用户名: 密码: 验证码:
城市不透水表面对流换热系数的实测和模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市不透水表面长时间暴露在随时间不断随机变化的环境条件下,与大气之间的对流换热过程受到室外温度、相对湿度、风速、风向以及太阳辐射等各种因素的影响,是一个复杂的动态过程,从而使得城市不透水表面对流换热系数难以准确测量或推算得到。到目前为止建筑墙体外表面对流换热系数还没有得到系统的研究。对于这样的一个重要领域,目前国内外关于对流换热方面的实测数据严重缺乏,在现有的空调负荷计算方法中,一直采用经验值,且取值各异,更没有较好的确定方法,从而给建筑热工、室内采暖空调负荷、建筑能耗分析及计算带来很大的误差。研究表明,表面对流换热系数15%的不确定量可以导致建筑围护结构预测热流15~20%的不确定量。针对传统实测方法设备复杂、精度难于把握,而模型实验又缺乏相似性的问题,本课题在前人工作的基础上,以热质比拟基本原理为基础,针对室外环境特点,开发出适用于城市不透水表面对流换热的萘升华技术,使该技术可以在室外环境中应用。通过热平衡法与萘升华技术法对建筑外水平表面同时进行实测研究,来验证萘升华技术法的可靠性和准确性。在萘升华技术法的可靠性和准确性得到保证后,利用该技术对建筑群外表面、城市街道路面进行多点的室外实测,来考察表面形状与尺寸、测点空间位置、建筑高度与密度、风速、风向及温差等因素对对流换热的影响。以传热学边界层湍流对流换热理论为理论基础,利用实测数据建立城市不透水表面对流换热的数学模型。通过CFD计算模型的耦合计算,研究在不同的建筑工况及气象条件下建筑外表面对流换热系数、对流换热量及建筑墙体传热量的静态分布规律。
     本课题以建筑热工学、传热学相关理论为基础,研究城市不透水表面的对流换热特性,在城市气候学研究中具有创新意义。为准确预测建筑负荷、研究城市冠层内的热动力特性,解决城市高温化和热岛效应等城市热气候问题提供理论依据。
The urban waterproof surface exposes to the condition which changes continuously and randomly with time. The convective heat transfer with the atmosphere eache other influenced by the outdoor temperature, relative humidity, wind speed, wind direction, solar radiation and so on is an intricate and dynamic process. So it is difficult to measure or calculate the convective heat transfer coefficient of the urban waterproof surface correctly. So far the convective heat transfer coefficient of the building wall’s exterior surface has not been studied systematically. There is a serious lack of the test data about the convective heat transfer in this important domain. The experience value has been using in the existing calculation method of the air conditioning load, and that values obtained are different, and what’s more, there is not a good determinate method at present, which brings big error to the building thermal technique, indoor heating and air-conditioning load and building energy consumption analysis and calculation. The results show that 15% indefinite quantities of convective heat transfer on the surface can lead to 15~20% indefinite quantities of building envelopes when estimating heat flux.
     There are many disadvantages in the traditional experiment method. For instance, equipments are too complex. It is difficult to control the precision, and there is lack of comparability in model experiments. So based on previous researches, this paper gives out a new method of researching on convective heat transfer coefficient of the urban waterproof surface by naphthalene sublimation. It uses the heat-mass transfer analogy method in view of outdoor environment characteristics, and makes this technology possible to be applied in the outdoor environment. Field experimental study has been done in building’s horizontal roof by heat balance method and heat and mass transfer analogy method. It also verifies the reliability and accuracy of naphthalene sublimation technique. After that, multi-point measurements are done in building group’s external surfaces and city’s road surfaces using this method. Then we can know how the following factors influence the convective heat transfer. These factors include the shape and size on surfaces, measuring points’spatial location, height and density of buildings, wind speed, wind direction, temperature difference and so on. Based on the boundary layer turbulence convective heat transfer theory in heat transfer, we establish the mathematical model of convective heat transfer on the urban waterproof surface. Then the computational model in CFD is used to calculate by coupling method. The static distribution law of the convective heat transfer flux, convective heat transfer coefficient and wall’s heat transfer flux on the surface of building is studied under different building location and meteorological conditions through coupling method in CFD.
     Based on some theory in the building thermal technology and heat transfer, this paper studies convective heat transfer characteristic. This result has an innovative significance on urban climatology’s researches. It also provides the theory basis for the research on the problems which are caused by urban warm climate, such as previewing building load accurately, studying the urban canopy’s thermodynamic characteristics and solving urban heat island effect.
引文
1 M. Santamouris, N. Papanikolaou. On the Impact of Urban Climate on the Energy Consumption of Buidings, Solar Energy, 2001, (70):201-216
    2龙惟定.我国发展燃气空调的必要条件,暖通空调新技术, 2003, 5:1-24.
    3江亿.我国建筑能耗趋势与节能重点.建设科技. 2006, 7:10-13
    4薛德强.济南的城市发展对气候的影响.大气气象. 1996, (2):3~7
    5李延明,张济和,古润泽.北京城市绿化与热岛效应的关系研究.城市园林. 2003, (1):72-75
    6毕万鼎,毕容.人工地盘绿化.世界建筑. 2001, (7):82-85
    7 N.E.Wijeysundera, S.K.Chou, S.E.G Jayamaha. Heat Flow from Walls under Transient Rain Conditions. Journal of Thermal Insulation and Building Enverlopes. 1993, (17):118-143
    8邵建涛,刘京,赵加宁.建筑外表面对流换热实验研究进展.建筑科学, 2007, (8):92-97
    9 Oke T R. Boudary-Layer Climates, Routledge, London and John Wiley & Sons, New York, 1987
    10中华人民共和国建设部.民用建筑热工设计规范. GB50176-93.S.北京:中国计划出版社, 1999
    11电子工业部第十设计研究院.空气调节设计手册.北京:中国建筑工业出版社, 1995
    12 Rowley F.B and Eckley W.A. J.ASHVE Transctions, 1932, (38):33
    13 Lawrence Berkeley Laboratory. EnergyPlus Engineering Reference. 2006
    14 M.Yazdanian and J.H.Kelm. Measurement of the Exterior Convective Film Coefficient for Windows in Low-Rise Buildings. D.University of California. Berkeley, California. 1993
    15 D.L.Loveday and A.H.Taki. Convective Heat Transfer Coefficients at a Plane Surface on a Full Scale Building Fa?ade. J.Int.J.Heat Mass Transfer. 1996, (39):1729-1742
    16 Aya Hagishima, Jun Tanimoto and Ken-ich Narita. Intercomparison of Experimental Research on Convective Heat Transfer Coefficients and Mass Transfer Coefficients of Urban Surface. J.Boundary-Layer Meteorology.2005, (117):551-576
    17 Aya Hagishima and Jun Tanimoto. Field Measurements for Estimating Convective Heat Transfer Coefficient at Building Surfaces. J.Building and Environment. 2003, (38):873-881
    18 R.D.Clear, L.Gartland and F.C.Winkelmann. An Empirical Correlation for Outside Convective Air-Film Coefficient for Horizontal Roofs. J.Energy and Buildings. 2003, (35):797-811
    19 S.Sharples. Full-Scale Measurements of Convective Heat Losses from Exterior Buildings Surfaces. J. Buildings and Environment. 1984, (19):31-39
    20 Ling Zhang, Nan Zhang, Fuyun Zhao and Youming Chen. A Genetic-Algorithm-Based Experimental Technique for Determining Heat Transfer Coefficient of Exterior Wall Surface. Applied Thermal Engineering. 2004, (24):339-349
    21张泠.建筑墙体表面换热过程辨识方法与数值预测方法研究. D.湖南大学博士论文. 2001
    22 S.Sharples and P.S.Charlesworth. Full-Scale Measurements of Wind-Induced Convective Heat Transfer from A Roof Mounted Flat Plate Solar Collector. Solar Energy. 1998, (62):69-77
    23 Y. Liu and D.J. Harris. Full-Scale Measurements of Convective Heat Transfer Coefficient on External Surface of A Low-Rise Building in Sheltered Conditions. Building and Environment. 2007, (42):2718-2736
    24 N.Ito, K.Kimura, J.Oka. A Field Experiment Study on the Convective Heat Trasnfer Coefficient on Exterior Surface of A Building. ASHRAE Trans. 1972, (78):184-191
    25 Ken-ich Narita. Experimental Study of the Transfer Velocity for Urban Surface with A Water Evaporation Method. Boundary-Layer Meteorology. 2007, (122):1573-1472
    26 Barlow J.K and Belcher S.E. A Wind Tunnel Model for Quantifying Fluxes in the Urban Boundary Layer. J.Boundary-Layer Meteorology. 2002, (104): 131-150
    27 Janet F.Barlow, Ian N.Harman, Stephen E.Belcher. Scalar Fluxes from Urban Street Canyons. PartI: Laboratory Simulation. Boundary-Layer Meteorology. 2004, (113):369-385
    28孟庆林,张玉,张磊.热气候风洞内测量种植物面当量热阻. J.暖通空调. 2006, (36):111-113
    29 M.Kanda. Progress in the Scale Modeling of Urban Climate:Review. 2006. Theoretical and Applied Climatology. 2006, (84):23-33
    30 R.J.Goldstein and H.H.Cho. A Review of Mass Transfer Measurement Using Naphthalene Sublimation. J.Experimental Thermal and Fluid Science. 1995, (10):416-434
    31张惠华,王允中,陶文铨.强制对流换热的萘升华模拟研究.工程热物理报. 1985, 6(1):98~101
    32马连湘,刘志春,李庆领.滚动轮胎表面对流换热的萘升华研究.橡胶工业. 2003, (50):329-332
    33曹玉彰,林宇震,冯华仲等.空气冷却旋转盘的萘升华-传热传质模拟研究.航空动力学报. 1993, (8):283-287
    34蒋建平,张强,郭亚军等.循环流化床内气粒两相传热的萘升华模拟实验研究. 2004, (24):393-396
    35 Sang Dong Hwang, In Hyuk Jang, Hyung Hee Cho. Experimental Study on Flow and Local Heat-Mass Transfer Characteristics Inside Corrugated Duct. International Journal of Heat and Fluid Flow. 2006, (27):21-32
    36 M.Hirota, H.Fujita, A.Tanaka. Local Heat-Mass Transfer Characteristics in Rectangular Ducts with a Sharp 180-Degree Turn. Energy Conversation and Management. 1997, (38):1155-1168
    37 S.C.Lau, J.Cervantes, J.C.Han. Measurement of Wall Heat-Mass Transfer for Flow through Blockages with Round and Square Holes in a Wide Rectangular Channel. International Journal of Heat and Mass transfer. 2003, (46):3991-4001
    38 Jin-Yoon Kim, Tae-Ho Song. Microscopic Phenomena and Macroscopic Evaluation of Heat Transfer from Plate Fins/Circular Tube Assembly Using Naphthalene Sublimation Technique. International Journal of Heat and Mass Transfer. 2002, (45):3397-3404
    39章熙民,任泽霈,梅飞鸣.传热学(第四版).中国建筑工业出版社, 2001:101~125
    40杨世铭,陶文铨.传热学(第三版).高等教育出版社.北京. 1998年
    41 Cho. Measurement of the Diffusion Coefficient of Naphthalene into Air.Ph.D.Thesis, State Univ. New York at Story Brook. 1989:154~158
    42付志鹏.采用萘升华技术对建筑外表面对流换热的研究.哈尔滨工业大学硕士论文. 2007
    43 Marzio Piller, Enrico Nobile, J.Thomas. DNS Study of Turbulent Transport at Low Prandtl Numbers in a Channel Flow. Journal of Fluid Mechanics. (458):419-441, 2002
    44 J.G. Wissink. DNS of Separating Low Reynolds Number Flow in a Turbine Cascade with Incoming Wakes. International Journal of Heat and Flow. 24(4):626-635, 2003
    45 Markatos N.C. The Mathematical Modeling of Turbulence Flows. Appl Math Modeling. 1986, 10:190-220
    46 Moin P, Kim J. Numerical Investigation of Turbulent Channel Flow. Journal of Fluid Mech. 1982, 118:341-377
    47 Chen Q. Comparison of Different k-εModels for Indoor Airflow Computations. Numerical Heat Transfer. Part B. Fundamentals. 2002, 28:353~369
    48陶文铨.数值传热学(第二版).西安交通大学出版社. 2001年
    49 Yakhot V Orszag S. A Renormalization Group Analysis of Turbulence. I.Basic theory. Journal of Scientific Computing. 1986, 1(1):39~51
    50村上周三. CFD与建筑环境设计.中国建筑工业出版社. 2007: 267-272
    51 Shuzo Murakami. Current Status and Future Trends in Computional Wind Engineering. Journal of Wind Engineering and Indusrial Aerodynamics. 1997, (67):3-34
    52 M.Tsuchiya, S.Murakami, A.Mochida. Development of a New k-εModel for Flow and Pressure Fields around Bluff Body. Journal of Wind Engineering and Industrial Aerodynamics. 1997, (67&68):169-182
    53 Y.Tominaga, S.Murakami, A.Mochida. CFD Prediction of Gaseous Diffusion around a Cubic Model Using a Dynamic Mixed SGS Model Based on Composite Grid Technique. Journal of Wind Engineering and Indusrial Aerodynamics. 1997, (67-68):827-841
    54 S.Murakami. Overview of Turbulence Models Application in CWE-1997. Journal of Wind Engineering and Indusrial Aerodynamics. 1998, (74):1-24
    55 Shuzo Murakami, Ryozo Ooka, Akashi Mochida. CFD Analysis of WindClimate from Human Scale to Urban Scale. Journal of Wind Engineering and Industrial Aerodynamics. 1999, (81):57-81
    56 F.S.Lien, E.Yee, Y.Cheng. Simulation of Mean Flow and Turbulence over 2D Building Array Using High-Resolution CFD and a Distrituted Drag Force Approach. Journal of Wind Engineering and Industrial Aerodynamics. 2004, (92):117-158
    57 Xin Wang, Kevin F.Mcnamara. Evaluation of CFD Simulation Using RANS Turbulence Models for Building Effects on Pollution Dispersion. Environmental Fluid Mechanics. 2006, (6):181-202
    58 Li Lei, Hu Fei, Cheng Xue-Ling, etc. Numerical Simulation of Flow within and over an Intersection Model with Reynolds-averaged Navier-Stokes Method. Chinese Physics. 2006, (15):1009-1963
    59 Jae-Jin Kim, Jong-Jin Baik. A Numerical Study of the Effects of Ambient Wind Direction on Flow and Dispersion in Urban Street Canyons Using the RNG k-εTurbulence Model. Atmospheric Environment. 2004, (38):3039-3048
    60 Jae-Jin Kim, Jong-Jin Baik. Effects of Inflow Turbulence Intensity on Flow and Pollutant Dispersion in Urban Street Canyon. Journal of Wind Engineering and Industrial Aerodynamics. 2003, (91):309-329
    61 Jong-Jin Baik, Jae-Jin Kim. On the Escape of Pollutants from Urban Street Canyons. Atmospheric Environment. 2002, (36):527-536
    62 David Hamlyn, Rex Britter. A Numerical Study of the Flow Field and Exchange Processes with a Canopy of Urban-Type Roughness. Atmospheric Environment. 2005, (39):3243-3254
    63 E.Solazzo, R.E.Britter. Transfer Processes in a Simulated Urban Street Canyon. Boundary Layer Meteorology. Doi 10.1007/s10546-9176-7
    64 Manabu Kanda. Large-Eddy Simulations on the Effects of Surface Geometry of Building Arrays on Turbulence Organized Structures. Boundary-Layer Meteorology. 2006, (118):151-168
    65 Li Lei, Hu Fei, Cheng Xue-Ling, etc. The Application of Computational Fluid Dynamics to Pedestrian Level Wind Safety Problem Induced by High-Rise Buildings. Chinese Physics. 2004, (13):1070-1076
    66 Cheng Xueling, Hu Fei. Numerical Studies on Flow Field around Buildingsin an Urban Street Canyon and Cross Road. Advanced in Atmospheric Science. 2005, (22):290-299
    67 Yoshihida Tominaga, Akashi Mochida. CFD Prediction of Flow Field and Snowdrift around Building Complex in a Snow Region. Journal of Wind Engineering and Industrial Aerodynamics. 1999, (81):273-282
    68 Jae-Jin Kim, Jong-Jin Baik. Urban Street-Canyon Flows with Bottom Heating. Atmospheric Environment. 2001, (35):3395-3404
    69 Jean-Francois Sini, Sandrine Anquetin, Patrice G. Mestayer. Pollutant Dispersion and Thermal Effects in Urban Street Canyons. Atmospheric Environment. 1996, (30):2659-2677
    70 Kovar-Panskus, L.Moulinneuf, E.Savary. A Wind Tunnel Investigation of the Influence of Solar-Induced Wall Heating on the Flow Regime within a Simulated Urban Canyon. Water Air and Soil Pollution. 2002, (Focus2):555-571
    71 P.Louka, G.Vachon, J.F.Sini, etc. Thermal Effects on the Airflow in a Street Canyon-Nantes'99 Experimental Resluts and Model Simulations. Water Air and Soil Pollution. Focous 2:351-364
    72 Vu Thanh Ca, Takashi Asaeda, Munabu Ito, etc. Characteristics of Wind Field in a Street Canyon. Journal of Wind Engineering and Indusrial Aerodynamics. 1995, (57):63-80
    73 Kiyoshi Uehara, Shuzo Murakami, Susumu Oikawa, etc. Wind Tunnel Experiments on How Thermal Stratification Affects Flow in and above Urban Street Canyons. Atmospheric Environment. 2000, (34):1553-1562
    74 Xiaomin Xie, Zhen Huang, Jiasong Wang, etc. The Impact of Solar Radiation and Street Layout on Pollutant Dispersion in Street Canyon. Building and Environment. 2005, (40):201-212
    75 B.Offerle, I.Eliasson, C.S.B.Grimmond, etc. Surface Heating in Relation to Air Temperature, Wind and Turbulence in an Urban Street Canyon. Boundary-Layer Meteorology. 2007, (122):273-292

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700