用户名: 密码: 验证码:
富电性镍配合物在C-X(X=F,Cl,CN)键活化中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镍属于过渡金属Ⅷ族元素,其化合物在有机合成、工业催化等方面被广泛应用。三价膦化合物作为一种强支持配体与过渡金属能形成稳定的配合物,广泛存在于金属有机化合物中。三甲基膦支持的金属镍配合物具有良好的反应活性和选择性。
     1.三甲基膦支持的富电性镍(0)和钴(0)配合物在C-Cl键活化中的应用
     芳基氯化物是有机合成中的重要中间体,并且在工业、农业、制革、医药等行业具有广泛的应用,由于其廉价易得,取代较为昂贵的芳基溴化物、碘化物作为合成原料也就具有明显的经济价值。但由于含氯有机物具有长期残留性,生物蓄积性以及强致癌性,含氯有机物对环境的污染己经引起了各国政府、学术界和公众的广泛关注,成为一个全球性环境问题。因此,掌握新的C-Cl键活化手段,寻求新的氯化、脱氯化合物,对于解决日益严重的环境问题,具有积极的作用。
     本课题利用Ni(PMe_3)_4与苯甲醛亚胺类化合物(1-4,11-13,17,18)反应,通过环金属化,得到一系列含有五元螯合环的二价镍配合物(5-8,14-16,19,20)。
     利用Ni(PMe_3)4与2,6-二氯苯甲醛亚胺类化合物(1-4,11-13)的反应,原位充入1个大气压的CO气体,通过羰基化和环金属化寻找到了一种更为有效的制备双异吲哚啉酮化合物(21-24,33-35)的方法,并推测了该反应的可能机理。为了优化制备双异吲哚啉酮化合物的反应路线,提高其制备反应的速率和产率,我们尝试了Ni(PMe_3)_2(COD)与2,6-二氯苯甲醛亚胺类化合物(1-4)反应,然后与CO的反应,同样得到双异吲哚啉酮化合物(21-24),与Ni(PMe_3)_4相比,其反应的产率和速率明显提高。
     另外,我们还尝试了Co(PMe_3)_4与2,6-二氯苯甲醛亚胺类化合物3的反应,然后与CO的反应,同样得到双异吲哚啉酮化合物23。
     2.三甲基膦支持的低价态镍配合物在C-F键活化中的应用
     C-F键活化的研究具有很大的意义和应用价值。掌握活化C-F键的新手段不仅有助于我们研究合成新的多功能性氟代有机物,而且有助于解决日益严重的含氟化合物对环境的污染问题。
     本课题利用三甲基膦支持的零价镍配合物Ni(PMe_3)_2(COD),成功实现了含锚定基团的苯甲醛亚胺中C-F键的活化,并且得到多核镍的簇合物37。在功能化反应中,初步探讨了氟代苯甲醛亚胺与Ni(PMe_3)_2(COD)反应,然后与CO的反应,试图寻找一种制备氟代羰基化合物的新途径。
     利用Ni(PMe_3)_2(COD)与全氟吡啶的反应,成功地实现了不含锚定基团的化合物中C-F键活化。在Ni(PMe_3)_2(COD)与全氟萘的反应中,虽然没有实现全氟萘中C-F键的活化,但我们已经分离出π配位的中间体化合物46和47。改变反应的温度、溶剂和压力或许会成功实现C-F键的活化。
     3.三甲基膦支持的低价态镍配合物在C-CN键活化中的应用
     碳-碳键的活化与断裂在石油化工、材料工业、有机合成等领域具有重要的研究意义和应用价值。目前,此类反应大多数需要在长时间加热甚至加压的条件下进行,并且伴随有副反应和环境污染。研究在较温和条件下碳.碳键活化,是一个十分有意义的课题。
     本课题利用零价镍配合物Ni(PMe_3)_4和Ni(PMe_3)_2(COD)分别与取代苯甲腈的反应,在较温和的条件下实现了C-CN键的活化,并初步探讨了腈基镍配合物与溴苯和CO等的反应性能。
     4.三甲基膦支持的含硫有机镍配合物的合成及性质研究
     金属硫配合物是生物电子转移调节剂,它存在于基本催化过程(如催化脱硫)和生物过程(如Fe-S蛋白质)。
     本课题利用NiMe_2(PMe_3)_3分别与两分子当量的苯硫酚,邻甲基苯硫酚和对甲氧基苯硫酚反应得化合物54,55和56,推测并验证了反应机理,低温下成功分离得到其中间体化合物57。并初步探讨了金属硫配合物与CO、苯乙炔等的反应性能。
     NiMe_2(PMe_3)_3与硫代水杨醛以及甲基取代硫代水杨醛分别反应得到新的金属有机二价镍的化合物61和62。并初步探讨了化合物61和62分别和碘甲烷的反应性能。
     新化合物采用IR,~1H NMR,~(13)C NMR,~(31)P NMR等手段进行表征,获得单晶的化合物进一步用单晶结构证实。
Nickel belongs toⅧfamily of transition metals.Because of its fine coordination activity and relatively low price,it has been widely used in organic synthesis,industrial catalysis,etc.Trivalent phosphine as a strong ligand can form stable complexes with transition metals,and can be widely found in organometallic conpouds.Organonickel compound supported by trimethylphosphine has high reaction activity and selectivity.
     1.Application of electron-rich nickel(0) and cobalt(0) complexes supported by trimethylphosphine in C-Cl bond activation
     Chloroarenes are the important intermediates in organic synthesis,and they have been used in industry,agriculture,leather,pharmaceutical and other industries.Because of they are inexpensive and readily available,replacing the more expensive aryl bromide, iodide as raw materials will have significant economic value.The disposal of organic wastes containing halogen has become a major environmental and social problem,because most of them are toxic and thermally stable,accumulating in the surroundings for long time periods.Mastery of the activation of C-Cl bond will help us to find a new chlorination,dechlorination and C-Cl bond key functional way,and help us solve the serious environmental problems.
     Reactions of Ni(PMe_3)_4 with substrates containing imine anchoring groups(1-4,11 -13,17,18),proceed by oxidative addition of the C-Cl bond to give rise to the organo nickel(Ⅱ) complexes(5-8,14-16,19,20),respectively.
     A simple and convenient synthetic method for some novel bis(isoindolinone)(21-24,33-35) starting from aryl chlorides is described by reaction of phenylimines with stoichiometric amounts of tetrakis(trimethylphosphine)nickel(0) under 1 bar of CO at room temperature.The formation mechanism was proposed and discussed.We discovered that the reaction of the phenyl-imines with stoichiometric amounts of (η~4-1,2:5,6-cyclooctadiene)bis(trimethylphosphine)nickel(0),(Ni(PMe_3)_2(COD)),under a CO atmosphere(1 bar) at room temperature could rapidly proceed to give the desired bis(isoindolinone) product in good yields.
     In addition,we attempted the reaction of the phenyl imines with stoichiometric amounts of tetrakis(trimethylphosphine)cobalt(0) under a CO atmosphere(1 bar) at room temperature,it also proceed to give the desired bis(isoindolinone) product.
     2.Application of nickel complexes supported by trimethylphosphine in C-F bond activation
     The study of C-F bond activation has important significance and value.Mastery of the activation of C-F bond will help us to study the new fluorinated organic synthesis,and to solve the increasingly serious problem of environmental pollution.
     Reactions of Ni(PMe_3)_2(COD) with fluorinated compounds containing imine as anchoring group afforded one novel culster complex 37.During the functionalization, we attempted the reaction of fluorinated phenylimines with Ni(PMe_3)_2(COD) under 1 bar of CO,and we wanted to find a new way of preparation of carbonyl compounds.
     Reactions of Ni(PMe_3)_2(COD)with pentafluoropyridine in mild conditions afforded C-F activated products,without anchoring groups.During the reaction of Ni(PMe_3)_2(COD) with octafluoronaphthalene,theπcoordinated intermediates(46,47) were isolated.The C-F bond may be activated according to change the conditions,such as temperature, solvents,pressure and so on.
     3.Application of nickel complexes supported by trimethylphosphine in C-CN bond activation
     The activation of C-C bonds has great value in petrochemical,materials,organic synthesis,and so on.At present,most of such reactions required long time heat even at pressurized conditions,and accompanied by side reactions and environmental pollution. The activation of C-C bonds under mild conditions is currently a very meaningful topic.
     The reaction of Ni(PMe_3)_4 and Ni(PMe_3)_2(COD) with substituted benzonitriles lead to C-C bond cleavage under mild conditions.And we attempted the reactions of benzonitrile nickel(Ⅱ) complexes with bromobenzene and carbon monoxide,respectively.
     4.Synthesis and properties of nickel(Ⅱ) complexes containing trimethylphosphine and thiophenolato-ligands
     Metal thiolate complexes are involved in fundamental catalytic(e.g. hydrodesulfurization) and biological(e.g.iron-sulfur proteins) process.
     The reaction of[NiMe_2(PMe_3)_3]with two molar equivalents of substituted thiophenols gave rise to[Ni(SAr)_2(PMe_3)_2](Ar=phenyl(54),2-methylphenyl(55), 4-methoxyphenyl(56)).The possible reaction mechanism has been proposed,and the intermediate was successfully isolated.The reactions of nickel thiolate compounds with CO and PhCH were discussed.
     The reaction of[NiMe_2(PMe_3)_3]with substituted 2-mercaptobenzaldehyde gave rise to organonickel(Ⅱ) complexes(61,62).The reactions of organonickel(Ⅱ) complexes with iodomethane were primarily studied.
     All of the new complexes are characterized by IR,~1H NMR,~(13)C NMR and ~(31)P NMR. Structures of some compounds have been confirmed by X-ray diffraction techniques.
引文
[1]. Saito, S; Ohtani, S and Miyaura, N. Synthesis of Biaryls via a Nickel(0)- Catalyzed Cross-Coupling Reaction of Chloroarenes with Arylboronic Acids J. Org. Chem.
    1997, 62,8024.
    
    [2]. Old, D. W.; Wolfe, J. P. and Buchwald, S.L. A Highly Active Catalyst for Palladium-Catalyzed Cross-Coupling Reactions: Room-Temperature Suzuki Couplings and Amination of Unactivated Aryl Chlorides J. Am. Chem. Soc. 1998,120, 9722-9723.
    
    [3]. Shirakawa, E.; Yamasaki, K; Hiyama, T. Nickel-catalysed Cross-Coupling Reactions of Arylhalides with Organostananes J. Chem. Soc., Perkin, Trans 1. 1997, 2449.
    
    [4]. Miller, J. A. and Farrell, R. P. Synthesis of functionally substituted unsymmetrical biaryls via a novel double metal catalyzed coupling reaction Tetrahedron Letters, 1998, 39,7275-7275.
    
    [5]. Keegstra, M. A.; Theo H. A. Peters, Lambert Brandsma.; Copper(I) halide catalysed synthesis of alkyl aryl and alkyl heteroaryl ethers Tetrahedron, 1992, 48, 3633-3652.
    [6]. Mann, Grace; Incarvito, C.; Rheingold, A. L. and Hartwig, J. F; Palladium-Catalyzed C-O Coupling Involving Unactivated Aryl Halides. Sterically Induced Reductive Elimination To Form the C-0 Bond in Diaryl Ethers J. Am. Chem. Soc., 1999, 121, 3224-3225.
    [7]. Banks, R.E; Smart, B.E.; Tatlow, J.C. Organofluorine Chemistry: Principles and Commercial Applications, Plenum Press, New York, 1994.
    [8]. Filler, R.; Kobayashi, Y.; Yagupolskii, L.N. Organo-fluorine Compounds in Medicinal and Biomedical Applications Elsevier, Amsterdam, 1993.
    [9]. Ojima, J.R.; McCarthy, J.T. Biomedical Frontiers of Fluorine Chemistry, ACS Editions, Washington, DC, 1996.
    
    [10]. Becker (Ed.), Inventory of Industrial Fluoro-Biochemicals, Eyrolles, Paris, 1996.
    [11]. Clark, J. H.; Wails, B.; Bastock, T. W. Aromatic Fluorination; CRC Press: Boca Raton, 1996.
    
    [12]. Rodriguez, C. F.; Bohme, D. K.; Hopkinson, A. C. Theoretical Enthalpies of Formation of CHmCln: Neutral Molecules and Cations J. Phys. Chem. 1996, 100, 2942-2949.
    [13]. Papasavva, S.; Illinger, K. H.; Kenny, J. E. Ab Initio Calculations on Fluoroethanes: Geometries, Dipole Moments, Vibrational Frequencies, and Infrared Intensities J. Phys. Chem. 1996,100, 10100-10110.
    [14]. Ravishankara, A.R.; Solomon, S.; Turnipseed, A.A.; Warren, R.F. Atmospheric Lifetimes of Long-Lived Halogenated Species Science, 1993, 259, 194.
    [15]. Burdeniuc, J.; Jedlicka, B.; Crabtree, R.H. Recent Advances in C-F Bond Activation Chem. Ber. 1997,130, 145.
    [16]. Kiplinger, L.; Richmond, T.G.; Osterberg, C. E. Activation of Carbon-Fluorine Bonds by Metal Complexes Chem. Rev. 1994, 94, 373.
    [17]. Murphy, E. F.; Murugavel, R.; Roesky, H.W. Organometallic Fluorides: Compounds Containing Carbon-Metal-Fluorine Fragments of d-Block Metals Chem. Rev. 1997, 97, 3425.
    [18]. Richmond, T.G. Topics in Organometallic Chemistry, vol. 3, Springer, New York, 1999, p: 243.
    [19]. Kiplinger, J. L.; Richmond, T. G.; Osterberg, C. E. Activation of Carbon-Fluorine Bonds by Metal Complexes Chem. Rev. 1994, 94, 373-431.
    [20]. Burdeniuc, J.; Jedlicka, B.; Crabtree, R. H. Recent Advances in C-F Bond Activation Chem. Ber. 1997,130, 145-154.
    
    [21]. Torrens, H. Carbonfluorine bond activation by platinum group metal complexes Coordination Chemistry Reviews. 2005, 249,1957 - 1985.
    [22]. Osterberg, C. E. Ph.D. Thesis, University of Utah, 1990.
    [23]. Cronin, L.; Higgitt, C. L.; Karch, R.; Perutz, R. N. Rapid Intermolecular Carbon-Fluorine Bond Activation of Pentafluoropyridine at Nickel(O): Comparative Reactivity of Fluorinated Arene and Fluorinated Pyridine Derivatives Organometallics, 1997,16, 4920-4928.
    [24], Reinhold, M.; Mcgrady, J. E.; Perutz, R. N. A Comparison C-F and C-H Bond Activation by Zerovalent Ni and Pt: A Density Functional Study J. Am. Chem. Soc., 2004,126, 5268-5276.
    [25]. Schaub, T.; Fischer, P.; Steffen, A.; Braun, T.; Radius, U. and Mix, A. C-F Activation of Fluorinated Arenes using NHC-Stabilized Nickel(O) Complexes: Selectivity and Mechanistic Investigations J. Am. Chem. Soc. 2008,130, 9304-9317.
    [26]. Nova, A.; Erhardt, S.; Jasim, N. A.; Perutz, R. N. Macgregor, S. A.; Grady, J. E. and Whitwood, A. C. Competing C-F Activation Pathways in the Reaction of Pt(O) with Fluoropyridines: Phosphine- Assistance versus Oxidative Addition J. Am. Chem. Soc.2008,130,15499-15511.
    [27].Li,X.;Sun,H.;Yu,F.;Flrke,U.and Klein,H-F.C-F Bond Cleavage and Unexpected C-CN Activation by Cobalt Compounds Supported with Phosphine Ligands Organometallics.2006,25,4695-4697.
    [28].Schaub,T.;Backes,M.and Radius,U.Catalytic C-C Bond Formation Accomplished by Selective C-F Activation of Perfluorinated Arenes J.Am.Chem.Soc.2006,128,15964-15965.
    [29].Garcia,J.J.and Jones,W.D.Reversible Cleavage of Carbon-Carbon Bonds in Benzonitrile Using Nickel(0) Organometallics,2000,19,5544-5545.
    [30].Miller,J.A.C-C Bond activation with selective functionalization:preparation of unsymmetrical biaryls from benzonitriles Tetrahedron Lett.2001,42,6991-6993.
    [31].Miller,J.A.;Dankwardt,J.W.;Penney,J.M.Synthesis.2003,643.
    [32].Miller,J.A.;Dankwardt,J.W.Nickel catalyzed cross-coupling of modified alkyl and alkenyl Grignard reagents with aryl-and heteroaryl nitriles:activation of the C-CN bond Tetrahedron Lett.2003,44,1907-1910.
    [33].Penney,J.M.and Miller,J.A.Alkynylation of benzonitriles via nickel catalyzed C-C bond activation Tetrahedron Letters.2004,45 4989-4992.
    [34].Nakao,Y.;Oda,S.and Hiyama,T.Nickel-Catalyzed Arylcyanation of Alkynes.J.Am.Chem.Soc.2004,126,13904-13905.
    [35].(a) Pendrak,I.;Barney,S.;Wittrock,R.;Lambert,D.M.;Kingsbury,W.D.Synthesis and Anti-HSV Activity of A-Ring-Deleted Mappicine Ketone Analog J.Org.Chem.1994,59,2623-2625.
    (b) DeClercq,E.;Toward Improved Anti-HIV Chemotherapy:Therapeutic Strategies for Intervention with HIV Infections J.Med.Chem.1995,38,2491-2517.
    [36].(a) Stajer,G.;Csende,F.Curr.Org.Chem.2005,9,1277-1286.
    (b)Sanchez-Sanchez,C.;Perez-Inestrosa,E.;Garcia-Segura,R.;Suau,R.;SET photochemistry of phthalimide anion and its reactivity with hydrogen donors Tetrahedron.2002,58,7267-7274.
    (c).Abramovitch,R.A.;Shinkai,I.;Mavunkel,B.J.;More,K.M.;O'Connor,S.;Ooi,G.H.;Pennington,W.T.;Srinivasan,P.C.;Stowers,J.R.;New ring systems from 1,2-benzisothiazole-1,1-dioxides and related compounds Tetrahedron.1996,52,3339-3354.
    (d) Heaney,H.;Shuhaibar,K.F.;New Routes to Acyliminium Ion Precursors and a Synthesis of the Nuevamine Skeleton Synlett.1995,47-48.
    [37].Takahashi,I.;Kawakami,T.;Hirano,E.;Yokota,H.;Kitajima,H.;Novel Phthalimidine Synthesis.Mannich Condensation of o-Phthalaldehyde with Primary Amines using 1,2,3-1H-Benzotriazole and 2-Mercaptoethanol as Dual Synthetic Auxiliaries Synlett.1996,353-355.
    (6) Zhuang,Z.-P.;Kung,M.-P.;Mu,M.;Kung,H.F.Isoindol-1-one Analogues of 4-(2'-methoxyphenyl)-1-[2'-[N-(2"-pyridyl)-p-iodobenzamidoethyl]piperazine(p-MPPI) as 5-HT1A Receptor Ligands J.Med.Chem.1998,41,157-166.
    [38].(a).Angelucci,L.;Calvisi,P.;Catini,R.;Cosentino,U.;Cozzolino,R.Synthesis and amnesia-reversal activity of a series of 7-and 5-membered 3-acylamino lactams J.Med.Chem.1993,36,1511-1519.
    (b).Mross,K.;Herbst,K.;Berdel,W.;Korfel,A.;von Broen,I.;Bankmann,Y.;Hossfeld,D.Onkologie.1996,19,490-495.
    [39].(a) Spath,E.;Lintner,J.Chem.Ber.1936,69B,2727-2731.
    (b) Barrios,I.;Camps,P.;Comes-Franchini,M.;Munoz-Torrero,D.;Ricci,A.;Sanchez,L.One-pot synthesis of N-substituted pantolactams from pantolactone Tetrahedron.2003,59,1971-1979.
    [40].Horii,Z.-I.;Iwata,C.;Tamura,Y.Reduction of Phthalimides with Sodium Borohydride J.Org.Chem.1961,26,2273-2276.
    [41].(a) Pendergast,W.;Dickerson,S.H.;Dev,I.K.;Ferone,R.;Duch,D.S.;Smith,G.K.Benzolquinazoline Inhibitors of Thymidylate Synthase:Methyleneamino Linked Aroylglutamate Derivatives J.Med.Chem.1994,37,838-844.
    (b) Taylor,E.C.;Jennings,L.D.;Mao,Z.;Hu,B.;Jun,J.-G.;Zhou,P.;Synthesis of Conformationally-Constrained Glutamate Analogues of the Antitumor Agents DDATHF,LY254155,and LY231514 J.Org.Chem.1997,62,5392-5403.
    (c)Wang,H.;Ganesan,A.;Total synthesis of the cytotoxic alkaloid luotonin A Tetrahedron Lett.1998,39,9097-9098.
    [42].Orito,K.;Miyazawa,M.;Nakamura,T.;Horibata,A.;Ushito,H.;Nagasaki,H.;Yuguchi,M.;Yamashita,S.;Yamazaki,T.;Tokuda,M.;Pd(OAc)_2-Catalyzed Carbonylation of Amines J.Org.Chem.2006,71,5951-5958.
    [43].Hoarau,C.;Couture,A.;Deniau,E.;Grandclaudon,P.;A Versatile Synthesis of Poly-and Diversely Substituted Isoindolin-1-ones.Synthesis 2000,655-660.
    [44].Tsuritani,T.;Kii,S.;Akao,A.;Sato,K.;Nonoyama,N.;Mase,T.;Yasuda,N.;A Short and Efficient Synthesis of Isoindolin-1-ones Synlett.2006,801-803.
    [45].Cho,C.S.;Jiang,L.H.;Palladium-Catalyzed Synthesis of 3-(Alkylamion)isoindolin-1-ones by Carbonylative Cyclization of 2-Bromobenzaldehyde with Primary Amines J.Heterocycl.Chem.1997,34,1371.
    [46].余世超,麻生明.有机化学,2002,22,307-317.
    [47].Chavan,S.A,Sfinivas,D;Ratnasamy,P.Selective Oxidation of para-Xylene to Terephthalic Acid by μ_3-Oxo-Bridged Co/Mn Cluster Complexes Encapsulated in Zeolite-Y J Catal,2001,204,409-419.
    [48].Klein,H.-F.;Mager,M.;Stephan,I.-B.and Haupt,H.-J.Linear Trimerization of Phenylethyne:Homogeneous Catalysis with triangulo-Co_3(μ_3-H)(μ_2-CO)_3(PMe_3)_6Organometallics.1992,11(10),3174-3175.
    [49].Reppe,W.;Kutepow,N.and Magin,A.Cyclization of Acetylenic Compounds,Angew.Chem.Int.Ed Engl.1969,8,727-733.
    [50].Vollhardt,K.P.C.Cobalt-Mediated[2+2+2]-Cycloadditions:A Maturing Synthetic Strategy[New Synthetic Methods(43)]Angew.Chem.Int.Ed.Engl.1984,23,539-556.
    [51].Bonnemann,H.Organocobalt Compounds in the Synthesis of Pyridines-An Example of Structure-effectivity Relationships in Homogeneous Catalysis Angew.Chem.Int.Ed.Engl.1985,24,248-262.
    [52].Klein,H.-F.;Dal,A.and Hartmann,S.Spontaneous formation of trinickel clusters containing μ_3-imido bridges from 2-nitrophenols and Ni(PMe_3)_4 Inorg.Chim.Acta 1999,287,199-203.
    [53].陈玉红,丁克强,王庆飞等;席夫碱应用研究新进展。河北师范大学学报(自然科学版),2003,27,71-74。
    [54].刘晓岚,刘永红,石尧成等;席夫碱在有机合成中的应用。有机化学,2002,22,482-488。
    [55].仇敏,刘国生,姚小泉等;手性铜(Ⅱ)席夫碱催化苯乙烯不对称环丙烷化反应。催化学报,2001,22,77-80。
    [56].Desal,M.N.;Chauhan,P.O.;Shan,N.Schiff bases derived form chloroanlines as corrosion inhibition of zinc insulfufic acid solution European Symposium on Corrision Inhibitors,1995,27,891-900.
    [57].Nyarku,S.K,Mavuso,E.Characterisation and biological evaluation of a chromium(Ⅲ) Schiff bases complex derived from o2nitrobenzaldehyde and p2aminophenol South African J of Chem,1998,51,168-172.
    [58].Spindler,F.;Pugin,B.;Blaser,H.U.Asymmetric hetero dielsalder reactons catalyzed novel chiral vanadium(Ⅳ) Bis(1,32diketonato) complexes Angew Chem, 1990, 29, 558.
    [59]. Khuhaw, M .Y.; Lanjwani, S. N. High-performance liguid chromatographic determination of uranium using solvent extraction and bis (salicyladehyde) tetramethylenediimine as complexing reagent Talanta ,1995,42,1925-1928.
    [60]. Dance, I. G. The structural chemistry of metal thiolate complexes, Polyhedron 1986, 5, 1037-1104.
    [61]. Wolff, T. E.; Berg, J. N.; Power, P. P.; Hodgson, K. O. and Holm, R. H. Structural characterization of the iron-bridged "double-Cubane" cluster complexes [Mo_2Fe_7S_8(SC_2H_5)_(12)]~(3-) and [M_2Fe_7S_8CSCH_2C_6H_5)_(12)]~(4-) (M = molybdenum, tungsten) containing MFe_3S_4 cores Inorg. Chem. 1980,19(2), 430-437.
    [62]. Kang, B. S.; Weng, L. H. and Wu, D. X. Pentacoordinate iron-sulfur complexes. Structure and spectroscopic and electrochemical properties of phenoxy- and thiophenoxy-bridged binuclear complexes Inorg. Chem. 1988, 27(7), 1128-1130.
    [63]. Braterman, P. S.; Wilson, V. A. and Joshi, K. K. Heteronuclear transition metal complexes: II. Chelating diphosphine and diarsine palladium and platinum di-μ-organothiotetracarbonyls of group VI, L—LM'(SR)2M(CO)4 J. Organomet. Chem. 1971,57,123-129.
    [64]. Canich, J. A. M.; Cotton, F. A.; Dunbar, K. R. and Falvello, L. R. Oxidative-addition reactions of sulfur-sulfur and selenium-selenium bonds to dimolybdenum and ditungsten quadruple bonds Inorg. Chem. 1988, 27(5), 804-811.
    [65]. R. J. Angelici, Heterogeneous catalysis of the hydrodesulfurization of thiophenes in petroleum: an organometallic perspective of the mechanism, Acc. Chem. Res. 1988, 27,387-394.
    [66]. Berg, J. M. and Holm, R. H. in Iron sulfur Proteins, ed. T.G. Spiro, Wiley, New York, 1982, vol. 4.
    [67]. Bowmaker, G. A.; Boyd, P. D. W. and Campbell, G.K. Spectroelectrochemistry of nickel complexes. Voltammetric and ESR studies of the redox reactions of phosphine-dithiolate and phosphine-catecholate complexes of nickel Inorg. Chem. 1982,21(6), 2403-2412.
    [68]. Kang, B. S.; Weng, L. H.; Wu, D. X.; Wang, F.; Guo, Z.; Huang, L. R.; Huang, Z. Y. and Liu, H. Q. Pentacoordinate iron-sulfur complexes. Structure and spectroscopic and electrochemical properties of phenoxy- and thiophenoxy-bridged binuclear complexes Inorg. Chem. 1988, 27(7), 1128-1130.
    [69]. Kang, B.; Peng, J.; Hong, M.; Wu, D.; Chem, X.; Weng, L. Lei, X and Liu, H. Syntheses, structures and Properties of Tri-n-butylphosphine Cobalt Complexes containing o-Benzaldedithiolate Ligands in Unusual Coordination Modes, J. Chem. Soc. Dalton Trans. 1991, 2897-2901.
    [70]. Klein, H.-F.; Dal, A.; Jung, T.; Braun, S.; Rohr, C.; Florke, U.; Haupt, H.-J. Syntheses and Structures of Molecular Diphenolatonickel Compounds Containing Trimethylphosphane Ligands Eur. J. Inorg. Chem. 1998, 621-627.
    [71]. Parshall, G.; Ittel, S. D. Homogeneous Catalysis, 2nd ed. Wiley: New York, 1992, Chapter 7.4.
    [72]. (a) Semmelhack, M. F.; Helquiat, P. M.; Jones, L. D. Synthesis with zerovalent nickel. Coupling of aryl halides with bis(1,5-cyclooctadiene)nickel(0) J. Am. Chem. SOC., 1971, 93(22), 5908-5910. (b) Jolly, P. W.; Wilke, G. The Organic Chemistry of Nickel; Academic Press: New York, 1975,11, 269. (c) Morrell, D. G.; Kochi, J. K. Mechanistic studies of nickel catalysis in the cross coupling of aryl halides with alkylmetals, Role of arylalkylnickel(II) species as intermediates J. Am. Chem. Soc. 1975, 97(25), 7262-7270.
    [73]. Klein, H.-F.; Bickelhaupt, A.; Jung, T.; Cordier, G. Syntheses and Properties of the First Octahedral Diorganonickel( IV) Compounds Organometallics, 1994, 13(7), 2557-2559.
    [74]. Chen, Y; Sun, H; Florke, U and Li, X. Cyclometalation Reactions Involving C-C1 Bond Activation of ortho-Chlorinated Substrates with Imine as Anchoring Groups by Cobalt Complexes. Organometallics. 2008, 27, 270-275.
    [75]. Klein, H-F; Petemann, A. Nickel-mediated synthesis of dialkynyl and trialkynyl ethenes demetallation reactions Inorganica Chimica Acta, 1997, 261, 187-195.
    [76]. Cho, C. S.; Jiang, L. H.; Lee, D. Y.; Shim, S. C. Facile Synthesis of Isoindolin - 1 -ones via Palladium-Catalyzed Carbonylative Cyclization of 2-Bromobenzaldehyde with Primary Amines . Bull. Korean Chem. Soc. 1996,17,1095-1096.
    [77]. Shim, S. C.; Lee, D. Y.; Jiang, L. H.; Kim, T. J.; Cho, S. D.A Facile Synthesis of 3-Alkoxy Phthalides by the Palladium Catalyzed Carbonylative Cyclization of o-Bromobenzaldehyde J. Heterocycl. Chem. 1995, 32, 363-366.
    [78], Marchal, J.; Bodiguel, J.; Fort, Y.; Caubere, P. A New Indirect Application of Aggregative Activation: Synthesis of Esters by Cobalt-Catalyzed Carbonylation of Aryl, Heterocyclic, and Vinyl Halides under Atmospheric Pressure J. Org. Chem. 1995, 60, 8336- 8340.
    
    [79]. Shi, Y; Li, M; Hu, Q; Li , X and Sun, H C-Cl Bond Activation of ortho- Chlorinated Imine with Iron Complexes in Low Oxidation States Organometallics, 2009,28,2206-2210.
    [80]. Es, T. V.; Staskun, B. Reductions with Rancey Alloy in Acid Solution. 1084. 5775-5777.
    [81]. Braun, T and Perutz, R. N. Routes to fluorinated organic derivatives by nickel mediated C-F activation of heteroaromatics Chem. Commun., 2002, 2749- 2757.
    [82]. Merle, A. Electronic structures of dicyanonickel( II ) complexes with trimethylphosphine . J. Coord. Chem. 1973, 3, 199-201.
    [83]. Orpen, A. G.; Brammer, L.; Allen, F. H.; Kennard, O.; Watson, D. C.; Taylor, R. On the Reaction of N-Vinyliminophosphoranes . Part 7. A Short New 1-Aza-azulene Synthesis J. Chem. Soc., Dalton Trans. 1989, 51.
    [84]. Malyshev, D. A.; Scott, N. M.; Marion, N.; Stevens, E. D.; Ananikov, V. P.; Beletskaya, I. P. and Nolan, S. P. Homogeneous Nickel Catalysts for the Selective Transfer of a Single Arylthio Group in the Catalytic Hydrothiolation of Alkynes. Organometallics 2006, 25, 4462-4470.
    [85]. Toste, F. D.; Lough, A. J. and Still, I.W. J. Preparation of 6,12-Imino- 6H,12H-dibenzo[b,f]-l,5-dithiocins Tetrahedron 1995, 36(37), 6619-6622.
    
    [86]. Wolfsberger, W. and Schmidbaur, H. Eine Befriedigende darstellungsmethode fur trimethylphosphin Syn. React. Inorg. Metal-Org. Chem. 1974, 4,149-156.
    [87]. K. A. Jensen, O. Dahl, Ni(II) Complexes of Trimethylphosphine. Acta Chem. Scand. 1968, J, 1044-1045.
    
    [88]. Klein, H.-F.; Karsch, H. H. Angew. Chem. 1970, 82, 885-886.
    [89].Klein, H.-F.; Karsch, H. H. Trimethylphosphinkomplexe von Methylnickel- Verbindungen Chem. Ber. 1972, 705, 2628 -2636.
    [90]. Bogdanovic, B.; Korner, M.; Wilke,G. Ubergangsmetallkomplexe, I. Olefin- Komplexe des Nickels(O) Liebigs Ann. Chem. 1966, 699,1 - 23.
    [91]. Klein, H.-F. and Karsch, H. H. Methylkobaltverbindungen mit nicht chelatisierenden Liganden, I. Methyltetrakis(trimethylphosphin)cobalt und seine Derivate, Chem. Ber. 1975,108, 944-955.
    [92]. Block, E.; Eswarakrishnan, V. and Geron, M. o-Lithiothiophenol equivalents. Generation, reactions and applications in synthesis of hindered thiolate- ligands J. Am. Chem. Soc. 1989, 111, 658-665.
    [93]. Okawa, H. and Kida, S. Binuclear Metal Complexes. III. Preparation and Properties of Mononuclear and Binuclear Copper(II) and Nickel(II) Complexes of New Macrocycles and Their Related Ligands Bull. Chem. Soc. Jpn. 1972, 45, 1759-1764.
    
    [94]. Marvel, C. S. and Tarkoy, N. Heat Stability Studies on Chelates from Schiff Bases of Salicylaldehyde Derivatives, J. Am. Chem. Soc. 1957, 79, 6000-6002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700