用户名: 密码: 验证码:
基于生物矿化的石质文物仿生保护
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
暴露在野外的众多大型石质古迹,由于自然因素的风化作用和人为因素的破坏,许多表面劣化现象严重。如不采取有效措施,许多珍贵的实物记录将不复存在。但是,目前所使用的保护材料几乎都不能完全满足保护者的要求。所以,研制性能良好的石质文物保护功能材料已成为文物保护研究领域的迫切任务之一。
     本论文综述了石质文物风化的特征和条件,以及国内外相关保护材料的性能、保护效果和存在的问题。在天然生成的草酸钙生物矿化保护膜的启示下,根据“生物矿化”原理,提出了采用“仿生”方法对石质文物进行保护的新思路,仿生合成了一系列无机生物矿化保护材料。
     通过研究实验,获得了如下的结果:
     (1)选用目前应用广泛的有机硅类保护剂作为表面防护材料,以常见的文物石材:砂岩、凝灰岩、白云岩、大理岩和花岗岩为保护对象,试验研究了文物的主要破坏因素,包括干湿循环、盐结晶、冻融和加热等作用,以及它们的联合作用,证实石质文物表面憎水性化学保护有可能起不到保护作用,甚至会产生严重的破坏。破坏的主要原因是被保护表层的憎水性和岩石基底的亲水性引起的化学物理性质的差异和界面应力的加剧。并提出解决这一矛盾的有效途径之一是开发非严格憎水且具有耐酸、耐污等效果的与石材相容良好的保护材料,如生物矿化材料。
     (2)试验研究了石材的表面预处理方法,包括有机溶剂的清洗,以及生物性大分子的表面功能化。通过表面能的表征,确定了最佳的石材表面预处理条件,即使石材的表面最佳功能化。
     选用一种生物粘多糖——硫酸软骨素作为有机模板,以亚稳态的草酸钙过饱和溶液为前驱液,在大理岩石表面仿生合成了草酸钙表面防护材料。通过设计正交试验,考察了仿生合成的各个因素的影响程度,以及较佳的合成条件。仿生合成的影响因素的影响程度为:有机模板的影响>成矿离子前驱液的影响>石材表面预清洁方式的影响>保护膜层数的影响,较佳的制备条件是:石材表面用乙醇预清洁,较浓浓度的有机模板溶液使之表面功能化,过滤的草酸钙过饱和溶液作前驱液,多层制膜。
     分别采用XRD、SEM和AFM分析表征了材料的物相组成及微观形貌,证明石材表面的防护材料为一层约100 nm厚的薄片状的一水草酸钙晶体,并解释了材料的合成机理。通过憎水性、耐酸性、耐污性、耐老化性和透气性的测试,表明该材料亲水、防酸、防污、透气,且耐老化性能良好。
     在仿生合成草酸钙表面防护材料的基础上,进一步拓宽了仿生合成生物矿化保护材料的研究范围,包括草酸钙系列、磷灰石系列和碳酸钙系列。采用SEM表征了材料的微观形貌。以耐酸性、耐污性和耐老化性表征了各系列材料的表面防护效果,结果表明几种考察的材料均有不同程度的防护效果,尤以草酸钙为佳,其耐酸性达到pH≈0.8,耐污性≈2级,耐老化性及透气性能良好。
     对石质文物表面进行仿生防护,将生物矿化作用引入石质文物保护研究领域,提出采用“仿生”的方法保护石质文物的新思路,试验证明方法可行。
     (3)考虑到濒危石质文物表面结构疏松,本工作进一步探讨了仿生矿化保护材料的加固性能。借鉴岩土工程学的理论,用颗粒碳酸钙和粉末碳酸钙仿制了劣化的岩石。将仿生合成的一系列表面保护材料应用到仿制的样品上,考察了它们的抗压强度和抗水浸泡分解能力。结果表明,仿生矿化保护材料的加固效果良好,抗压强度和抗水浸泡能力都得到了较大的提高。加固效果最佳的是磷灰石材料,加固后,仿制样品的抗压强度可提高3~4倍,并可抗水浸泡6个月以上。
     (4)在实验研究结果的基础上,选择草酸钙和其它常用的有机保护材料,在洛阳龙门石窟做了现场保护对比实验,初期效果显示,仿生矿化材料的保护效果良好,显示了仿生矿化保护材料在石质文物保护领域具有良好的应用前景。
     总之,本工作证实了有机憎水性保护材料的副作用,研制出系列仿生矿化保护材料,检测表明它们具有较好的表面防护效果和表层加固性能,并且制作工艺简便。文献检索表明,目前尚未发现有类似的研究报道。这些成果对于发展新型石质文物保护材料具有重要的现实意义,同时也拓宽了生物矿化材料研究的领域。
A good many of historic stones exposed out-of-doors are badly damaged due to natural and human factors. Their weathering state is badly serious. If people should not take effective measures to minimize damage from circumstances and slow down the ageing process of stones, a lot of historical value of historic stones will be fading away. However, hardly any protective materials do meet with all requirements now. Consequently, it is a very urgent task to explore new protective materials with a good performance which are fit for historic stones.
     In this paper, a review of the historic stone weathering and protective materials is summarized. Inspired by a crude biomimetic protective film of calcium oxalate, a novel idea on the application of biomimetic method to stone conservation is brought forward on the principle of biomineralization. Moreover, a series of inorganic biomimetic protective materials has been synthesized by biomimetic methods.
     The following results have been obtained by investigating:
     (1) Organic silicon, which was widely used in stone conservation now, was selected as surface protectant. Some common relic-used stone were used as protected objects, such as sandstone, tuff, dolomite, marble and granite. A series of artificial weathering experiments, which included single or cooperative effect of major ruinous factors—dry-wet cycle, salt crystallization, freezing and heating were simulated and researched. It is advanced that the surface hydrophobic protection can damage historic stones rather than protect in opposition to expectation. The reasons that decaying of stone is aggravated are a great contrast between hydrophilic stone and hydrophobic organic materials and aggravation of stress damage. An effective method to resolve this problem is to develop a new harmonious protective material which is non-absolutely hydrophobic, acid-resistant and soil- resistant, such as biomimetic materials.
     (2) In this work, the stone surface treatment, including surface cleaning and functionalization, was studied. The optimal processing parameters, by which stone surface was functionalized well, were made certain by tests of specimens' surface energy.
     Selecting chondroitin sulfate, a category of principal acidic mucopolysaccharide, as an organic macromolecule template, the supersaturated solution of calcium oxalate as precursor, a protective material was synthesized on the marble surface by a biomimetic method. The effect degree of various factors and optimal processing parameters of biomimetic synthesis were investigated by an orthogonal experiment. The effect degree order is: first, organic template; second, mineralization ion precursor; third, surface treatment; fourth, lay amount of thin film. In the process of biomimetic synthesis, first of all, the stone surface was pretreated with ethanol and functionalized with organic template solution, and then filmed repetitiously by using filtered CaC_2O_4 supersaturation solution as precursor.
     The composition and microstructure of the material were characterized by using XRD, SEM and AFM. The analysis results show that the stone was covered by a lay of calcium oxalate monohydrate thin film which is approximately 100 nm thick. The synthesis mechanism of the protective material is explained. The tests of hydrophobicity, acid resistance, soil resistance, UV-lighting aging and breathing proved that the protective film functions well.
     On the basis of biomimetic synthesis exploration of calcium oxalate protection material on the stone surface, a series of protective materials, including calcium oxalate, apatite and calcium carbonate, were further investigated in biomimetic synthesis and surface protection performance. The microtopography of materials was characterized by SEM images. The protective performance was characterized by testing acid resistance, soil resistance and UV-lighting aging. The results show that all of them have various degrees of capabilities in surface protection. Calcium oxalate is the best of them. For example, the stone sample coated calcium oxalate can resist a pH 0.8 acid solution and achieve 2nd level of soil resistance. Moreover, they can breathe and serve for long.
     (3) With a view to the loose structure of historic stones, the further investigation of biomimetic protection is developed in consolidation. Referring to the architectonics theory, the replicas of rotten stones were prepared by using the powders and particles of calcium carbonate. Biomimetic surface protection materials were applied to the replicas of historic stones. It was investigated how about the capabilities in consolidating of biomimetic surface protection materials. The results from testing compressive strength and water soaking resistance show that these materials have great capabilities of consolidation. The compressive strength and water soaking resistance of treated replicas have been greatly improved. Apatite is the best of them. The stone replica consolidated by apatite has an increase of about four times in compressive strength, and can resist soaking for more than six months.
     (4) On the basis of summarization of experiments, some protective materials, including calcium oxalate and other common organic protective materials, were selected to do a fieldwork experiment at the Longmen Grottoes in Luoyang. The initial results show that the biomimetic method function well, which open up a good prospect for the conservation of historic stones by biomimetic methods.
     In conclusion, the side effects of organic hydrophobic protective materials are proved. A series of biomimetic protective materials is investigated. The test results show that they can function well in surface protection and consolidation. The process is simple. Currently, the literature on it has not been found yet. The production is of great significance to the development of new materials for historic stones conservation. Meanwhile, this work can develop the research field of biomimetic materials.
引文
1.丁义忠,蒋长瑜.人类之宝——世界文化古迹和自然遗址精粹.上海:上海科技出版社,2001.
    2.杨立杰.被列入《世界遗产名录》的中国遗产地.http://news3.xinhuanet.com/ziliao/2003-07/03/content_951834_1.htm,2006-10-18.
    3. UNESCO World Heritage Centre. World Heritage List. http://whc.unesco.org/en/list/, 2006-11-21.
    4. Chabas A, Jeannette D. Weathering of Marbles and Granites in Marine Environment: Petrophysical Properties and Special Role of Atmospheric Salts. Environmental Geology, 2001, 40(3): 359~368.
    5. Garcia-Valles M, Vendrell-Saz M, Molera J, Blazquez F. Interaction of Rock and Atmosphere: Patinas on Mediterranean Monuments. Environmental Geology, 1998, 36(1-2): 137~149.
    6. Moropoulou A, Theoulakis P, Chrysophakis T. Correlation between Stone Weathering and Environmental Factors in Marine Atmosphere. Atmospheric Environment, 1995, 29(8): 895~903.
    7. Vendrell-Saz M, Garcia-Valles M, Alarcon S, Molera J. Environmental Impact on the Roman Monuments of Tarragona, Spain. Environmental Geology, 1996, 27(4): 263~269.
    8. Van Grieken R, Delalieux F, Gysels K. Cultural Heritage and the Environment. Pure & Applied Chemistry, 1998, 70(12): 2327~2331.
    9. Meierding T C. Marble Tombstone Weathering and Air Pollution in North Amerce. Annual of the Association of America Geographers, 1993, 83(4): 568~588.
    10. Nord A G, Svardh A, Tronner K. Air Pollution Levels Reflected in Deposits on Building Stone. Atmospheric Environment, 1994, 28(16): 2615~2622.
    11. Metallo M A, Poli A A, Diana M, Persia F, Cirillo M C. Air Pollution Loads on Historical Monuments: An Air Quality Model Application to The Marble Arch of Titus in Rome. Science of the Total Environment, 1995, 171(1-3): 163~172.
    12.全国人民代表大会.中华人民共和国文物保护法.北京:中国民主法制出版社,2002.2.
    13.郭宏.文物保存环境概论.北京:科学出版社,2001.6~13.
    14.徐毓明.文物科技学概论.见:中国文物研究所,编.文物科技研究.第一辑.北京:科学出版社,2004.1~9.
    15. IIC. About the IIC. http://www.iiconservation.org/info/info.php, 2006-10-26.
    16. Avrami E, Mason R, de la Torre M. Values and Heritage Conservation. Los Angeles: The Getty Conservation Institute, 2000. 3~68.
    17. Mason R. A Meeting Organized by the Getty Conservation Institute. Los Angeles: Getty Center, 1998. 2~23.
    18.郭宏.论“不改变原状原则”的本质意义——兼论文物保护科学的文理交叉性.文物保护与考古科学,2004,16(1):60~64.
    19.郭宏.论文物保护科学研究的内容与方法.文物保护与考古科学,2003,15(3):61~64.
    20.国际古迹遗址理事会中国国家委员会.中国文物古迹保护准则.http://www.mingcheng.org/chinese/fagui/quanguo/file5.pdf,2006-10-26.
    21. China icomos. Barker P, Lai G, Lin P, Lung D, Tighe J, Translate. Principles for the Conservation of Heritage Sites in China. Los Angeles: Getty Conservation Institute, 1996.3~32.
    22.陆寿麟.文物的科学研究和文物保护修复的原则.见:中国文物研究所,编.文物科技研究.第一辑.北京:科学出版社,2004.11~15.
    23. Folarin S. International Standards for Cultural Heritage: An African Perspective. Art Antiquity and Law, 2000, 5(2): 159~175.
    24.陆寿麟.文物的科学研究和文物保护修复的原则.见:中国文物研究所,编.文物科技研究.第一辑.北京:科学出版社,2004.11~15.
    25.郑军.文物保护材料的选择.见:中国文物研究所,编.文物科技研究.第一辑.北京:科学出版社,2004.112~117.
    26.周双林.文物保护用有机高分子材料及要求.四川文物,2003,3:94~96.
    27. Pidwimy M. CHAPTER 10, Introduction to the Lithosphere: Weathering. http://www.physicalgeography.net/fundamentals/10r.html, 2004-08-22.
    28. Davidson D A, Grieve I C, Tyler A N, Barclay G J, Maxwell G S. Archaeological Sites: Assessment of Erosion Risk. Journal Archaeological Science, 1998, 25(9): 857~860.
    29. Fitzner B, Heinrichs K. Damage Diagnosis on Stone Monuments—Weathering Forms, Damage Categories and Damage Indices. In: Prikryl R, Viles HA, Ed. Understanding and Managing Stone Decay. Prague: The Karolinum Press, 2002. 11~56.
    30. Curran J. weathering Features Tutorial. http://www.qub.ac.uk/geog/documents/research/weathering/weathering%20features.html, 2005-04-08.
    31. Gore P J W. Weathering. http://gpc.edu/~pgore/geology/geo101/weather.htm,2005-4-8.
    32. Nelson S A. Weathering and Soils. http://www.tulane.edu/~sanelson/geo1111/weathering.htm, 2003-08-30.
    33. Stonecare Techniques. Weathering. http://www.stonecaretechniques.com/8m.htm,2006-11-22.
    34.奚同庚.无机材料热物性学.上海:上海科学技术出版社,1987.213~273.
    35. Yang G, Zhang Q, Pu Y. A Study on the Damage Propagation Characteristics of Rock under the Frost and Thaw Condition. Chinese Journal of Geotechnical Engineering, 2004, 26(6): 838~842.
    36.徐光苗,刘泉声.岩石冻融破坏机理分析及冻融力学试验研究.岩石力学与工程学报,2005,24(17):3076~3082.
    37. Weiss T, Siegesmund S, Kirchner D, Sippel J. Insolation Weathering and Hygric Dilatation: Two Competitive Factors in Stone Degradation. Environmental Geology, 2004, 46(3-4): 402~413.
    38. Aires-Barros L, Graca R C, Velez A. Dry and Wet Laboratory Tests and the Thermal Fatigue of Rocks. Engineering Geology, 1975, 9(3): 249~265.
    39. Theoulakis P, Moropoulou A. Salt Crystal Growth as Weathering Mechanism of Porous Stone on Historic Masonry. Journal of Porous Materials, 1999, 6(4): 345~358.
    40. Dewers T, Ortoleva P. Force of Crystallization during the Growth of Siliceous Concretions. Geology, 1990, 18(3): 204~207.
    41. Doornkamp J C, Ibrahim H A M. Salt weathering. Progress in Physical Geography, 1990, 14 (3): 335-348.
    
    42. Hosono T, Uchida E, Suda C, Ueno A, Nakagawa T. Salt Weathering of Sandstone at the Angkor Monuments, Cambodia: Identification of the Origins of Salts using Sulfur and Strontium Isotopes. Journal of Archaeological Science, 2006, 33 (11): 1541-1551.
    
    43. Vallet J M, Gosselin C, Bromblet P, Rolland O, Verges-Belmin V, Kloppmann W. Origin of Salts in Stone Monument Degradation using Sulphur and Oxygen Isotopes: First Results of the Bourges Cathedral (France). Journal of Geochemical Exploration, 2006, 88 (1-3): 358-362.
    
    44. Robinson D A, Williams R B G. Experimental Weathering of Sandstone by Combinations of Salts. Earth Surface Processes and Landforms, 2000, 25 (12): 1309-1315.
    
    45. Watt D, Colston B. Investigating the Effects of Humidity and Salt Crystallisation on Medieval Masonry. Building and Environment, 2000, 35 (8): 737-749.
    
    46. Colston B J, Watt D S, Munro H L. Environmentally-Induced Stone Decay: The Cumulative Effects of Crystallization-Hydration Cycles on a Lincolnshire Oopelsparite Limestone. Journal of Cultural Heritage, 2001,2 (4): 297-307.
    
    47. Rodriguez-Navarro C, Doehne E. Salt Weathering: Influence of Evaporation Rate, Supersaturation and Crystallization Pattern. Earth Surface Processes and Landforms, 1999, 24 (3): 191-209.
    
    48. Kelly E F, Chadwick O A, Hilinski T E. The Effect of Plants on Mineral Weathering. Biogeochemistry, 1998, 42 (1-2): 21-53.
    
    49. Delalieux F, Cardell C, Todorov V, Dekov V, Van Grieken R. Environmental Conditions Controlling the Chemical Weathering of the Madara Horseman Monument, NE Bulgaria. Journal of Cultural Heritage, 2003, 2 (1): 43-54.
    
    50. Philip K, Denis S. Deterioration of Pentelic Marble, Portland Limestone and Baumberger Sandstone in Laboratory Exposures to Gaseous Nitric Acid. Atmospheric Environment, 1995, 29 (1): 77-86.
    
    51. Levin Z, Ganor E, Gladstein V. The Effects of Desert Particles Coated with Sulfate on Rain Formation in the Eastern Mediterranean. Journal of Applied Meteorology, 1996, 35 (9): 1511-1523.
    
    52. Mori I, Nishikawa M, Iwasaka Y. Chemical Reaction during the Coagulation of Ammonium Sulphate and Mineral Particles in the Atmosphere. The Science of the Total Environment, 1998, 224 (1-3): 87-91.
    
    53. Kozlowski R, Hejda A, Ceckiewicz S, Haber J. Influence of Water Contained in Porous Limestone on Corrosion. Atmospheric Environment, 1992, 26(18): 3241~3248.
    54. Striegel M F, Guin E B, Hallett K, Sandoval D, Swingle R, Knox K, Best F, Fornea S. Air Pollution, Coatings, and Cultural Resources. Progress in Organic Coatings, 2003, 48(2-4): 281~288.
    55. Marinoni N, Pavese A, Riva A, Cella F, Cerulli T. Chromatic Weathering of Black Limestone Quarried in Varerma(Lake Como, Italy). Building and Environment, 2007, 42(1): 68~77.
    56. Alesiani M, Capuani S, Maraviglia B. NMR Study on The Early Stages of Hydration of a Porous Carbonate Stone. Magnetic Resonance Imaging, 2003, 21(3-4): 333~335.
    57. Friolo K H, Stuart B, Ray A. Characterisation of Weathering of Sydney Sandstones in Heritage Buildings. Journal of Cultural Heritage, 2003, 4(3): 211~220.
    58. Hoke G D, Turcotte D L. The Weathering of Stones Due to Dissolution. Environmental Geology, 2004, 46(3-4): 305~310.
    59. Matsuoka N. Rock Weathering Processes and Landform Development in the Sφr Rondane Mountains, Antarctica. Geomorphology, 1995, 12(4): 323~339.
    60. Pihlajavaara S E, Pihlman E. Effect of Carbonation on Microstructural Properties of Cement Stone. Cement and Concrete Research, 1974, 4(2): 149~154.
    61. Garcia-Valles M, Urzi C, De Leo F, Salamone P, Vendrell-Saz M. Biological Weathering and Mineral Deposits of the Belevi Marble Quarry (Ephesus, Turkey). International Biodeterioration & Biodegradation, 2000, 46(3): 221~227.
    62. Warscheid T, Braams J. Biodeterioration of Stone: A Review. International Biodeterioration & Biodegradation, 2000, 46(4): 343~368.
    63. McNamara C J, Mitchell R. Microbial Deterioration of Historic Stone. Frontiers in Ecology and the Environment, 2005, 3(8): 445~451.
    64.张香凝.岩石风化与土壤的形成.http://jwc.bjfu.edu.cn/jpkch/tr/trkj/pages/diyiz7.htm.2006-10-10.
    65. Weathering Research Group at QUB. Glossary of Stone Decay Features-Solution. http://www.qub.ac.uk/geog/documents/research/weathering/solution. html, 2005-04-08.
    66.牟会宠,杨志法,伍法权.石质文物保护的工程力学研究.北京:地震出版社,2000.28~29.
    67. Lister T. Conservation Chemistry. London: Royal Society of Chemistry, 2002. 44~54.
    68.王丽琴,党高潮,赵西晨,梁国正.加固材料在石质文物保护中应用的研究进展.材料科学与工程学报,2004,22(5):778~782.
    69.韩冬梅,郭广生,石志敏.化学加固材料在石质文物保护中的应用.文物保护与考古科学,1999,11(2):41~43.
    70.黄克忠.石质文物的化学保护法.见:中国文物研究所,编.文物科技研究.第一辑.北京:科学出版社,2004,8:16~23.
    71.张秉坚.古建筑与石质文物的保护处理技术.石材,2002,8:32~36.
    72.张秉坚.石材表面防护剂的研究.石材,1999,7:24~26.
    73.Lewin S Z.王金华,译.用于石刻艺术保护的化学合成物的现状.文物保护与考古科学,2001,13(2):58~64.
    74. Price C. Stone Conservation: An Overview of Current Research. Los Angeles: Getty Conservation Institute, 1996. 13~24.
    75. Clifton J R. Stone Consolidating Materials: A Status Report. http://palimpsest.stanford.edu/byauth/clifton/stone/, 2004-08-03.
    76. Peter M. Breathing New Life into Statues of Wells. New Scientist, 1977, 76: 754~756.
    77. Lewin S Z, Baer N S. Rationale of the Barium Hydroxide-Urea Treatment of Decayed Stone. Studies in Conservation, 1974, 19(1): 24-35.
    78. Schnabel L. Evaluation of the Barium Hydroxide—Urea Consolidation Method. In: 7th International Congress on Deterioration and Conservation of Stone. Lisbon: Laboratorio Nacional de Engenharia Civil, 1974. 1063~1072.
    79.黄克忠.石质文物的化学保护法.见:中国文物研究所,编.文物科技研究.第一辑.北京:科学出版社,2004.16~23.
    80. Jiri B, Petr K. Cracking of Organosilicone Stone Consolidants in Gel Form. Studies in conservation, 1996, 41(1): 55~59.
    81.周宗华.用于文物保护的高分子材料.高分子通报,1991,1:41~44.
    82. Price C A. Stone Decay and Preservation. Chemistry in Britain, 1975, 11(9): 350~353.
    83. Tarasov V I. New Colloid Silicate Solutions for Restoration and Conservation of Stone Facades. Russian Journal of Applied Chemistry, 2001, 74(12): 1985-1989.
    84. Cardiano P, Mineo P, Sergi S, Ponterio R C, Triscari M, Piraino P. Epoxy-Silica Polymers as Restoration Materials. Part Ⅱ. Polymer, 2003, 44(16): 4435~4441.
    85. Cardiano P, Sergi S, Lazzari M, Pirainoa P. Epoxy-Silica Polymers as Restoration Materials. Polymer 2002, 43(25): 6635-6640.
    86. Furukawa H. Cure Mechanism and Properties of Acrylosilane Coatings. Progress in Organic Coatings, 1994, 24(1-4): 81~99.
    87. Mazzola M, Frediani P, Bracci S, Salvini A. New Strategies for the Synthesis of Partially Fluorinated Acrylic Polymers as Possible Materials for the Protection of Stone Monuments. European Polymer Journal, 2003, 39(10): 1995~2003.
    88. Cardiano p, Ponterio R C, Sergi S, Lo Schiavo S, Piraino P. Epoxy-Silica Polymers as Stone Conservation Materials. Polymer, 2005, 46(6): 1857~1864.
    89. Ginell W S, Coffman R. Epoxy Resin-Consolidated Stone: Appearance Change on Aging. Studies in conservation, 1998, 43(4): 242~248.
    90. Selwitz C M. The Use of Epoxy Resins for Stone Conservation. In: Vandiver P B, Druzik J R, Wheeler G S, ed. Materials Issues in Art and Archaeology 2. Pittsburgh: Materials Research Society, 1991. 181~191.
    91. Selwitz C M. The Use of Epoxy Resins in Field Projects for Stone Stabilization. In: Vandiver P B, Druzik J R, Wheeler G S, ed. Materials Issues in Art and Archaeology 2. Pittsburgh: Materials Research Society, 1992. 925~934.
    92.陶保成,杨毅,何伟俊.明祖陵石刻加固保护竣工报告.东南文化,2002,11:87~89.
    93. Frediani P, Manganelli C, Matteoli U, Tiano P, Piacenti F. Perfluoroethers as Water Repellents in Stone Conservation. Journal of Fluorine Chemistry, 1980, 16(16): 607~608.
    94. Piacenti F, CamaitiE M. Strepparola E, Moggi G. Recent Developments with Fluoropolymers for Stone Conservation. Journal of Fluorine Chemistry, 1992, 58(2-3): 220.
    95. Rizzarelli P, La Rosa C, Torrisi A. Testing a Fluorinated Compound as a Protective Material for Calcarenite. Journal of Cultural Heritage, 2001, 2(1): 55~62.
    96.和玲.含氟聚合物及其对文物的保护研究[博士学位论文].西安:西北工业大学,2002.
    97.和玲,梁国正.含氟成膜聚合物应用于文物的表面保护.膜科学与技术,2003,23(3):41~45.
    98. Coffman R L, Agnew N, Selwitz C. Modification of the Physical Properties of Natural and Artifical Adobe by Chemical. In: Vandiver P B, Druzik J R, Wheeler G S, ed. Materials Issues in Art and Archaeology 2. Pittsburgh: Materials Research Society, 1991. 201~207.
    99. Adler H J, Jahny K, Vogt-Birnbrich B. Polyurethane Macromers—New Buildng Blocks for Acrylic Hybrid Emulsions with Outstanding Performance. Progress in Organic Coatings, 2001, 43(4): 251~257.
    100. Hansen E F, Agnew N. Consolidation with Moisture Curable Isocyanates: Polyureas and Polyurethanes. I COM Committee for Conservation: 9th Triennial Meeting, Dresden. Los Angeles: ICOM Committee for Conservation, 1990, 557~62.
    101. Price C A, Ross K D, White G. A Further Appraisal of the "Lime Technique" for Limestone Consolidation, Using a Radioactive Tracer. Studies in Conservation, 1988, 33(3): 178~86.
    102.韩冬梅,郭广生,石志敏,姜进展.化学加固材料在石质文物保护中的应用.文物保护与考古科学,1999,11(2):41~44.
    103.Tabasso M L.杨军昌,黄继忠,译.石质品的保护处理,文物保护与考古科学,1996,8(1):54~63.
    104.张秉坚,尹海燕,铁景沪.石质文物表面防护中的问题和新材料.文物保护与考古科学,2000,12(2):1~4.
    105. Melo M J, Bracci S, Camaiti M, Chiantore O, Piacenti F. Photodegradation of Acrylic Resins Used in the Conservation of Stone. Polymer Degradation and Stability, 1999, 66(1): 23~30.
    106. Borgia G C, Bortolotti V, Camaiti M, Cerrib F, Fantazzinic P, Piacenti F. Performance Evolution of Hydrophobic Treatments for Stone Conservation Investigated by MRI. Magnetic Resonance Imaging, 2001, 19(3-4): 513~516.
    107.周双林.文物保护有机树脂溶液型加固剂应用过程中反迁原因的探讨.文物保护与考古科学,2003,15(1):27~30.
    108. Mosquera M J, Pozo J. Stress during Drying of Two Stone Consolidants Applied in Monumental Conservation. Journal of Sol-Gel Science and Technology, 2003, 26(1-3): 1227~1231.
    109.尹海燕.石质文物的腐蚀机理与防护材料研究:[硕士学位论文].杭州:浙江大学,2001.
    110.张秉坚,尹海燕,陈德余,沈忠悦,卢唤明.一种生物无机材料——石质古迹上天然草酸钙保护膜德研究.无机材料学报,2001,16(4):752~756.
    111.张秉坚,尹海燕,沈忠悦,卢唤明.草酸钙生物矿化膜的形成机理和化 学仿制——一种新型石质文物表面防护材料的开发研究.矿物学报,2001,21(3):319~322.
    112. Cezar T M. Calcium oxalate: A Surface Treatment for Limestone. Journal of Conservation & Museum Studies, 1998, 4. http://palimpsest.stanford.edu/jcms/issue4/cezar.html, 2004-08-03.
    113. Garty J, Kunin P, Delarea J, Weiner S. Calcium Oxalate and Sulphate-Containing Structures on The Thallial Surface of the Lichen Ramalina Lacera: Response to Polluted Air and Simulated Acid Rain. Plant, Cell & Environment. 2002, 25(12): 1591~1604.
    114. Torre M A, Alarcon G G, Palacios J M. "In vitro" Biofilm Formation by Penicillum Frequentans Strains on Sandstone, Granite, and Limestone. Applied Microbiology and Biotechnology, 1993, 40(2-3): 408~415.
    115. Monte M. Oxalate Film Formation on Marble Specimens Caused by Fungus. Journal of Cultural Heritage, 2003, 4(3): 255~258.
    116. Garcia-Valles M, Vendrell-Saz M, Molera J, Blazquez F. Interaction of Rock and Atmosphere: Patinas on Mediterranean Monuments. Environmental Geology, 1998, 36(1-2): 137~149.
    117. Urzi C, Garcia-Valles M, Vendrell M, Pernice A. Biomineralization Processes on Rock and Monument Surfaces Observed in Field and in Laboratory Conditions. Geomicrobiology Journal, 1999, 16(1): 39~54.
    118. Danin A. Weathering of Limestone in Jerlusalem by Cyanobacteria. Z Geomorph N F, 1983, 27(4): 413~421.
    119. Garcia-Valles M, Vendrell-Saz M, Krumbein W E, Urzi C. Coloured Mineral Coatings on Monument Surface as a Result of Biomineralization: The Case of the Tarragona Cathedral(Catalonia). Applied Geochemistry, 1997, 12(3): 255~266.
    120. Rampazzi L, Andreotti A, Bonaduce I, Colombini M P, Colombo C, Toniolo L. Analytical Investigation of Calcium Oxalate Films on Marble Monuments. Talanta, 2004, 63(4): 967~977.
    121. Martin-Gil J, Martin-Gil F J, Del Carmen Ramos-Sanchez M, Martin-Ramos P. The Orange-Brown Patina of Salisbury Cathedral(West Orch) Surfaces: Evidence of Its Man-Made Origin. Environmental Science and Pollution Research International, 2005, 12(5): 285~289.
    122. Del Monte M, Sabbioni C. A Study of the Patina Called Scialbatura on Imperial Roman Marbles. Studies in Conservation, 1987, 32(3): 114~121.
    123. Monte M. Effect of Fungal Growth on Marble Samples: Formation of an Oxalate Deposit. In: Weber J, (Ed). Proceedings of the 11th workshop "Eurocare-Euromarble EU 496". Vienna: Centre Kartause Mauerbach, 2001. 103-107.
    
    124. Salvadori O, Realini M. Characterization of Biogenic Oxalate Films. In: Realini M, Toniolo L, (Ed). Proceedings of II International Symposium "The Oxalate Films in the Conservation of Works of Art". Milan: CNR-Centro "Gino Bozza", 1996. 337-351.
    
    125. Urzi C, Garcia-Valles M, Vendrell M, Pernice A. Biomineralization Processes on Rock and Monument Surfaces Observed in Field and in Laboratory Conditions. Geomicrobiology Journal, 1999, 16 (1): 39-54.
    
    126. Garcia V M, Vendrell S M, Molera J. Interaction of Rock and Atmosphere: Patinas on Mediterranean Monuments. Environmental Geology, 1998, 36 (1-2): 137-149.
    
    127. Monte M D, Sabbioni C, Zappia G. The Origin of Calcium Oxalate on Historical Buildings, Monuments and Natural Outcrops. The Science of the Total Environment, 1987, 67 (1): 17-39.
    
    128. Maravelaki-Kalaitzaki P. Black Crusts and Patinas on Pentelic Marble from the Parthenon and Erechtheum (Acropolis, Athens): Characterization and Origin. Analytica Chimica Acta, 2005, 532 (2): 187-198.
    
    129. Lin H, Sakamoto H, Seo W S, Kuwabara K, Koumoto K. Crystal Growth of Lepidocrocite and Magnetite under Langmuir Monolayers. Journal of Crystal Growth, 1998, 192 (1-2): 250-256.
    
    130. Nancollas G H, Wu W. Biomineralization Mechanisms: A Kinetics and Interfacial Energy Approach. Journal of Crystal Growth, 2000, 211 (1-4): 137-142.
    
    131. Murphy W L. Compartmental Control of Mineral Formation: Adaptation of a Biomineralization Strategy for Biomedical Use. Polyhedron, 2000, 19 (3): 357-363.
    
    132. Bettencourt V, Guerra A. Growth Increments and Biomineralization Process in Cephalopod Statoliths. Journal of Experimental Marine Biology and Ecology, 2000,248(2): 191-205.
    
    133. Breslow R. Biomimetic Chemistry: A Frontier at the Chemistry/Biology Interface. Chemistry & Biology, 1998, 5 (2): 27-28.
    
    134. Li C, Kaplan D L. Biomimetic Composites via Molecular Scale Self-Assembly and Biomineralization. Current Opinion in Solid State and Materials Science, 2003, 7(4-5): 265~271.
    135. Davis S A, Dujardin E, Mann S. Biomolecular Inorganic Materials Chemistry. Current Opinion in Solid State and Materials Science, 2003, 7(4-5): 273~281.
    136.薛中会,武超,戴树玺,杜祖亮.生物矿化研究进展.河南大学学报,2003,33(3):21~25.
    137. Calvert P. Biomineralization: Advances in Mussel Building. Nature, 1988, 334(6184): 651~652.
    138. Heuer A H, Fink D J, Laraia V J, Arias J L, Calvert P D, Kendall K, Messing G L, Blackwell J, Rieke P C, Thompson D H. Innovative Materials Processing Strategies: A Biomimetic Approach. Science, 1992, 255(5048): 1098~1105.
    139. Archibald D D, Mann S. Template Mineralization of Self-Assembled Anisotropic Lipid Microstructures. Nature 1993, 364(6436): 430~433.
    140. SommerA P, Pretorius A M, Olavi Kajander E, Oron U. Biomineralization Induced by Stressed Nanobacteria. Crystal Growth & Design, 2004, 4(16): 45~46.
    141.毛传斌,李恒德,崔福斋,冯庆玲,王浩.无机材料的仿生合成.化学进展,1998,10(3):246~254.
    142. Arias J L, Femandez M S. Biomimetic Processes through the Study of Mineralized Shells. Materials Characterization, 2003, 50(2-3): 189~195.
    143. Mann S. Molecular Techonics in Biomineralization and Biomimetic Materials Chemistry. Nature, 1993, 365(7): 499~505.
    144. Mann S. Molecular Recognition in Biominerallization. Nature, 1988, 332(10): 119~124.
    145. Addadi L, Geva M. Molecular Recognition at the Interface between Crystals and Biology: Generation, Manifestation and Detection of Chirality at Crystal Surfaces. CrystEngComm, 2003, 5(26): 140~146.
    146.张立娟,刘洪国,冯绪胜.有序分子膜诱导生物功能材料仿生合成的研究进展.化学通报,2002,65(w50):1~8.
    147.何基保,温树林.生物矿化作用.自然杂志,1997,19(5):272~276.
    148. Liu X Y, Lim S W. Templating and Supersaturation-Driven Anti-Templating: Principles of Biomineral Architecture. Journal of the American chemical Society, 2003, 125(4): 888~895.
    149. Yu S H, Colfen H, Hartmann J, Antonietti M. Biomimetic Crystallization of Calcium Carbonate Spherules with Controlled Surface Structures and Sizes by Double-Hydrophilic Block Copolymers. Advanced Functional Materials, 2002,12 (8): 541-545.
    
    150. Zhan J, Tseng Y H, Chan J C C, Mou C Y. Biomimetic Formation of Hydroxyapatite Nanorods by a Single-Crystal-to-Single-Crystal Transformation. Advanced Functional Materials, 2005,15 (12): 2005-2010.
    
    151. Estroff L A, Hamilton A D. At the Interface of Organic of Composite Materials. Chemistry of Materials, 2001, 13 (10): 3227-3235.
    
    152. Abe Y, Kokubo T, Yamamuro T. Apatite Coating on Ceramics, Metals and Polymers Utilizing a Biological Process. Journal of Materials Science: Materials in Medicine, 1990, 1 (4): 233-238.
    
    153. Mann S. On the Nature of Boundary-Organized Biomineralization (BOB). Journal Inorganic Biochemistry, 1986,28 (2-3): 363-371.
    
    154. Xu T, Stevens J, Villa J A, Goldbach J T, Guarini K W, Black C T, Hawker C J, Russell T P. Block Copolymer Surface Reconstuction: A Reversible Route to Nanoporous Films. Advanced Functional Materials, 2003, 13 (9): 698-702.
    
    155. McGrath K M. Probing Material Formation in the Presence of Organic and Biological Molecules. Advanced Materials, 2001, 13 (12-13): 989-992.
    
    156. Lochhead M J, Letellier S R, Vogel V. Assessing the role of interfacial electrostatics in oriented mineral nucleation at charged monolayers. The Journal of Physical Chemistry B, 1997, 101 (50): 6665- 6669.
    
    157. Wan Andrew C A, Hasting G W, Khor E. The Influence of Anionic Chitin Derivatives on Calcium Phosphate Crystallization. Biomaterials, 1998, 19 (14): 1309-1316.
    
    158. Manoli F, Dalas E. Calcium Carbonate Overgrowth on Elastin Substrate. Journal of Crystal Growth, 1999, 204 (3): 369-375.
    
    159. 姚连增.晶体生长基础.合肥:中国科学技术大学出版社,1995.258~276.
    
    160. Hou W T, Feng Q L. Crystal Orientation Preference and Formation Mechanism of Nacreous Layer in Mussel. Journal of Crystal Growth, 2003, 258 (3-4): 402-408.
    
    161. Couchourel D, Escoflier C, Rohanizadeh R. Effect of Fibronectin on Hydroxylapatite Formation. Journal of Inorganic Biochemistry, 1999, 73 (3-4): 129-136.
    
    162. Falini G, Albeck S, Weiner S, Addadi L. Control of Aragonite or Calcite Polymorphism by Mollusk Shelf Macromolecules. Science, 1996, 273(5271): 67~69.
    163. Hou W T, Feng Q L. Crystal Orientation Preference and Formation Mechanism of Nacreous Layer in Mussel. Journal of Crystal Growth, 2003, 258(3-4): 402~408.
    164. William L, Murphy, pavid J, Bioinspired Growth of Crystalline Carbonate Apatite on Biodegradable Polymer Substrata. Journal of the American chemical Society, 2002, 124(9): 1910~1917.
    165. Hunter G K. Interfacial Aspects of Biomineralization. Current Opinion in Solid State & Materials Science, 1996, 1(3): 430~435.
    166. Wu L Q, Ghodssi R, Elabd Y A, Payne G F. Biomimetic Pattern Transfer. Advanced Functional Materials, 2005, 15(2): 189~195.
    167. Orme C A, Noy A, Wierzbicki A, McBride M T, Grantham M, Teng H H, Dove P M, DeYoreo J J. Formation of Chiral Morphologies through Selective Binding of Amino Acids to Calcite Surface Steps. Nature, 2001, 411(6839): 775~779.
    168. Hecky R E, Mopper K, Kilham P. The Amino Acid and Sugar Composition of Diatom Cell Walls. Marine Biology, 1973, 19(4): 323~331.
    169. Miyamoto H, Miyashita T, Okushima M, Nakano S, Morita T, Matsushiro A. A Carbonic Anhydrase from the Nacreous Layer in Oyster Pearls. Proceedings of the National Academy of Science of the United States of America, 1996, 93(18): 9657~9660.
    170.曾鑫华,欧阳健明,郑文杰,姚秀琼,雷远江,杨芳.二棕榈磷脂酰胆碱LB膜诱导下草酸钙晶体生长的SEM研究.暨南大学学报,2001,22(1):70~73.
    171. Wang Y, Yang C, Chen X, Zhao N. Biomimetic Formation of Hydroxyapatite/Collagen Matrix Composite. Advanced Engineering Materials, 2006, 8(1-2): 97~100.
    172.王荔军,李敏,李铁津,王运华,张福锁.植物体内的纳米结构SiO_2.科学通讯,2001,46(8):625~632.
    173. Arias J L, Fernandez M S. Biomimetic Processes through the Study of Mineralized Shells. Materials Characterization, 2003, 50(2-3): 189~195.
    174. Krampitz G, Graser G. Molecular Mechanisms of Biomineralization in the Formation of Calcified Shells. Angewandte Chemie International Edition in English, 1988, 27(9): 1145~1156
    175. Meldrum F C, Wade V J, Nimmo D L, Heywood B R, Mann S. Synthesis of Inorganic Nanophase Materials in Supramolecular Protein Cages. Nature, 1991, 349 (6311): 684-687.
    
    176. Heywood B R, Mann S. Molecular Construction of Oriented Inorganic Materials: Controlled Nucleation of Calcite and Aragonite under Compressed Langmuir Monolayers. Chemistry of Materials, 1994, 6 (3): 311-318.
    
    177. Mann S, Heywood B R, Rajam S, Walker J B A. Structural and Stereochemical Relationshis between Langmuirmono Layers and Calcium Carbonate Nucleation. Journal of Physics D: Applied Physics, 1991, 24 (2): 154-164.
    
    178. Bunker B C, Rieke P C, Tarasevich B J, Campbell A A, Fryxell G E, Graff G L, Song L, Liu S, Virden J W, Mcvay G L. Ceramic Thin-Film Formation on Functionalized Interface through Biomimetic Processing. Science, 1994, 264 (1): 48-55.
    
    179. Smith B L, Schaffer T, Viani M, Thompson J B, Frederick N A, Kindt J, Belcher A, Stucky G D, Morse D E, Hansma P K. Molecular Mechanistic Origin of Toughness of Natural Adhensives, Fibres and Composites. Nature, 1999, 399 (6738): 761-763.
    
    180. Waite J H, Qin X X, Coyne K J. The Peculiar Collagens of Mussel Byssus. Matrix biology: journal of the International Society for Matrix Biology, 1998, 17 (2): 93-106.
    
    181. Currey J D. Mechanical Properties of Mother of Pearl in Tension. Proceedings of the Royal Society of London. Series B, Biological Sciences, 1977, 196 (1125): 443-463.
    
    182. Jackson A P, Vincent J F, Turner R M. The Mechanical Design of Nacre. Proceedings of the Royal Society of London. Series B, Biological Sciences, 1988, 234 (1277): 415-440.
    
    183. Jackson A P, Vincent J F V. Comparison of Nacre with Other Ceramic Composites. Journal of materials Science, 1990, 25 (7): 3173-3178.
    
    184. Sugawara A, Fujikawa K, Kusama K, et al. Nishiyama M, Murai S, Takagi S, Chow L C. Histopathologic Reaction of a Calcium Phosphate Cement for Alveolar Ridge Augmentation. Journal of Biomedical Materials Research, 2002, 61 (1): 47-52.
    
    185. Ma C L, Lu H B, Wang R Z, Zhou L F, Cui F Z, Qian F. Comparison of Controlled Crystallization of Calcium Phosphates under Three Kinds of Monolayers. Journal of Crystal Growth, 1997,173 (1-2): 141-149.
    186. Rodriguez-Lorenzo L M, Vallet-Regi M. Controlled Crystallization of Calcium Phosphate Apatites. Chemistry of Materials, 2000,12 (8): 2460-2465.
    
    187. Kikuchi M, Itoh S, Ichinose S, Shinomiya K, Tanaka J. Self-Organization Mechanism in a Bone-Like Hydroxyapatite/Collagen Nanocomposite Synthesized In Vitro And Its Biological Reaction In Vivo. Biomaterials, 2001, 22 (13): 1705-1711.
    
    188. Du C, Cui FZ, Zhu XD, de Groot K. Three-Dimensional Nano-Hap/Collagen Matrix Loading with Osteogenic Cells in Organ Culture. Journal of Biomedical Materials Research, 1999,44 (4): 407-415.
    
    189. Du C, Cui FZ, Feng Q L, Zhu X D, de Groot K. Tissue response to nano-hydroxyapatite/collagen composite implants in marrow Cavity. Journal of Biomedical Materials Research, 1998,42 (4): 540-548.
    
    190. Borsato KS, Sasaki N. Measurement of Partition of Stress between Mineral and Collagen Phases in Bone using X-Ray Diffraction Techniques. Journal of Biomechanics, 1997, 30 (9): 955-957.
    
    191. Walsh W R, Guzelsu N. Compressive Properties of Cortical Bone: Mineral-Organic Interfacial Bonding. Biomaterials 1994, 15 (2): 137-145.
    
    192. Mammone J F, Hudson S M. Micromechanics of bone strength and fracture. Journal of Biomechanics, 1993,26 (4-5): 439-446.
    
    193. Cornell C N, Lane J M, Chapman M, Merkow R, Seligson D, Henry S, Gustilo R, Vincent K. Multicenter Trial of Collagraft as Bone Graft Substitute. J Orthop Trauma 1991, 5 (1): 1-8.
    
    194. Weiner S, Wagner H D. Thematerial Bone: Structure Mechanical Function Relations. Annual Review of Materials Science, 1998,28: 271-298.
    
    195. Stock U A, Vacanti J P. Tissue Engneering: Current State and Prospects. Annual Review Medicine, 2001, 52: 443-451.
    
    196. Otsuk M, Sawada M, Matsuda Y, Nakamura T, Kokubo T. Antibiotic Delivery System using Bioactive Bone Cement Consisting of Bis-GMA/TEGDMA Resin And Bioactive Glass Ceramics. Biomaterials, 1997, 18 (23): 1559-1564.
    
    197. Barrere F, van Blitterswijk C A, de Groot K, Layrolle P. Influence of Ionic Strength and Carbonate on the Ca-P Coating Formation from SBF×5 Solution. Biomaterials, 2002,23 (9): 1921-1930.
    
    198. Barrere F, van Blitterswijk C, de Groot K, Layrolle P. Nucleation of Biomimetic Ca-P Coatings on Ti6A14V from a Sbfx5 Solution: Influence of Magnesium. Biomaterials, 2002, 23(10): 2211~2220.
    199. Fu Q, Zhou N, Huang W, Wang D, Zhang L, Li H. Preparation and Characterization of a Novel Bioactive Bone Cement: Glass Based Nanoscale Hydroxyapatite Bone Cement. Journal of Materials Science: Materials in Medicine, 2004, 15(12): 1333~1338.
    200. Fu Q, Zhou N, Huang W, Wang D, Zhang L, Li H. Effects of Nano HAP on Biological and Structural Properties of Glass Bone Cement. Journal of Biomedical Materials Research-Part A, 2005, 74(2): 156~163.
    201.欧阳健明.草酸钙结石研究中的化学基础.化学学报,2002,65(5):326~332.
    202. Tunik L, Fueredi-Milhofer H, Garti N. Adsorption of Sodium Diisooctyl Sulfosuccinate onto Calcium Oxalate Crystals. Langmuir, 1998, 14(12): 3351~3355.
    203. Jung T, Kim W S, Choi C K. Biomineralization of Calcium Oxalate for Controlling Crystal Structure and Morphology. Materials Science & Engineering C, 2004, 24(1-2): 31~33.
    204. Bretherton T, Rodgers A. Crystallization of Calcium Oxalate in Minimally Diluted Urine, Journal of Crystal Growth, 1998, 192(3-4): 448~455.
    205.欧阳健明,姚秀琼,苏泽轩,崔福斋.草酸钙结石的体外模拟.中国科学(B辑),2003,33(1):14~20.
    206. Ouyang J M, Duan L, Tieke B. Effect of Carboxylic Acids on the Crystal Growth of Calcium Oxalate Nanoparticles in Lecithin-Water Liposome Systems. Langmuir, 2003, 19(21): 8980~8985.
    207. Ouyang J M, Duan L, He J H, Tieke B. Crystallization of Calcium Oxalate in Liposome Solutions of Different Carboxylates. Chemistry Letters, 2003, 32(3): 268~269.
    208. Wesson A J, Worcester M E, Wiessner J H, Mandel N S, Kleinman J G. Control of Calcium Oxalate Crystal Structure and Cell Adherence by Urinary Macromolecules. Kidney International, 1998, 53(4): 952~957.
    209. Zhang D, Qi L, Ma J, Cheng H. Morphological Control of Calcium Oxalate Dihydrate by a Double-Hydrophilic Block Copolymer. Chemistry of Materials, 2002, 14(6): 2450~2457.
    210. Bretherton T, Rodgers A. Crystallization of calcium oxalate in minimally diluted urine. Journal of Crystal Growth, 1998, 192(3-4): 448~455.
    211.郭中满,王荔军,陈霞,王策,李铁津.生物矿化合成纳米针状SiO_2·高 等学校化学学报,2000,21(6):847~848.
    212.王荔军,李铁津.生物矿化纳米结构材料与植物硅营养.化学进展,1999,11(2):119~128.
    213. Su X, Belcher A M, Zaremba C M, Morse D E, Stucky G D, Heuer A H. Structural and Microstructural Characterization of the Growth Lines and Prismatic Microarchitecture in Red Abalone Shell and the Microstructures of Abalone "Flat Pearls". Chemistry of Materials, 2002, 14(7): 3106~3117.
    214.欧阳健明,陈德志,李祥平.生物矿化在仿生材料领域的研究进展.材料导报,2004,18(12):62~66.
    215. Berman A, Addadi L, Weiner S. Interaction of Sea-Orchin Skeleton Macromolecules with Growing Calcite Crystals—A Study of Intracrystalline Proteins. Nature, 1988, 331(6156): 546~548.
    216. Frankel R B, Blackemore R P. Magnetite and Magnetotaxis in Microorganesms. Bioelectromagnetics, 1989, 10(3): 223~237.
    217.欧阳健明,吴秀梅.生物体内铁和硅的生物矿化及其研究进展.化学世界,2005,46(6):371~375.
    218. Blackemore R P. Magnetotactic Bacteria. Science, 1975, 190(4212): 377~379.
    219. Devouard B, Posfai M, Hua X, Bazylinski D A, Frankel R B, Buseck P R. Magnetite from Magnetotactic Bacteria: Size Distributions and Twinning. American Mineralogist, 1998, 83(11-12): 1387~1398.
    220.崔福斋,冯庆玲.生物材料学.第二版.北京:清华大学出版社,2004.98.
    221. Lowenstam H A. Minerals formed by organisms. Science, 1981, 211(4487): 1126~1131.
    222. Sarikaya M. Biomimetics: Materials fabrication through biology. Proceedings of the National Academy of Science of the United States of America, 1999, 96(25): 14183~14185.
    223.王玉庆,周本濂,师昌绪.仿生材料学——一门新型的交叉学科.材料导报,1995,4:1~4.
    224. Aksay I A, Trau M, Manne S, Honma I, Yao N, Zhou L, Fenter P, Eisenberger P M, Gruner S M. Biominetic Pathways for Assembling Inorganic Thin Films. Science, 1996, 273(16): 892~898.
    225. Samuel I, Stupp Paul V, Braun. Molecular Manipulation of Microstructures: Biomaterials Ceramics and Semiconductors. Science, 1997, 277(29): 1242~1248.
    226. Zhao X K, Yang J, McCormick L D, Fendler J H. Epitaxial Formation of PbS Crystals under Arachidic Acid Monolayers. The Journal of Physical Chemistry, 1992, 96(24): 9933~9939.
    227.李火明,张秉坚,刘强.一类潜在的石质文物表面防护材料:仿生无机材料.文物保护与考古科技,2005,17(1):59~64.
    228.张秉坚.含钙石材和石质文物的表面防护方法.中国发明专利:CN00119382.1,2003—09—03.
    229. Le Metayer-Levrel G, Castanier S, Orial G, Loubiere J F, Perthuisot J P. Applications of Bacterial Carbonatogenesis to The Protection and Regeneration of Limestones in Buildings and Historic Patrimony. Sedimentary Geology, 1999, 126(1): 25~34.
    230. Kim H-W, Song J-H, Kim H-E. Nanofiber Generation of Gelatin-Hydroxyapatite Biomimetics for Guided Tissue Regeneration. Advanced Functional Materials, 2005, 15(12): 1988~1994.
    231. Rivers T J, Hudson T W, Schmidt C E. Synthesis of a Novel, Biodegradable Electrically Conducting Polymer for Biomedical Applications. Advanced Functional Materials, 2002, 12(1): 33~37.
    232. Sumper M, Brunner E. Learning from Diatoms: Nature's Tools for the Production of Nanostructured Silica. Advanced Functional Materials, 2006, 16(1): 17~26.
    233.付丽红,程惊秋,来国莉.明胶基质作用下碳酸钙的仿生合成.化学学报,2005,63(17):1626~1632.
    234.付玉彬,张立德,郑纪勇.分子自组装脂类微管的螺旋带特征分析.化学学报,2004,62(9):911~915.
    235.柳华杰,吴庆生,丁亚平,刘璐.载体乳化液膜法同步进行亚稳相PbCrO4纳米粒子的仿生合成与铅铬废水的处理.化学学报,2004,62(10):946~950.
    1. Mann S. Molecular Techonics in Biomineralization and Biomimketic Materials Chemistry. Nature 1993, 365 (7): 499-505.
    
    2. Lakes R. Materials with Structural Hierarchy. Nature 1993, 361 (6412): 511-515.
    
    3. Cha J N, Stucky G D, Morse D E, Deming T J. Biomimetic Synthesis of Ordered Silica Structures Mediated by Block Copolypeptides. Nature 2000, 403 (6767): 289-292.
    
    4. Davis S A, Dujardin E, Mann S. Biomolecular Inorganic Materials Chemistry. Current Opinion in Solid State and Materials Science, 2003, 7 (4-5): 273-281.
    
    5. Aksay I A, Traus M, Mann S, Honma I, Yao N, Zhou L, Fenter P, Eisenberger P M, Gruner S M. Biominetic Pathways for Assembling Inorganic Thin Films. Science, 1996, 273 (16): 892-898.
    
    6. Samuel I, Stupp Paul V, Braun. Molecular Manipulation of Microstructures: Biomaterials Ceramics and Semiconductors. Science, 1997, 277 (29): 1242-1248.
    
    7. Zhao X K, Yang J, McCormick L D, Fendler J H. Epitaxial Formation of PbS Crystals under Arachidic Acid Monolayers. The Journal of Physical Chemistry, 1992, 96 (24): 9933-9939.
    
    8. Rao C N R. Novel Materials, Materials Design and Synthetic Strategies: Recent Advances and New Directions. Journal of Materials Chemistry, 1999, 9 (1): 1-14.
    
    9. Arias J L, Fernandez M S. Biomimetic Processes through the Study of Mineralized Shells. Materials Characterization, 2003, 50 (2-3): 189-195.
    
    10. Fendler J H. Biomineralization Inspired Preparation of Nanoparticles and Nanoparticulate Films. Current Opinion in Solid State & Materials Science, 1997, 2 (3): 365-369.
    
    11. Bunker B C, Rieke P C, Tarasevich B J, Campbell A A, Fryxell G E, Graff G L, Song L, Liu J, Virden J W, Mcvay G L. Ceramic Thin Film Formation on Functionalized Interfaces through Biomimetic Processing. Science 1994, 264 (1): 48-55.
    
    12. Calvert P. Biomimetic Mineralization in and on Polymers. Chemistry of Materials, 1996, 8(8): 1715-1727.
    
    13. Firouzi A, Kumar D, Bull L M, Besier T, Sieger P, Huo Q, Walker SA, Zasadzinski J A, Glinka C, Nicol J. Cooperative Organization of Inorganic-Surfactant and Biomimetic Assemblies. Science, 1995, 267 (5201): 1138-1143.
    
    14. Margolis H C, Beniash E, Fowler C E. Role of Macromolecular Assembly of Enamel Matrix Proteins in Enamel Formation. Journal of Dental Research, 2006, 85 (9): 775-793.
    
    15. William Orr G, Barbour L J, Atwood J L. Controlling Molecular Self-Organization: Formation of Nanometer-Scale Spheres and Tubules. Science, 1999,285(5430): 1049-1052.
    
    16. Huo Q, Leon R, Petroff P M, Stucky G D. Mesostructure Design with Gemini Surfactants: Supercage Formation in a Three-Dimensional Hexagonal Array. Science, 1995, 268 (5215): 1324-1327.
    
    17. Aksay I A, Trau M, Manne S, Honma I, Yao N, Zhou L, Fenter P, Eisenberger P M, Gruner S M. Biominetic Pathways for Assembling Inorganic Thin Films. Science, 1996, 273 (16): 892-898.
    
    18. Fendler J H. Biomineralization Inspired Preparation of Nanoparticles and Nanoparticulate Films. Current Opinion in Solid State & Materials Science, 1997,2 (3): 365-369.
    
    19. Hosoda N, Sugawara A, Kato T. Template Effect of Crystalline Poly (vinyl alcohol) for Selective Formation of Aragonite and Vaterite CaCO3 Thin Films. Macromolecules 2003, 36 (17): 6449-6452.
    
    20. Kuther J, Tremel W. Template Induced Crystallization of Biominerals on Self-Assembled Monolayers of Alkylthiols. Thin Solid Films, 1998, 327-329 (Aug. 31): 554-558.
    
    21. Bunker B C, Rieke P C, Tarasevich B J, Campbell A A, Fryxell G E, Graff G L, Song L, Liu J, Virden J W, Mcvay G L. Ceramic Thin Film Formation on Functionalized Interfaces through Biomimetic Processing. Science 1994, 264 (5155): 48-55.
    
    22. Fowkes F M. Determination of Interfacial Tensions, Contact Angles, and Dispersion Forces in Surfaces by Assuming Additivity of Intermolecular Interactions in Surfaces. The Journal of Physical Chemistry, 1962, 66 (2): 382.
    
    23. Fowkes F M. Comments on "The Calculation of Cohesive and Adhesive Energies," by J. F. Padday and N. D. Uffindell. The Journal of Physical Chemistry, 1968, 72 (10): 3700.
    
    24. Padday J F, Uffmdell N D. Reply to Comments of F. M. Fowkes on "The Calculation of Cohesive and Adhesive Energies". The Journal of Physical Chemistry, 1968, 72(10): 3700.
    25. Lyklema J. Water at Interface: A Colloidchemical Approach. Journal of Colloid and Interface Science, 1977, 58(2): 242~251.
    26. Israelachvili J N. Adhesion Forces between Surfaces in Liquids and Condensable Vapours. Surface Science Reports, 1992, 14(3): 109~159.
    27. Owens D K, Wendt R C. Estimation of the Surface Free Energy of Polymers. Journal of Applied Polymer Science, 1969, 13(8): 1741~1747.
    28. Wu S. Contact Angles of Liquids on Solid Polymers. Polymer Interface And Adhesion, 1982, (4): 162
    29. A1-Turaif H, Bousfield D W. The Influence of Substrate Absorbency on Coating Surface Energy. Progress in Organic Coatings, 2004, 49(1): 62~68.
    30. Wu N, Dai J, Micale F. Dynamic Surface Tension Measurement with a Dynamic Wilhelmy Plate Technique. Journal of Colloid and Interface Science, 1999, 215(2): 258~269.
    31.谢坤峰.纳米压印微影技术之脱模剂与表面能的研究[D].桃源:国立中央大学,2004.
    32. Correia N T, Moura Ramos J J, Saramago B J V, Calado J C G. Estimation of the Surface Tension of a Solid: Application to a Liquid Crystalline Polymer. Journal of Colloid and Interface Science, 1997, 189(2): 361~369.
    33. Owens D K. Wendt R C. Estimation of the Surface Free Energy of Polymers. Joumal of Applied Polymer Science, 1969, 13(8): 1741~1747.
    34. Li K, Wu P, Han Z. Preparation and Surface Properties of Fluorine-Containing Diblock Copolymers. Polymer, 2002, 43(14): 4079~4086.
    35. Ponsonneta L, Reybiera K, Jaffrezica N, Comteb V, Lagneaub C, Lissacb M, Marteleta C. Relationship between Surface Properties(Roughness, Wettability) of Titanium and Titanium Alloys and Cell Behaviour. Materials Science and Engineering: C, 2003, 23(4): 551~560.
    36. Feng B, Weng J, Yang B C, Qu S X, Zhang X D. Characterization of Surface Oxide Films on Titanium and Adhesion of Osteoblast. Biomaterials, 2003, 25(24): 4663~4670.
    37. Augsburg A, Grundke K, Poschel K, Jacobasch H J, Neumann A W. Determination of Contact Angles and Solid Surface Tensions of Poly(4-X-Styrene) Films. Acta Polymerica, 1999, 49(8): 417~426.
    38.马学虎,高大志,兰忠,张宇,白涛,杨俊玲,陈嘉宾.功能表面材料与流体界面相互作用对垂直降液膜流动特性的影响.高校化学工程学报,2004,18(3):269~274.
    39. Price C. Stone conservation: an overview of current research. Los Angeles: Getty Conservation Institute, 1996. 25~28.
    40. Peruzzi P, Poli T, Toniolo L. The Experimental Test for the Evaluation of Protective Treatments: A Critical Survey of the "Capillary Absorption Index". Journal of Cultural Heritage, 2003, 4(3): 251~254.
    41. Melo M J, Bracci S, Camaiti M, Chiantore O, Piacenti F. Photodegradation of Acrylic Resins Used in the Conservation of Stone. Polymer Degradation and Stability, 1999, 66(1): 23~30.
    42. Rizzarelli P, La Rosa C, Torrisi A. Testing a Fluorinated Compound as a Protective Material for Calcarenite. Journal of Cultural Heritage, 2001, 2(1): 55~62.
    43.和玲,梁国正.含氟成膜聚合物应用于文物的表面保护.膜科学与技术,2003,23(3):40~45.
    44.中华人民共和国建材行业标准.建筑装饰用天然石材防护剂.JC/T973-2005.
    45.中华人民共和国国家标准.天然饰面石材试验方法,第1部分:干燥、水饱和、冻融循环后压缩强度试验方法.GB/T 9966.1-2001.
    46.中华人民共和国国家标准.天然饰面石材试验方法,第2部分:干燥、水饱和弯曲强度试验方法.GB/T 9966.2-2001.
    47.中华人民共和国国家标准.天然饰面石材试验方法,第3部分:体积密度、真密度、真气孔率、吸水率试验方法.GB/T 9966.3-2001.
    48.中华人民共和国国家标准.天然饰面石材试验方法,第6部分:耐酸性试验方法.GB/T 9966.6-2001.
    1.张秉坚,尹海燕,铁景沪.石质文物表面防护中的问题和新材料.文物保护与考古科学,2000,12(2):1~4.
    2. Mosquera M J, Pozo J. Stress during Drying of Two Stone Consolidants Applied in Monumental Conservation. Journal of Sol-Gel Science and Technology, 2003, 26(1-3): 1227~1231.
    3. Tarasov V I. New Colloid Silicate Solutions for Restoration and Conservation of Stone Facades. Russian Journal of Applied Chemistry, 2001, 74(12): 1985~1989.
    4. Cardiano P, Mineo P, Sergi S, Ponterio R C, Triscari M, Piraino P. Epoxy-Silica Polymers as Restoration Materials, Part Ⅱ. Polymer, 2003, 44: 4435~4441.
    5.韩冬梅,郭广生,石志敏.化学加固材料在石质文物保护中的应用.文物保护与考古科学,1999,11(2):41~44.
    6.刘强,张秉坚,龙梅.石质文物表面憎水性化学保护的副作用研究.文物保护与考古科技,2006,18(2):1~7.
    7.Lewin S Z.王金华,译.用于石刻艺术保护的化学合成物的现状.文物保护与考古科学,2001,13(2):58~64.
    1.叶瑞伦,方永汉,陆佩文.无机材料物理化学.北京:中国建筑工业出版社,1986.95~114.
    2.顾惕人,朱步瑶,李外郎,马季铭,戴乐蓉,程虎民.北京:科学出版社,1994.191~232.
    3.朱履冰,包兴.表面与界面物理.天津:天津大学出版社,1992.24~178.
    4.吴树森.应用物理化学(第一分册):界面化学与胶体化学.北京:高等教育出版社,1993.61~90.
    5.叶瑞伦,方永汉,陆佩文.无机材料物理化学.北京:中国建筑工业出版社,1986.95~114.
    6.赵九蓬,李垚,刘丽.新型功能材料设计与制备工艺.北京:化学工业出版社,2003.106~115.
    7.徐滨士,朱绍华.表面工程的理论与技术.北京:国防工业出版社,1999.458~468.
    8.傅建熙.有机化学.北京:高等教育出版社,2000.174~176.
    9.袁履冰,高占先,陈宏傅,姜文凤.有机化学.北京:高等教育出版社,1999.246~249.
    1. Bunker B C, Rieke P C, Tarasevich B J, Campbell A A, Fryxell G E, Graft G L, Song L, Liu J, Virden J W, Mcvay G L. Ceramic Thin Film Formation on Funetionalized Interfaces through Biomimetic Processing. Science, 1994, 264(1): 48~55.
    2. Calvert P. Biomimetic Mineralization In and on Polymers. Chemistry of Materials, 1996, 8(8): 1715~1727.
    3. Firouzi A, Kumar D, Bull L M, Besier T, Sieger P, Huo Q, Walker S A, Zasadzinski J A, Glinka C, Nicol J. Cooperative Organization of Inorganie-Surfactant and Biomimetic Assemblies. Science, 1995, 267(5201): 1138~1143.
    4. Tunik L, Fueredi-Milhofer H, Garti N. Adsorption of Sodium Diisooctyl Sulfosuccinate onto Calcium Oxalate Crystals. Langmuir, 1998, 14(12): 3351~3355.
    5. Whipps S, Khan S R, O'Palko F J, Backov R, Talham D R. Growth of Calcium Oxalate Monohydrate at Phospholipid Langmuir Monolayers. Journal of Crystal Growth, 1998, 192(1-2): 243~249.
    6. Letellier S R, Lochhead M J, Campbell A A, Vogel V. Oriented Growth of Calcium Oxalate Monohydrate Crystals beneath Phospholipid Monolayers. Biochimica Biophysica Acta, 1998, 1380(1): 31~45.
    7. Bouropoulos N, Weiner S, Addadi L. Calcium Oxalate Crystals in Tomato and Tobacco Plants: Morphology and in Vitro Interactions of Crystal-Associated Macromolecules. Chemistry, 2001, 7(9): 1881~1888.
    8. Shirane Y. Kurokawa Y, Sumiyoshi Y, Kagawa S. Morphological Effects of Glycosaminoglycans on Calcium Oxalate Monohydrate Crystals. Scanning Microscopy International, 1995, 9(4): 1081~1088.
    9.钟玖平,欧阳健明,郑文杰,沈玉华,谢安建.硫酸软骨素A对草酸钙晶体生长和聚集的影响.化学世界,2003,2:59~62.
    10. Sheng X X, Ward M D, Wesson J A. Adhesion Between Molecules And Calcium Oxalate Crystals: Critical Interactions in Kidney Stone Formation. Journal of the American Chemical. Society, 2003, 125(10): 2854~2855.
    11. Khan S R, Whalen P O, Glenton P A. Heterogeneous Nucleation of Calcium Oxalate Crystals in The Presence of Membrane Vesicles. Journal of Crystal Growth, 1993, 134(3-4): 211~218.
    12. Volpi N, Mucci A, Schenetti L. Stability Studies of Chondroitin Sulfate. Carbohydrate Research, 1999, 315(3-4): 345~349.
    13. Shirane Y, Kurokawa Y, Miyashita S, Komatsu H, Kagawa S. Study of Inhibition Mechanisms of Glycosaminoglycans on Calcium Oxalate Monohydrate Crystals by Atomic Force Microscopy. Urological Research, 1999, 27(6): 426~431.
    14. Ouyang J-M, Deng S-P. Controlled and uncontrolled crystallization of calcium oxalate monohydrate in the presence of citric acid. Dalton Transactions, 2003, 14: 2846~2851.
    15.呼世斌,黄蔷蕾.无机及分析化学.北京:高等教育出版社,2001.472~483.
    16.佩兰特.岩石与矿物.北京:中国友谊出版社,2000.98~99.
    17.胡家燕.结石与结石矿物.Http://www.Mygem.Com.Cn/Guanshangshi/Gss_010.Htm,2003—08—27.
    18.刘强,张秉坚.石质文物表面生物矿化保护材料的仿生制备.化学学报,2006,64(15):1601~1605.
    1.李火明,张秉坚,刘强.一类潜在的石质文物表面防护材料:仿生无机材料.文物保护与考古科技,2005,17(1):59~64.
    2. Liu Q, Zhang B, Shen Z, Lu H. A crude protective film on historic stones and its artificial preparation through biomimetic synthesis. Applied Surface Science, 2006, 253(5): 2625~2632.
    3.李火明,张秉坚,刘强.一类潜在的石质文物表面防护材料:仿生无机材料.文物保护与考古科技,2005,17(1):59~64.
    4.呼世斌,黄蔷蕾.无机及分析化学.北京:高等教育出版社,2001.472~483.
    5.刘榕芳,肖秀峰,林岚云,陈古镛.水热电沉积羟基磷灰石涂层的研究.高等学校化学学报,2004,25(2):304~308.
    6. Sugawara A, Fujikawa K, Kusama K, et al. Nishiyama M, Murai S, Takagi S, Chow L C. Histopathologic Reaction of a Calcium Phosphate Cement for Alveolar Ridge Augmentation. Journal of Biomedical Materials Research, 2002, 61(1): 47~52.
    7.张超,胡蕴玉,张曙明,熊卓,颜永年,崔福斋.羟基磷灰石/胶原—聚乳酸三维多孔框架材料的制备成形及分析.中国生物医学工程学报,2004,23(5):438~442.
    8. So A, Fujibayashi S, Neo M, Anan Y, Ogawa T, Kokubo T, Nakamura, T. Accelerated degradation and improved bone-bonding ability of hydroxyapatite ceramics by the addition of glass. Biomaterials, 2006, 27(27): 4738~4744.
    1. Hartley A. Soil Mechanics Level Ⅳ: Soil Properties. Plymouth: Macdonald & Evans Ltd, 1984. 62~80.
    2.姚仰平.土力学.北京:高等教育出版社,2004.3~37.
    3.杨平.土力学.北京:机械工业出版社,2005.6~37.
    4.李镜培,赵春风.土力学.北京:高等教育出版社,2004.4~25.
    5. Das B M. Advanced Soil Mechanics. Washington: Hemisphere Publishing Corporation, 1983. 36~48.
    6. Craig R F. Soil Mechanics. 2nd ed. New York: Van Nostrand Reinhold Company, 1978. 18~24.
    7.张振营.岩土力学.北京:中国水利水电出版社,2000.134~135.
    8.陈仲颐,周景星,王洪瑾.土力学.北京:清华大学出版社,1994.1~35.
    1.黄克忠.文物建筑材质的研究与保存.东南文化,2003,9:93~96.
    2.庄敏信.传统灰作基本操作与应用研究:[硕士学位论文].台湾:中原大学,2003.
    3.余焕阳,陈单.钱塘江明清古海塘旅游资源的保护与开发.浙江水利科技,2004,4:9~10.
    4.徐玲芬.盐官的味道(上).嘉兴日报,2006-10-27(18).
    5.季山.民国以前嫩江、松花江的水患与堤防工程.黑龙江水专学报,1999,2:1~4.
    6.王新生.古城墙修缮技术及运用初探.古建园林技术,2004,1:20~22.
    7.原建军,李楠.现代技术鉴定证实传说:西安城墙砖缝搀进糯米汁http://cn.news.yahoo.com/050218/346/2924d.html,2005-02-1815.
    8.刘丽英.糯米浆红糖水加固土楼:文物部门将以传统工艺修复赵家堡诒安堡.厦门晚报,2006-07-04(4).
    1.龙门石窟研究院.龙门综述.http://www.longmen.com/Html/s01/20060509401.html,2006-05-09.
    2.陈建平,杨超杰.龙门石窟莲花洞清除溶蚀物新获.中原文物,2003,5: 79~81.
    3.游黎.河南概况:洛阳市.http://www.ha.xinhua.org/add/zfzx/2006-04/16/content_6754367.htm, 2006-04-16.
    4.丁梧秀,陈建平,冯夏庭,周辉,王士民.洛阳龙门石窟围岩风化特征研究.岩土力学,2004,25 (1):146~148.
    5.高东亮,刘成,邓宇帅.龙门石窟岩体表面黑色污染病害成份、成因分析及治理.中国化学会,编.第五届考古与文物保护化学会议论文集.北京:中国化学会,1998.6~8.
    6.王蕙贞,朱虹,宋迪生.溶盐、菌类对大足石刻的危害及其保护处理.中国化学会,编.第五届考古与文物保护化学会议论文集.北京:中国化学会,1998.1~5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700