用户名: 密码: 验证码:
纳米粉体与聚合物在同向双螺杆挤出机中的熔融混合研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米(塑料)复合材料是目前新型材料的研究热点之一,而同向双螺杆挤出机是具有高分散混合能力的连续加工设备,因此纳米粉体与聚合物在同向双螺杆挤出机中熔融混合过程的研究对于纳米复合材料的生产具有理论指导意义和实际应用价值。
     本文首先对粉体团块的内部结构及其在聚合物熔体流场中的破碎机理进行了分析,并引入团块尺寸在流场作用下随时间变化的微分方程。为了对不同混合元件的分散混合能力进行比较,本文对常规螺纹元件、窄捏合块元件、宽捏合块元件以及新型混合元件VCR元件流道的三维等温流场进行了模拟与分析。通过对流场流动状态模拟计算,得到了与分散混合及输送能力相关的剪切速率场和压力场;通过粒子示踪法对流场的动态模拟计算及其统计学后处理,得到了停留时间分布、最大剪切速率分布、固定百分比质点经受的剪切速分布随时间的变化、粉体团块尺寸分布随时间的变化等与混合元件分散混合能力有关的统计学结果。
     数值模拟分析结果表明:在本文讨论的啮合同向双螺杆混合元件中,宽捏合块元件分散混合能力最强,VCR元件次之,常规螺纹元件最弱;而VCR元件分布混合能力最强,宽捏合块元件次之,常规螺纹元件最弱。
     实验研究表明,实验所得混合元件的分散混合能力对比关系与模
Nano composites(plastic) is one of the focus in present day, and co-rotating twin screw extruder has better dispersive mixing performance than other mixing device. As said before the study on melt mixing of nano powder and polymer in co-rotating twin screw extruder will achieve both theoretical and practical values.
    This article analyses the internal structure and dispersive mechanism of agglomerates in melt polymer flow field, and differential equation is introduced to calculate the evolution of agglomerates' size. To compare the dispersive mixing ability of different mixing elements, 3D isothermal flow field of normal screw element, narrow kneading disc element, wide kneading disc, and VCR element which is one of the new mixing elements are simulated. Based on the numerical simulation of instantaneous static flow fields, the shear rate field and pressure field are analyzed. With the numerical simulation of dynamic flow fields by particle tracking analyze method and statistical analyses, residence time distribution, max shear rate distribution, shear rate distribution of certain percent particles vs. time and the size distribution vs. time of agglomerates are analyzed.
引文
[1] 耿孝正,张沛 塑料混合及设备[M].北京:中国轻工业出版社
    [2] K. lnoue, Y. Kuroda, Y. Yamane, H. Funahasi, PPS-14 Yokohama, Japan, 1998, 393
    [3] 金月富,啮合同向双螺杆挤出机新型螺杆元件的研制及其流场分析[D],2001
    [4] 罗兵.新型连续混炼机转子造型及混炼机理的研究[D].北京:北京化工大学 2003
    [5] Chi-Ming Chan, Jingshen Wu. Polypropylene/calcium carbonate nanocomposites. Polymer[J] 2002;43:2981-2992
    [6] Chun Lei Wu, Ming Qiu Zhang. Tensile performance improvement of low nanoparticles filled-polypropylene composites[J]. Compo.Sci.&Tech. 2002;62:1327-1340
    [7] Reynaud E, Gauthier C, Perez J. Nanophases in polymers[J]. Rev Metallurgie 1999;96(2): 169-76.
    [8] Dr.Chris Rauwendaal. New dispersive mixers based on elongational flow. Plastics Additives & Compounding 1999; August/September:21-23
    [9] 童玉清,吴有平.纳米粉体在聚合物熔体中的分散理论[J].合成橡胶工业,2004-03-15,27(2):117-121.
    [10] 10 James S. Smith, Dmitry Bedrov. A molecular dynamics simulation study of nanoparticle interactions in a model polymer-nanoparticle composite[J]. Compo.Sci.&Tech 2003; 63:1599-1605
    [11] O.S. Carneiro, G. Caldeira, J.A. Covas. Flow patterns in twin-screw extruders[J]. Materials Processing Technology 1999;92-93:309-315
    [12] V.L.Bravo, A.N.Hrymak Numerical Simulation of Pressure and Velocity Profiles in Kneading Elements of a Co-Rotating Twin Screw Extruder[J]. Ploymer Engineering and Science 2000;Vol.40,No. 2:525-541
    [13] 张新,卢金重.螺杆组合对PP共混体系性能的影晌[J].塑料加工1999年第27卷45-51.
    [14] 耿孝正.啮合同向双螺杆挤出过程不同功能段的螺杆构型和整根螺杆的组合设计[J].中国塑料 2000(8):68-73
    [15] 耿孝正.双螺杆挤出机及其应用[M].北京:中国轻工业出版社,2003.
    [16] 耿孝正.啮合同向双螺杆挤出机在聚合物--聚合物混合(制备共混物和合金)中的应用[J].中国塑料.1999(12):64-66
    [17] 耿孝正.啮合同向双螺杆挤出机在填充改性应用中的几个问题[J].中国塑料 1999(11):83-87.
    [18] Denson C D, Huang B K. Influence of the axial pressure gradient on flowrate for Newtonian fluids in a self-wiping co-rotating twin-screw extruder[J]. Polym Eng Sci, 1980,20(14):965-971
    [19] Szydlowski W, White J L. Improved theory of metering in an intermeshing co-rotating twin-screw extruder[J]. Adv Polym Technol. 1987,7(2):177~183[20] Tadmor Z, Broyer E, Gutfinger C. Theoretical model for non-intermeshing twin screw extruders[J]. Polym Eng Sci, 1974,14(1):58~65
    [21] Bigio D, Zerafati S. Numerical procedure for measurement of mixing in complex geometries for creeping flow. American Society of Mechanical Engineers[J]. Fluids Engineering Division, 1988,66:203~212
    [22] Wang Y, white J L. Non-Newtonian flow modeling in the screw regions of an intermeshing corotating twin screw exturuder[J]. Journal of Non-Newtonian Fluid Mechanics, 1989,32(1):19~38
    [23] Lai-Fook R A, Li Y, Smith A C et al. Pumping characteristics of self-wiping twin-screw extruders-a theoretical and experimental study on biopolymer extrusion[J]. Polym Eng Sci, 1989,29(7):433~440
    [24] Lai-Fook R A, Li Y, Smith A C et al. A 2-D numerical study of intermeshing self-wiping screws in biopolymer extrusion[J]. Polyni Eng Sci,1991,31.(15): 1157~1163
    [25] Yang H H, Manas-Zloczower I, Flow field analysis of the kneading disc region in a co-rotating twin screw extruder[J]. Polym Eng Sci, 1992,32(19): 1411~1417
    [26] White J L, Chen Ziyun. Simulation of non-isothermal flw in modular co-rotating twin screw extrusion[J]. Polym Eng Sci, 1994,34(3):229~237
    [27] Sastrohartono T, Jaluria Y, Karwe M V. Numerical simulation of fluid flow and heat transfer in twin-screw extruders for non-Newtonian materials[J]. Polym Eng Sci,1995,35(15):1213~1221
    [28] Goffart D, Wal D J, Klomp E M. Three-dimensional flow modeling of a self-wiping corotating twin-screw extruder. Part 1: the transporting section[J]. Polym Eng Sci, 199636(7):901~911
    [29] Chiruvella R V, Jaluria Y, Karwe M V. Transport in a twin-screw extruder for the processing of polymers[J]. Polym Eng Sci, 1996,36(11): 1531~1540
    [30] Kajiwara Toshihisa, Nagasima Yuki. Numerical study of twin-screw extruders by three-dimenssional flow analysis—development of analysis technique and evaluation of mixing performance for full flight screws[J]. Polm Eng Sci, 1996,36(16):2142~2154
    [31] Bravo V L, Hrymak A N, Wright J D. Numerical simulation of pressure and velocity profiles in kneading elements of a co-rotating twin screw extruder[J]. Polym Eng Sci, 2000,40(2):525~541
    [32] Ishikawa Takeshi, Shin-Ichi Kihara. 3-D numerical simulations of nonisothermal flow in co-rotating twin screw extruders[J]. Polym Eng Sci, 2000,40(2):357~364
    [33] Ishikawa Takeshi, Numerical simulation and experimental verification of nonisothermal floe in couter-rotating nonintermeshing continuous mixers[J]. Ploym Eng Sci, 2000,40(2)
    [34] 李鹏,耿孝正.同向啮合双螺杆挤出机捏合块流道三维流场分析[J].中国塑料,2000,14(3):75~82
    [35] 李鹏,耿孝正,马秀清.啮合同向双螺杆挤出机螺纹元件三维流场分析[J].中国塑料,2001,15(6):73~77
    [36] 马秀清,耿孝正,李鹏.非啮合双螺杆挤出过程常规螺纹元件流道三维流场分析—等温牛顿模型[J].中国塑料,2000,14(10):78~85[37] 马秀清,耿孝正.非啮合双螺杆挤出机过程轴向循环流道三维流场分析—轴向循环流场分析(Ⅰ)[J].中国塑料,2001,15(2):78~83
    [38] 彭炯,陈晋南.同向旋转双螺杆挤出机计量段中聚合物挤出的模型[J].中国塑料,2001,15(7):39~42
    [39] 彭炯,胡冬冬,陈晋南,谭惠明.同向双螺杆捏合段三何流动的数值模拟[J].工程塑料应用,2002,30(1):42~44
    [40] 金月富,耿孝正,梁畅.新型同向双螺杆元件—S型元件研究(Ⅰ)—流场数值模拟[J].中国塑料,2002,16(1):79~85
    [41] 金月富,耿孝正,梁畅.新型同向双螺杆元件—S型元件研究(Ⅱ)—实验验证[J].中国塑料,2002,16(2):82~86
    [42] 尹燕玲,耿孝正.啮合同向双螺杆挤出过程六棱柱元件三维流场分析[J].中国塑料,2002,16(4):78~83
    [43] 尹燕玲,耿孝正,马秀清.啮合同向双螺杆挤出过程新型混合元件—六棱柱元件实验研究[J].中国塑料,2002,16(6):76~80
    [44] 陈士宏,马秀清,耿孝正.啮合同向双螺杆挤出过程非啮合开槽螺纹元件组合流道三维流场分析[J].中国塑料,2002,16(10):78~83
    [45] 梁畅,马秀清,耿孝正.啮合同向双螺杆挤出机中新型螺杆元件S型元件与捏合块元件的性能对比研究[J].中国塑料,2002,16(11):78~84
    [46] 梁畅,马秀清,耿孝正.啮合同向双螺杆挤出机中不同螺杆构型下的流场模拟[J].中国塑料,2003,17(5):78~82
    [47] 胡冬冬,陈晋南.双螺杆挤出机中粒子轨迹的可视化模拟[J].计算机与应用化学,2003,20(3):247~250
    [48] 张志莲,董力群.锥形双螺杆挤出过程菠萝型混合元件三维流场分析(Ⅰ)[J].中国塑料,2003,17(3):247~250
    [49] 张俊义.啮合同向双螺杆挤出过程斜齿齿型盘元件的理论实验研究[D].北京.北京化工大学.2003
    [50] B.B. Sauera, W.G. Kamperta. Temperature modulated DSC studies of melting and recrystallization in polymers exhibiting multiple endotherms. Polymer 2000; 41: 1099-1108
    [51] 杜官本.表面光电子能谱(XPS)及其在木材科学与技术领域的应用[J].木材工业.1999(5):17-20
    [52] T.L. Weng, C.T. Sun. A study of fracture criteria for ductile materials[J]. Engineering Failure Analysis 7 (2000) 101-125
    [53] Masanori Kikuchi. A study on three-dimensional crack tip fields[J], Int.J.Pres. Ves.&Piping 1995; 63:315-326
    [54] Alsteens, B., Legat, V., A Model for the Disagglomeration of Carbon Black in Rubber Matrix[R], Proceedings of the 6th Conference Eurheo, p.269, 2002.
    [55] Alsteens, B., Legat, V., A model for the disagglomeration of Carbon black, Proceedings of the 6th National Congress on Theoretical an AppliedMechanics[R], Ghent (Belgium), 123, 2003.[56] P.Gopalkrishnan, I. Manas-Zloczower, Investigating dispersion mechanisms in partially infiltrated agglomerates: Interstitial fluid effects[J]. Powder Technology 156(2005), P111-119.
    [57] H. Rumpf, in: W. Knepper(Ed.), The strength of granules and agglomerates, from agglomeration[J]. John Wiley Sons, New York, 1962.
    [58] P. Pierrat, H.S. Caram, Tensile strength of wet granular materials[J]. Powder Technology 91 (1997) 83-93.
    [59] R.A. Fisher, On the capillary forces in an ideal soil; correction of formulae given by W.B. Haines[J]. Journal of Agricultural Science 16 (1926) 492-505.
    [60] J. Boyle, Governing factors and mechanisms of powder dispersion, PhD dissertation[J]. Case Western Reserve University (2003).
    [61] Thierry Avalosse, Vincent Legat. Mathematical modeling and simulation of dispersive mixing.[C].Louvain-La-Neuve, February 2005.
    [62] Fluent Inc. POLYFLOW 3.8 User's Guide. Belgium:Polyflow s.a.[M], 1999
    [63] 王瑁成,邵敏.有限单元基本原理和数值方法[M].北京:清华大学出版社,1992
    [64] Bertrand F, Tanguy P A, Thibault F. A Three-Dimensional Fictitious Domain Method for Incompressible Fluid Flow Problems[J]. Int J Num Meth Fluids, 1997, 25(6):719-736
    [65] 马秀清、耿孝正.啮合同向双螺杆挤出机螺纹元件三维流场分析[J],中国塑料,2001 Vol.15 No.06
    [66] 金日光,华幼卿.高分子物理[M].北京:化学工业出版社,1996
    [67] Payne A R, Whittaker R E. Low strain dynamic properties of filled rubber[J]. Rubber Chem Technol, 1994,44(3):440-478

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700