用户名: 密码: 验证码:
传感器网络多目标协同跟踪技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着运载火箭和航天器技术的飞速发展,人类的活动空间从陆地、海洋、天空扩展到了太空。在新军事变革的引领下,太空成为未来战争的制高点,制太空信息权是夺取高科技战争胜利的必备因素。卫星网络作为实现太空信息对抗的有效手段,具有重要的军事价值和广阔的发展前景。
     然而,卫星网络节点数量众多,单个节点的感知、处理能力有限,网络拓扑结构动态变化,应用环境复杂多样,这些特点从基础理论和工程实际两个层面给网络的协同应用带来巨大挑战。因此,本文围绕大规模高动态立体卫星网络协同技术这个核心,以跟踪多个空间机动目标为背景,首次将多智能体理论引入到具有高动态拓扑结构的空间网络中,构建了基于移动动态联盟的卫星网络多机动目标协同跟踪理论和仿真模型,并深入研究了其中的几项关键技术。
     本文主要研究内容概述如下:
     1.针对空间移动目标跟踪这个背景,结合移动智能体和动态联盟的基本思想,引入移动动态联盟的概念,并以此为基础发展了基于移动动态联盟的卫星网络多机动目标协同跟踪理论。该理论将协同跟踪过程分为动态联盟形成、联盟内部的协同信息处理和动态联盟交接三个步骤,从理论上解决了大规模高动态立体卫星网络协同跟踪多个空间移动目标的难题。
     2.针对卫星网络协同跟踪多目标时的动态联盟形成问题,提出了一种基于合作博弈的动态联盟形成算法。首先采用弹性神经网络模型对卫星网络进行多任务集合划分,然后对多动态联盟形成问题建模,提出了基于合作博弈的移动动态联盟形成算法,解决了多目标跟踪时多个动态联盟自组织形成的难题,同时在整体的跟踪过程中提高了卫星网络的跟踪精度。
     3.针对协同信息处理技术中的数据融合问题,将非线性滤波算法和平均一致技术相结合,提出了完全分布式的数据融合算法,解决了原有数据融合技术应用在卫星网络中鲁棒性差、生存能力不强的缺陷;然后对标准平均一致算法进行改进,提高了算法的收敛速度。
     4.针对协同信息处理技术中的融合结构优化问题,将Gossip路由协议和完全分布式的融合算法相结合,并利用次梯度算法进一步改进信息传输结构,解决了信息广播带来的内爆问题。
     5.针对动态联盟移动过程中的交接问题,构造了由预测机制和修复机制相结合的动态联盟交接方法。此方法不仅设置了预测机制来更新下一时刻动态联盟的跟踪覆盖区域,而且针对目标出现大机动这种特殊情况,引入了基于内插的修复机制,提高了机动目标的跟踪精度,解决了卫星网络对高机动目标协同跟踪并建立连续航迹的难题。
     6.针对卫星网络协同跟踪多机动目标的实际应用,建立了完整的移动动态联盟多机动目标协同跟踪模型。仿真实验验证了该协同跟踪模型的有效性。
With the rapid development of launch vehicle and spacecraft technology, human activities extend to the outer space from the land, sea and space. Under the guidance of the new military revolution, outer space has become the dominant position of the future wars and information dominance in outer space is an essential factor to win the high-tech wars. As an effective means to carrying out information countermeasures in the outer space, satellite network has an important military value and broad prospects for development.
     However, the number of nodes in satellite network is large; the detection and processing capability of single node is limited; the topological structure of satellite network dynamically changes; the application environment of satellite network is complex and diverse. These characteristics bring on tremendous challenges in collaborative applications of satellite network from basic theory to engineering application. Therefore, aiming at collaborative technique of large-scale, greatly dynamic and tridimensional satellite network, under the background of tracking multiple maneuvering targets in outer space, this paper applies multi-agent theory to a greatly dynamic network in outer space firstly, then constructs integrated multi-target collaborative tracking theory and simulation model based on mobile dynamic coalition, moreover studies several key techniques. The following is the summarization of the main work in this paper:
     1. Aiming at the background of tracking moving targets in space, the concept of mobile dynamic coalition is presented combining the basic idea of mobile agent and dynamic coalition. Then integrated multi-target collaborative tracking theory is developed based on mobile dynamic coalition in satellite network. The theory divides collaborative tracking process into several steps such as the dynamic coalition formation, collaborative signal and information processing in dynamic coalition and dynamic coalition handover. It solves the difficult problem of a large-scale, greatly dynamic and tridimensional satellite network collaborative tracking multiple maneuvering targets in theory.
     2. Aiming at the dynamic coalition formation of collaborative tracking multiple maneuvering targets in satellite network, a coalition formation method is presented based on cooperative game. Elastic neural network model is utilized to partition satellite network into several node sets firstly. Then the model of multiple dynamic coalitions formation problem is established and the mobile dynamic coalition formation algorithm is proposed based on the cooperative game. The proposed algorithm solves the difficult problem of multiple dynamic coalitions self-organizing formation, moreover improves tracking accuracy of satellite network in the whole tracking process.
     3. Aiming at the problem of data fusion in collaborative signal and information processing technique, a completely distributed data fusion algorithm is presented combining nonlinear filter algorithm and average consensus technique. The proposed algorithm solves the disadvantages such as weak robustness and viability when old data fusion technique applies in satellite network. Then an improved method is proposed to accelerate average consensus algorithm achieving convergence.
     4. Aiming at the problem of fusion structure optimization in collaborative signal and information processing technique, an algorithm is proposed combining Gossip routing protocol and completely distributed data fusion technique. Then subgradient method is utilized to improve information transmission structure. The proposed algorithm solves implosion problem resulting from information broadcasted.
     5. Aiming at the problem of handover in the dynamic coalition moving process, a dynamic coalition handover method comprising of the predicting mechanism and the recovery mechanism is constructed. This method not only sets up a predicting mechanism to update the tracking coverage region of the new dynamic coalition, but also aiming at the special situations that targets maneuver, presents a recovery mechanism based on interpolation. This handover method improves tracking accuracy of maneuvering targets and solves the difficult problem of satellite network tracking highly maneuvering targets and setting up continuous tracks.
     6. Aiming at the practical application of satellite network collaborative tracking multiple maneuvering targets, integrated multi-target collaborative tracking simulation model is constructed based on mobile dynamic coalition. Simulation results validate the effectiveness of this collaborative tracking model.
引文
1. J. Lessmann and A. Krishnamurthy. Applying multi-level topology control to satellite formations - a mobile sensor network in space.Mobile Wireless Communications Networks, 2007 9th IFIP International Conference on. 2007: 156-160.
    2.李志刚,罗明,吴丛领.传感器网络用于网络中心战.电子对抗, 2006(05).
    3. A. Krishnamurthy and R. Preis. Satellite formation, a mobile sensor network in space.Parallel and Distributed Processing Symposium, 2005. Proceedings. 19th IEEE International. 2005: 7 pp.
    4.代坤,鲁士文.天基综合信息网的体系结构模型.微电子学与计算机, 2004(04).
    5.张万鹏.多星侦察系统任务建模及规划技术研究.国防科学技术大学. 2005.
    6.袁俊.前苏联发展反卫星武器的回顾.现代防御技术. 2000(05).
    7.杨华,陈昌明,凌永顺等.,天基导弹预警系统及对其的攻击和干扰分析.航天电子对抗. 2001(04).
    8.钟陪武.美国“国防支援计划”卫星现状.国际太空. 2003(07).
    9.冯芒.美国的新一代导弹预警卫星系统——天基红外系统.飞航导弹. 2001(10).
    10.闻新,杨嘉伟.军用卫星的发展趋势分析.现代防御技术. 2002(04).
    11.魏晨曦,汪琦,韦荻山.俄罗斯空间监视系统及其发展.国际太空. 2007(05).
    12.王震,邓大松.俄罗斯天基预警系统浅析.电子工程师. 2006(03).
    13.沈自成.天基测控网与天基综合信息网相关技术述评.电讯技术. 2002(01).
    14. M.J. Osborne and A. Rubinstein, A course in game theory. 1994: MIT press.
    15. M. Klusch and A. Gerber, Dynamic coalition formation among rational agents. Intelligent Systems, IEEE, 2002. 17(3): 42-47.
    16. S.P. Ketchpel, Coalition formation among autonomous agents, in Proceedings of the 5th European Workshop on Modelling Autonomous Agents in a Multi-Agent World, MAAMAW'93, Aug 25-27 1993. 1995, Springer-Verlag GmbH & Company KG: Neuchatel, Switzerland: 73-73.
    17. O. Shehory and S. Kraus, Coalition formation among autonomous agents: Strategies and complexity, in Proceedings of the 5th European Workshop on Modelling Autonomous Agents in a Multi-Agent World, MAAMAW'93, Aug 25-27 1993. 1995, Springer-Verlag GmbH & Company KG: Neuchatel, Switzerland: 56-56.
    18. B. Horling and V. Lesser, A survey of multi-agent organizational paradigms. Knowledge Engineering Review, 2004. 19(4): 281-316.
    19. T. Rahwan and N.R. Jennings. Coalition structure generation: Dynamic programming meets anytime optimization. Chicago, IL, United states. 2008: 156-161.
    20. S.-X. Su, S.-L. Hu, and C.-Y. Shi. Coalition structure generation with worst case guarantees based on cardinality structure. Honolulu, HI, United states. 2007: 1190-1192.
    21. T. Rahwan, S.D. Ramchurn, V.D. Dang, et al. Near-optimal anytime coalition structure generation.Proceedings of the Twentieth International Joint Conference on Artificial Intelligence. 2007: 2365–2371.
    22. T. Rahwan and N.R. Jennings, An algorithm for distributing coalitional value calculations among cooperating agents. Artificial Intelligence, 2007. 171(8-9): 535-567.
    23. V.D. Dang and N.R. Jennings, Coalition structure generation in task-based settings. FRONTIERS IN ARTIFICIAL INTELLIGENCE AND APPLICATIONS, 2006. 141: 210.
    24. J. Yang and Z. Luo, Coalition formation mechanism in multi-agent systems based on genetic algorithms. Applied Soft Computing Journal, 2007. 7(2): 561-568.
    25. S.-F. Zheng, S.-L. Hu, X.-W. Lai, et al. Searching for agent coalition using particle swarm optimization and death penalty function. Qingdao, China. 2007: 196-207.
    26. O. Shehory and S. Kraus, Methods for task allocation via agent coalition formation. Artificial Intelligence, 1998. 101(1-2): 165-200.
    27. R. Glinton, P. Scerri, and K. Sycara. Agent-based sensor coalition formation.Information Fusion, 2008 11th International Conference on. 2008: 1-7.
    28. L.K. Soh and X. Li. An integrated multilevel learning approach to multiagent coalition formation.International Joint Conference on Artificial Intelligence. 2003: 619-624.
    29. L.-K. Soh and X. Li. Adaptive, confidence-based multiagent negotiation strategy.Proceedings of the Third International Joint Conference on Autonomous Agents and Multiagent Systems. New York, NY, United states. 2004: 1048-1055.
    30.夏娜,蒋建国,魏星等.改进型蚁群算法求解单任务Agent联盟.计算机研究与发展. 2005(05).
    31. L. Vig and J.A. Adams, Multi-robot coalition formation. Robotics, IEEE Transactions on, 2006. 22(4): 637-649.
    32. J.G. Yang and Z.H. Luo, Coalition formation mechanism in multi-agent systems based on genetic algorithms. Applied Soft Computing, 2007. 7(2): 561-568.
    33. G. Wang, H. Yu, J. Xu, et al. A multi-agent model based on market competition for task allocation: A game theory approach. Piscataway, United States. 2004: 282-286.
    34. A. Bo, S. Zhiqi, M. Chunyan, et al., Algorithms for Transitive Dependence-Based Coalition Formation. Industrial Informatics, IEEE Transactions on, 2007. 3(3): 234-245.
    35.于江涛.多智能体模型、学习和协作研究与应用.浙江大学. 2003.
    36. G. Zlotkin and J.S. Rosenschein. Coalition, cryptography, and stability: mechanisms for coalition formation in task oriented domains. Seattle, WA, USA. 1994: 432-437.
    37.夏娜,蒋建国,于春华等.一种基于利益均衡的联盟形成策略.控制与决策. 2005(12).
    38.蒋建国,夏娜,于春华.基于能力向量发挥率和拍卖的联盟形成策略.电子学报. 2004(S1).
    39.韩崇昭,朱洪艳,段战胜.多源信息融合. 2006,北京:清华大学出版社.
    40. G. Quanbo, Z. Zhulin, Z. Sujun, et al. A data fusion approach based on sequential and strong tracking filters with nonlinear dynamic systems.Systems and Control in Aerospace and Astronautics, 2006. ISSCAA 2006. 1st International Symposium on. 2006: 6 pp.-1349.
    41. R. Olfati-Saber and Ieee. Distributed Kalman filter with embedded consensusfilters.44th IEEE Conference on Decision Control/European Control Conference (CCD-ECC). Seville, SPAIN. 2005: 8179-8184.
    42. R. Olfati-Saber. Distributed Kalman filtering for sensor networks.Decision and Control, 2007 46th IEEE Conference on. 2007: 5492-5498.
    43. R. Olfati-Saber. Distributed Tracking for Mobile Sensor Networks with Information-Driven Mobility.American Control Conference, 2007. ACC '07. 2007: 4606-4612.
    44. D.P. Spanos, R. Olfati-Saber, and R.M. Murray. Dynamic consensus on mobile networks. 2005.
    45. R. Olfati-Saber and N.F. Sandell. Distributed tracking in sensor networks with limited sensing range.American Control Conference, 2008. 2008: 3157-3162.
    46. S. Kirti and A. Scaglione. Scalable distributed Kalman filtering through consensus.Acoustics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE International Conference on. 2008: 2725-2728.
    47. R. Carli, A. Chiuso, L. Schenato, et al., Distributed Kalman filtering based on consensus strategies. Ieee Journal on Selected Areas in Communications, 2008. 26(4): 622-633.
    48. L. Xiao, S. Boyd, and S.-J. Kim, Distributed average consensus with least-mean-square deviation. Journal of Parallel and Distributed Computing, 2007. 67(1): 33-46.
    49. R. Rahman, M. Alanyali, and V. Saligrama, Distributed tracking in multihop sensor networks with communication delays. Ieee Transactions on Signal Processing, 2007. 55(9): 4656-4668.
    50.郭文艳,韩崇昭,连峰.基于平方根UKF的多传感器融合跟踪.系统仿真学报. 2008(12).
    51.王雪,王晟,马俊杰.分布式无线传感网络的协作目标跟踪策略.电子学报. 2007(05).
    52. M. Kumar, D.P. Garg, and R.A. Zachery, A Method for Judicious Fusion of Inconsistent Multiple Sensor Data. Sensors Journal, IEEE, 2007. 7(5): 723-733.
    53. P. Zhizhuan, F. Jinfu, W. Youli, et al. Data Fusion Approach With MMW Radar and IR Sensor Based on MEKF.Mechatronics and Automation, 2007. ICMA 2007. International Conference on. 2007: 1992-1996.
    54. X. Xiaobin, G. Quanbo, and W. Chenglin. A Fusion Algorithm of MultisensorSystem Based on Sequential Filtering in Distributed Network.Automation and Logistics, 2007 IEEE International Conference on. 2007: 2325-2328.
    55. X. Sheng, Y.H. Hu, and R. Parameswaran. Distributed particle filter with GMM approximation for multiple targets localization and tracking in wireless sensor network.Information Processing in Sensor Networks, 2005. IPSN 2005. Fourth International Symposium on. 2005: 181-188.
    56. Q. Li, J.-f. Feng, Z.-z. Peng, et al. An Iterated Extend Kalman Particle Filter for Multi-sensor based on pseudo sequential fusion.Robotics and Biomimetics, 2007. ROBIO 2007. IEEE International Conference on. 2007: 1534-1539.
    57. Z. Tong and A. Nehorai, Distributed Sequential Bayesian Estimation of a Diffusive Source in Wireless Sensor Networks. Signal Processing, IEEE Transactions on, 2007. 55(4): 1511-1524.
    58. Z. Tong and A. Nehorai, Information-Driven Distributed Maximum Likelihood Estimation Based on Gauss-Newton Method in Wireless Sensor Networks. Signal Processing, IEEE Transactions on, 2007. 55(9): 4669-4682.
    59.孙利民,李建中,陈渝等.无线传感器网络. 2005,北京:清华大学出版社. 267-271.
    60. L. Hong, L. Yonghe, and S.K. Das, Routing Correlated Data in Wireless Sensor Networks: A Survey. Network, IEEE, 2007. 21(6): 40-47.
    61. C. Intanagonwiwat, D. Estrin, R. Govindan, et al. Impact of network density on data aggregation in wireless sensor networks.Distributed Computing Systems, 2002. Proceedings. 22nd International Conference on. 2002: 457-458.
    62. C. Intanagonwiwat, R. Govindan, D. Estrin, et al., Directed diffusion for wireless sensor networking. Networking, IEEE/ACM Transactions on, 2003. 11(1): 2-16.
    63. W.R. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-efficient communication protocol for wireless microsensor networks.System Sciences, 2000. Proceedings of the 33rd Annual Hawaii International Conference on. 2000: 10 pp. vol.12.
    64. A. Manjeshwar and D.P. Agrawal. TEEN: a routing protocol for enhanced efficiency in wireless sensor networks.Parallel and Distributed Processing Symposium., Proceedings 15th International. 2001: 2009-2015.
    65. S. Lindsey and C.S. Raghavendra. PEGASIS: Power-efficient gathering insensor information systems.Aerospace Conference Proceedings, 2002. IEEE. 2002: 3-1125-1123-1130 vol.1123.
    66. L.M. Kaplan, Global node selection for localization in a distributed sensor network. Ieee Transactions on Aerospace and Electronic Systems, 2006. 42(1): 113-135.
    67. Y.-C. Tseng, S.-P. Kuo, H.-W. Lee, et al., Location tracking in a wireless sensor network by mobile agents and its data fusion strategies. Computer Journal, 2004. 47(4): 448-460.
    68. V. Tsiatsis and M.B. Srivastava. Poster abstract: On the interaction of network characteristics and collaborative target tracking in sensor networks. Los Angeles, CA, United states. 2003: 316-317.
    69. K. Mechitov, Y. Kwon, S. Sundresh, et al. Poster abstract: Cooperative tracking with binary-detection sensor networks. Los Angeles, CA, United states. 2003: 332-333.
    70. W.S. Zhang and G.H. Cao, DCTC: Dynamic convoy tree-based collaboration for target tracking in sensor networks. Ieee Transactions on Wireless Communications, 2004. 3(5): 1689-1701.
    71.李勇.多Agent系统联盟及任务分配的研究.合肥工业大学. 2008.
    72.夏娜.分布式智能系统中联盟机制研究.合肥工业大学. 2005.
    73. H. Li, M. Liu, Y. Shen, et al. Research on Task Allocation Technique for Multi-Target Tracking in Wireless Sensor Network.Mechatronics and Automation, 2007. ICMA 2007. International Conference on. 2007: 360-365.
    74.汪贤裕,肖玉明.博弈论及其应用. 2008,北京:科学出版社. 160-203.
    75. X.T. Deng and C.H. Papadimitriou, On the Complexity of Cooperative Solution Concepts. Mathematics of Operations Research, 1994. 19(2): 257-266.
    76. P. Tichavsky, C.H. Muravchik, and A. Nehorai, Posterior Cramer-Rao bounds for discrete-time nonlinear filtering. Signal Processing, IEEE Transactions on, 1998. 46(5): 1386-1396.
    77. Z. Feng, S. Jaewon, and J. Reich, Information-driven dynamic sensor collaboration. Signal Processing Magazine, IEEE, 2002. 19(2): 61-72.
    78. T. Yue Khing, X. Wendong, and X. Lihua. A Wireless Sensor Network Target Tracking System with Distributed Competition based Sensor Scheduling.Intelligent Sensors, Sensor Networks and Information. 2007:257-262.
    79. G. Dong and W. Xiaodong, Dynamic sensor collaboration via sequential Monte Carlo. Selected Areas in Communications, IEEE Journal on, 2004. 22(6): 1037-1047.
    80. Z. Long, N. Ruixin, and P.K. Varshney. Posterior Crlb Based Sensor Selection for Target Tracking in Sensor Networks.Acoustics, Speech and Signal Processing, 2007. ICASSP 2007. IEEE International Conference on. 2007: II-1041-II-1044.
    81. Z. Long, N. Ruixin, and P.K. Varshney. A sensor selection approach for target tracking in sensor networks with quantized measurements.Acoustics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE International Conference on. 2008: 2521-2524.
    82. C. Hue, J.P. Le Cadre, and P. Perez, Posterior Cramer-Rao bounds for multi-target tracking. Aerospace and Electronic Systems, IEEE Transactions on, 2006. 42(1): 37-49.
    83.韩海峰,周文辉,陈国海.目标跟踪中协方差控制的分布式多传感器管理.现代雷达. 2007(01).
    84.李海昊.无线传感器网络目标跟踪任务分配及滤波技术的研究.哈尔滨工业大学. 2007.
    85. R. Olfati-Saber and R.M. Murray, Consensus problems in networks of agents with switching topology and time-delays. Ieee Transactions on Automatic Control, 2004. 49(9): 1520-1533.
    86. L. Xiao and S. Boyd, Fast linear iterations for distributed averaging. Systems & Control Letters, 2004. 53(1): 65-78.
    87. L. Xiao, S. Boyd, and S. Lall. A scheme for robust distributed sensor fusion based on average consensus.Information Processing in Sensor Networks. IPSN 2005. Fourth International Symposium on. 2005: 63-70.
    88.于宏毅,李欧,张效义.无线传感器网络理论、技术与实现. 2008,北京:国防工业出版社. 143-144.
    89. A.D.G. Dimakis, A.D. Sarwate, and M.J. Wainwright, Geographic Gossip: Efficient Averaging for Sensor Networks. Signal Processing, IEEE Transactions on, 2008. 56(3): 1205-1216.
    90. S. Boyd, A. Ghosh, B. Prabhakar, et al. Analysis and optimization ofrandomized gossip algorithms.Decision and Control, 2004. CDC. 43rd IEEE Conference on. 2004: 5310-5315 Vol.5315.
    91. D. Kempe and F. McSherry, A decentralized algorithm for spectral analysis. Journal of Computer and System Sciences, 2008. 74(1): 70-83.
    92.杜兰. GEO卫星精密定轨技术研究.解放军信息工程大学. 2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700