic techniques, Aksaray, Central Anatolia, Turkey[J]. Environmental Geology, 2000, 39(10): 1190-1196
    [13] Herczeg, A.L., Leaney, F.W.J., Stadter, M.F., Allan, G.L. and Fifield, L.K. Chemical and isotopic indicators of point-source recharge to a karst aquifer, South-Australia[J]. Journal of Hydrology, 1997, 192(1-4): 271-299
    [14] Katz, B.G., Catches, J.S., Bullen, T.D. and Michel, R.L. Changes in the isotopic and chemical composition of ground water resulting from a recharge pulsefrom a sinking stream[J]. Journal of Hydrology, 1998, 211(1-4): 178-207
    [15]林祚顸.同位素技术在水文水资源领域的应用[J].水利水电技术, 2003(7):2-3
    [16] Matter, J.M., Waber, H.N., Loew, S. and Matter, A. Recharge areas and geochemical evolution of groundwater in an alluvial aquifer system in the Sultanate of Oman[J]. Hydrogeology Journal, 2006,14(1-2): 203-224
    [17] Plummer, L.N., Bexfield, L.M., Anderholm, S.K., Sanford, W.E. and Busenberg, E. Hydrochemical tracers in the middle Rio Grande Basin, USA: 1. Conceptualization of groundwater flow[J]. Hydrogeology Journal, 2004, 12(4): 359-388
    [18] Tweed, S.O, Weaver, T.R. and Cartwright, I. Distinguishing groundwater flow paths in different fractured-rock aquifers using groundwater chemistry: Dandenong Ranges, southeast Australia[J]. Hydrogeology Journal, 2005, 13(5-6): 771-786
    [19] Dassi, L., Zouari, K., Seiler, K.P., Faye, S. and Kamel, S. Flow exchange between the deep and shallow groundwaters in the Sbeitla synclinal basin (Tunisia): An isotopic approach[J]. Environmental Geology, 2005, 47(4): 501-511
    [20] Négrel, P., Petelet-Giraud, E. Barbier, J. and Gautier, E. Surface water-groundwater interactions in an alluvial plain: Chemical and isotopic systematics[J]. Journal of Hydrology, 2003, 277(3-4): 248-267
    [21] Mahlknecht, J., Schneider, J.F., Merkel, B.J., de Leon, I.N. and Bernasconi, S.M. Groundwater recharge in a sedimentary basin in semi-arid Mexico[J]. Hydrogeology Journal, 2004, 12(5): 511-530
    [22] Sadek, M.A, and Abd El-Samie, S.G. Pollution vulnerability of the Quaternary aquifer near Cairo, Egypt, as indicated by isotopes and hydrochemistry[J]. Hydrogeology Journal, 2001, 9(3): 273-281
    [23] Dindane, K., Bouchaou, L., Hsissou, Y. and Krimissa, M. Hydrochemical and isotopic characteristics of groundwater in the Souss Upstream Basin, southwestern Morocco[J]. Journal of African Earth Sciences, 2003, 36(4): 315-327
    [24]庞南生.基于灰色系统理论多资源网络计划分配的优化方法[J].运筹与管理.1997,6(1):27-33
    [25]柴涛,刘玉存等.交通事故的灰色预测和关联分析[J].华北工学院报.1998,19(1):1
    [26]高清廉,邱天霞等.山东省海洋渔业结构调整研究[J].青岛海洋大学学报.1999,29(2): 215-22
    [27]张玉祥,陆士良.神经网络在工程时间序列预报问题研究中的应用[J].南京理工大学学报.1997,21(6):522-52
    [28]郭晓汾,徐双应,门广维.基于灰加权关联度的公路主枢纽站场布局决策方法[J].中国公路学报.1997,10(3):83-88
    [29]贾永全,苗树君.黑龙江垦区奶牛产业化的灰色控制[J].黑龙江八一农垦大学学报.1999, 11 (3):92-98
    [30]唐炎钊,邹珊刚.企业技术创新能力的多层次灰色评价科技进步与对策[J]. 1999,16(5): 46-48
    [31]肖新平,关于灰色关联度量化模型的理论研究和评论[J].系统工程理论与实践.1997,(8):76-81
    [32]冯利华.灰色预测模型的问题讨论[J].系统工程理论与实践.1997,(12):12 5-12
    [33]陈世联.灰色系统的几个理论问题[J].系统工程.1997,15(1):20-23
    [34]孙洪星等.环境同位素示踪技术在矿井水防治中的应用[J].水文地质工程地质,2000,27(5):34-37.
    [35]邵益生.水文地质勘察技术发展状况与展望[J].工程勘察,1998(4):14-17
    [36] W. G. Darling, W. M. Edmunds, P. L. Smedley. Isotopic evidence for palaeowaters in British Isles[J]. Applied Geochemistry, 1997(12):813-829
    [37]刘存富,王佩仪,周炼.河北平原地下水氢、氧、碳、氮同位素组成的环境意义[J].地学前缘,1997 (1-2): 267-274
    [38] S. R .Barth. Stable isotope geochemistry of sediment-hosted groundwater from a Late Paleozoic-Early Mesozoic section in central Europe[J]. Journal of Hydrology,2000, 235: 80-8
    [39]章至洁,韩宝平,张月华.水文地质学基础[M].徐州:中国矿业大学出版社,1995
    [40] [Canada]IanD.Clark,Peter Fritz. Environmental isotopes in hydrogeology[M]. Zheng zhou:Huang he River water conservancy press,2006
    [41]文东光.用环境同位素论区域地下水资源属性[J].中国地质大学学报:地球科学,2002,27(2):141
    [42]张应华,仵彦卿,温小虎等.环境同位素在水循环研究中的应用[J].水科学进展,2006,17 (5): 738-741
    [43]郑淑蕙.我国大气降水的氢氧稳定同位素研究[J].科学通报,1983 (13)
    [44]刘存富,王恒纯.环境同位素水文地质学基础[M].武汉:武汉地质学院水文地质教研室,1984.82-83
    [45]林学钰,廖资生等.现代水文地质学[M].北京:地质出版社,2005.210-212
    [46]王怀颖,袁志梅,王瑞久.岩溶地下水流系统和同位素地球化学研究[M].北京:地质出版社,1994.126-130
    [47]胡中信,薛怀军,穆月祥.同位素技术在矿井水防治研究中的应用[J].煤炭工程,2006,(11):48-50
    [48]刘思峰,郭天榜,党耀国等著.灰色系统理论及其应用(第二版) [M].北京:科学出版社,1999.10
    [49]邓聚龙.灰理论基础[M],华中科技大学出版社,2002.2.218-221
    [50]王学萌,罗建军.灰色系统预测决策建模程序集[M].科学普及出版社,1986
    [51]常莉.灰色预测模型及应用[J].吉林化工学院学报,2002,19(4):93-94
    [52]邓聚龙.灰色系统基本方法[M].武汉:华中理工大学出版社,1987.35-38
    [53]邓聚龙.灰色预测与决策[M].武汉:华中工学院出版社,1986.60-68

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700