用户名: 密码: 验证码:
不锈钢冶炼粉尘形成机理及直接回收基础理论和工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
不锈钢冶炼粉尘含有多种重金属,填埋弃置不仅污染环境,而且造成宝贵的镍、铬等金属资源流失。通过前期探索提出返回熔炼的直接回收工艺方案处理不锈钢冶炼粉尘,即粉尘与还原剂碳混合制粒后加入炼钢炉,使粉尘中的有价金属还原并以合金元素的形式回收于不锈钢母液之中。在国家自然科学基金等项目的支持下完成本课题的研究,研究内容主要涉及以下三个方面:(1)不锈钢冶炼粉尘形成机理及其直接返回对冶金体系物化特性的影响(2)不锈钢冶炼粉尘直接返回处理基础理论研究(3)不锈钢冶炼粉尘直接返回熔炼的新工艺研究。解决了实现该工艺技术所必需解决的一些关键基础理论问题和关键技术难题,取得以下进展。
     应用高速摄影技术观察研究不锈钢冶炼高温熔体表面气泡破裂过程,确定膜滴和喷射液滴的特征、大小和数量与气泡直径之间的定量关系,系统地分析了粉尘形成过程的物理化学变化及其物理化学特性,确定了粉尘形成过程可分为前驱体形成和细小颗粒的集聚长大两个阶段,这为不同成份冶炼粉尘的分离及分别处理和现有除尘设备的改造提供依据。
     热力学分析表明,不锈钢冶炼粉尘中的镍很容易还原、其次为铁、而铬较难还原,并伴随有铅、锌氧化物的还原。确定了各元素的物相的稳定区,明确了铬的各种碳化物物种的稳定区。动力学研究表明,球团碳热还原过程分三个阶段进行,确定了各阶段的控制因素和粉尘中各金属氧化物的还原特征。
     分别采用水力模型和高温金属与炉渣体系考查气泡在钢渣界面的分离行为,发现气泡在钢渣界面的停留与炉渣的化学成份、钢渣界面张力、气泡的大小、熔体温度等因素紧密相关,气泡在钢渣界面的停留时间随着气泡尺寸的增大而延长,但随温度的升高显著降低。气泡在钢渣界面停留的这些行为特征,为促进气泡携带夹杂物迅速通过钢渣界面提供了依据。
     电弧炉炼钢炉渣发泡性能研究查清了不锈钢炉渣发泡性能差的原因:炉渣中Cr_2O_3含量低于16%时不会降低炉渣的发泡性能,只有超过此溶解度后才导致发泡性能显著下降;炉渣发泡取决于冶炼时产生的CO气体量,FeO的还原速度比Cr_2O_3的高得多从而产生更多的CO气体,这是导致碳钢电弧炉冶炼易实现炉渣最大泡沫化的原因:直接回收工艺所添加的碳酸钙与硝酸钙,其加热分解可产生大量的气体,可作为炉渣发泡的内气源。这些提高炉渣发泡能力的方法可提高直接回收工艺的炼钢能力。
     首次明确了球团浸没在液态炉渣中的加热熔化特征,揭示了固态炉渣壳的形成与生长,然后熔化向球团内部渗透的显微过程,查明了直接回收工艺过程中固态炉渣壳的寿命和球团加热熔化机理,掌握了球团中加入金属铁粉促进热传导而加速球团的熔化规律,确定了球团的存在位置和在钢渣之间的体积分配,建立了钢渣界面张力的定量计算方法。
     建立了磷硫脱除过程数学模型,确定了磷、硫的传输速度为过程的控制步骤,揭示了钢中[P%]和炉渣中(P%)以及钢中[S%]和炉渣中(S%)随时间的变化关系以及炉渣中FeO在磷硫脱除过程中的作用机制,为不锈钢冶炼粉尘直接回收工艺所获得的不锈钢母液中磷硫含量的控制提供了依据。
     不锈钢粉尘直接返回冶炼的工艺研究克服了不锈钢冶炼粉尘造球困难以及木质素磺酸钙作粘结剂时带入有害元素硫的问题,取得了镍、铁的回收率超过96%和铬的回收率超过94%以及钢锭中P、S含量可控的理想效果。不锈钢冶炼粉尘球团的预还原不利于有价金属的还原回收,球团自然干燥后于电弧炉炼钢过程中的还原期加入较适宜,而且要在冶炼过程结束的前3min左右加入金属还原剂调整渣型以提高冶炼金属回收率。
     对无回收价值的冶炼粉尘用廉价的粘土作为粘结剂进行固化处理即可通过标准毒性浸出试验。其工艺参数为:采用50%的粉尘与50%的粘土混合,在1100℃下热固化15min,固化产物热稳定性良好可作为建材使用。
     总之,不锈钢冶炼粉尘直接返回冶炼的回收处理技术可充分利用钢厂现有设施,是一种投资省、生产运行成本低的处理不锈钢冶炼粉尘的新方法。
Stainless steelmaking dust contains various heavy metals. It makes the environment polluted and metal value lost to dispose or landfill the dust in a traditional way. Direct recycling of stainless steelmaking dust was put forward after the initial investigation, in which the pellets were produced after mixing the dust and reducing agent carbon, and then added to the electric arc furnace used for the smelting of stainless steels. The metals present in the dust were reduced and recovered to the liquid steel in the form of alloying elements. This study was completed under the financial supports of Natural Science Fundation of China project "Study on the mechanism of direct reduction of stainless steelmaking dust", of Hunan Scienctific and Technological Key project "EAF Steelmaking and treatment of the dust", of Natural Sciences and Engineering Research Council of Canada project "Direct recycling of EAF stainless steel dust". The research contents dealt with following three aspects: (1) The forming mechanism of stainless steelmaking dust and he effects of adding pellets to the furnace on the smeling system; (2) Foundamental study on direct recycling of stainless steelmaking dust; (3) Study on the new technology of direct recycling of stainless steelmaking dust. The achievement of this study solved the some key academic and technic problems for the application of the new technology in practice and following progress was achieved.
     High speed camera work was taken to observe the bubble break on the surface of molten slag in the experiments and the dust collected was detected for the chemical elements, spacies and morphology. The properties of film drop and jet drop from the bubble break was commanded and the effect of bubble diameter on the size and amount of drops was determined. The formation procedure of the dust and the physical/chemical changes in the procedure were ascertained according to the chemical composition, phase structure and distribution of particulate size of the dust, and following that the physical and chemical characteristics of the dust were made clear. The procedure of the dust formation was classified into two stages, precursor appearance and accumulation of small particulates. It could delive the data for the separation of different componential dusts to treat in different ways and the equipment alteration of the dust collection.
     According to the thermodynamic calculation on the stainless steelmaking dust, the nickle can be easily reduced, and then is the iron, the chromium is the most difficult metal reduced in the direct recycling. At the same time of the reduction of above three metals, the lead and zinc present in the dust are reduced, but the reduction of Al_2O_3、CaO、MgO、MnO、SiO_2 will not happen. All phases and stable regins are indicated and the effect of carbon content in the pellet on the carbides apparing in the direct recycling is determined according to the chemical reactions in the process. The theories of dirct recycling of stainless steelmaking dust are detected in this research. The experimental results show that nickel and iron in the dust are easily reduced whereas chromium is hard. The kinetics research on the reduction of the dust indicates that the thermal reduction of pellet by carbon can be classified into three steps, as well as the control factors in each step and the reduction characteristics of metal oxides in the dust.
     It is possible to bring non-metallic inclusions into the molten steel in the direct recycling process by adding pellets to the furnace, which will affect the quality of stainless steel product. The incllusion remove depends on the ability of bubble to bring the inclusions pass through the interface of slag and steel. Water model and high temperature steel/slag model were setup to investigate the behavior of bubble on the interface. It was found that the bubble rest on the interface was dependent on the chemical composition of the slag, the interfacial tension of slag and steel, the size of bubble, the temperature of the melts. The rest time of bubble at the interface was prolonged with the increase of bubble diameter and shortened with in increase of the temperature. Behavior of the bubble resting on the interface of slag/steel was commanded through the experiments and it could delive the data for the improvement of the bubble to take the inclusions passing through the interface.
     To decrease the power and material consumption by improving the foamability of slag in steelmaking by electric arc furnace is the objective of metallurgists for a long time. The experimental results show the foamability of slag holds the line when the Cr_2O_3 content in the slag is below 16%, but the foamability will sharply decrease while the content is over this amount which is the solubility of Cr_2O_3 in the slag. Slag foaming depended on the amount of CO occurred in the smelting and the reduction of FeO was much faster than that of Cr_2O_3 so that the reduction of FeO produced much more amount of CO, which was the reason that the foamability of slag in carbon steelmaking was higher that that in stainless steelmaking. Direct recycling of stainless steelmaking dust was benefic to the slag foaming because a certain amount of CO was produced by the addition of pellet to the furnace. Furthermore the calcium carbonate or calcium nitrate introduction in the direct recycling produced a lot amount of CO by thermal decomposition. In other word, iner gas sources were introduced in this way. It was made clear that poor foamability of stainless steelmaking slag based on this study and the way to improve the foamability was found. The avhievement of the research is helpful for the improvement of steelmaking ability of electric arc fumace.
     It is the first time by the experiments to uncover the micro-process of the immerging pellet into the molten slag and to describe the solid slag shell formed and developed on the surface of the pellet and then melted down and penetrated to the inner part of the pellet. The lifetime of the solid slag shell and the mechanism of pellet melting are determined. The content of iron powder in the pellet can speed up the melting of the pellet by accelerating heat transfer. The position of pellet and the volume percentage of pellet in the slag and steel are confirmed. The method to calculate the interfacial intension and the factors affecting it are defined. This research makes the mechamism of direct recycling be deeply understood.
     The mathematic models for the remove of phosphor and sulfur from liquid steel were setup in this study. The transfer rate of phosphor and sulfur was the contol element of the process and the transfer coefficients for them in the initial and late stages of the process were ascertained. The functions of [P%], (P%),[S%] and(S%)with the time were established. FeO contributed to the remove of phosphor and sulfur and the content of FeO in the slag changed with the time was described. This research could delive the data for the control of phosphor and sulfur in the steel of dirct recycling.
     Pelletization is the first procedure of the direct recycling of stainless steelmaking dust. The strength and property of pellets heavily influence the recovery of metals present in the dust. It was found very difficult to make pellets with the dust, and only lignosulfonate used as the binder could strong pellets been made for the direct recycling of stainless steelmaking dust. The sulfur remove must be taken because element sulfur present in the lignosulfonate, the parameters of pelletization are determined and the research of pelletization is helpful for the farther work on the direct recycling of stainless steelmaking dust. An induction furnace was used to simulate the direc recycling of stainless steelmaking dust instead of electric arc furnace. The experimental results confirmed the metal value present in the dust could recoverd. The recoveries of nickel and iron were over 96% and the recovery of chromium was over 94% in the experiments. The direct recycling of stainless steelmaking dust would not affect the quality of steel product by the control of process parameters for the remove of phosphor and sulfur. Pre-reduction of pellet would go against the recover of metals and the pellet should add to the furnace in the reduction period of steelmaking after natural dryness. Metal reducing agents might be added to adjust the slag structure for the improvement of metal recoveries before the end of direct recycling of stainless steelmaking dust.
     For the discarding dust separated from the direct recycling process, the thermal solidification was taken after mixing with cheap and easily available clay, which was satisfied with standard toxicity characteristics leaching procedure. The mixture of 50% of dust and 50% of clay was treated at 1100℃for 15min and the product beared high thermal stability and could be used as architectural materials.
     In a word, the direct recycling of stainless steelmaking dust can fully make use of equipment in the steel plants and this new technology has the advantages of low investment and low cost for the operation.
引文
[1] 杨建川.不锈钢的历史、现状和未来.南方钢铁,1998,(103):17-24
    [2] 徐楚元.方兴未艾的不锈钢.轧钢,1999,(4):41-45
    [3] 彭宁世.国内外不锈钢生产综述.四川冶金,1998,(2):20-25
    [4] 彭宁世.国内外不锈钢生产情况综述.特钢技术,1996,(3):10-16
    [5] 熊云龙,娄延春,刘新峰.不锈钢材料研究的新进展.热加工工艺,2005,(5):51-53
    [6] 耿炳玺.中国不锈钢发展概况.冶金信息,1999,(1):7-11
    [7] 岑永权,张国富.不锈钢冶炼技术的发展.上海金属,21(3):11-16
    [8] 林企增,张继猛.不锈钢生产技术的新进展.特殊钢,1999,20(5):7-14
    [9] 林企曾,李成.转炉用铁水冶炼不锈钢的技术进展.炼钢,2000,16(5):9-12
    [10] 史国敏.崛起的宝钢集团不锈钢精品基地—不锈钢分公司不锈钢工程介绍.宝钢技术,2005,(4):1-8
    [11] P. F. Marcus, K. M Kirsis. Scrap is King. Steel Survival Strategies Conference, New York, June 1995
    [12] J. R. Davis. ASM Specialty Handbook-Stainless Steels. Materials Park, ASM International. 1994
    [13] 张广军,刘广君,邢智刚.电弧炉冶炼不锈钢铬与镍回收率分析.特殊钢,2001,22(5):41-43
    [14] J. R. Donalds, C. A. Pickles. A review of plasma-arc processes for the treatment of electric arc furnace dusts. Proc. Int. Syp. Res. Cons. Env. Tech. Met. Ind. CIM. 1994: 3-22
    [15] J. E. Goodwill, R. J. Schmitt. An update on electric arc furnace dust treatment in the United States. Proc. Int. Syp. Res. Cons. Env. Tech. Met. Ind. CIM. 1994: 25-34
    [16] C. M. Beckovich. Treating and managing electric arc furnace dust. Iron and Steel Maker. 1996, (4): 39-42
    [17] D. Zunkel. What to do with your EAF dust. Steel Times Int. 1996, 20(4): 46-50
    [18] US Environmental Protection Agency. Land Disposal Restriction for Electric Arc Furnace Dust. Federal Register. 1991. 8. 19, 56, 41164
    [19] US Environmental Protection Agency. Toxicity Characteristics Leaching Procedure (TCLP), Federal Register. November 1986, 51(216): 40643-40645
    [20] C. M. Beckovich. Treating and managing electric arc furnace dust. Iron and Steelmaker. 1996, (4): 39-42
    [21] J. R. Stubbles. The formation and suppression of EAF dust. Proc. 52nd Electric Furnace Conf. ISS. 1994: 179-185
    [22] L. Wu, Themelis, J. Nickolas. The flash reduction of electric arc furnace dust. Journal of Metals, 1992, (1): 35-39
    [23] N. D'Souza, J. A. Kozinski, J. Szpunar. EAF stainless steel dust: Characteristics and potential metal immobilization by thermal treatment. Proc. Int. Syp. Res. Cons. Env. Tech. Met. Ind CIM, 1998
    [24] H. Itaya, Y. Hara, S. Hasegawa, Y. Matsumoto, M. Nomura, S. Taguchi. Development of a smelting reduction process for steelmaking dust recycling. La Revue de Metallurgie-CIT. 1997, (1): 63-70
    [25] J. R. Stubbles. The Formation and Suppression of EAF Dust. In: Electric Furnace Conference Proceedings, ISS, AIME, 1994: 179-185
    [26] W. P. Linak, J. O. L. Wendt. Toxic Metal Emissoins from Incineration: Mechanisms and Control. Progress in Energy and Combustion Science, 1993, 19(2): 145-185
    [27] Chung-Lee Li, Min-Shing Tsai. A crystal phase study of zinc hydroxide chloride in electric-arc-furnace dust. Institute of minerals, metallurgy and Material Science, National Cheng-Kung University Taiwan, 1993: 8p
    [28] T. P. McAloon. Decision Time for EAF Dust Generators. Iron & Steel Maker, 1990, (2): 15-20
    [29] R. Kola. The Processing of Steelworks Waste. In: T. S. Mackey and R. D. Prengaman (editors), Lead-Zinc '90, TMS, Warrendale, 1990: 453-464
    [30] C. Y. Lin, W. T. Tsai. Nano-sized carbon filament formation during metal dusting of stainless steel. Materials Chemistry and Physics. 2003, 82(3): 929-936
    [31] A. Gritzan, D. Neuschutz. Rates and mechanisms of dust generation in oxygen steelmaking. Steel Research. 2001, 72(9): 324-330
    [32] A. M. Hagni, R. D. Hagni, C. Demars. Mineralogical characterization of electric arc furnace dusts. Journal of Metals, 1991, 43(3): 28-30
    [33] L. L. Stephen, F. L. Wayne, G. S. Janet, W. K. Gary. Report of Investigation, Bureau of Mines, 8750, 1983
    [34] A. M. Hagni, R. D. Hagni. Reflected Light and Scanning Electron Mecroscopic Study of Electric Arc Furnace (EAF) Dusts. In: R. G. Reddy, W. P. Imrie and P. B. Queneau (editors), Residues and Effluents: Processing and Environmental Considerations, TMS Warrendale, USA 1991: 117-125
    [35] C. R. Dempsey, E. T. Opppelt. Incineration of Hazardous Waste: A critical Review Update,. Air & Waste, 1993, 43(1): 25-63
    [36] W. R. Seeker. Waste Combustion.. In: Proceedings of the twenty-third international Symposium on Combustion, The Combustion Institute, 1990: 867-885
    [37] F. A. Lopez, E. Sainz, A. Formoso. Use of granulated blast furnace slag for stabilisation of steelmaking flue dust. Ironmaking and Steelmaking. 1993, 20(4): 293-297
    [38] J. R. Conner, S. L. Hoeffner. Critical review of stabilization/solidification technology. Critical Reviews in Environmental Science and Technology. 1998, 28(4): 397-462
    [39] J. M. A. Kobus Geldenhuis, Alex W. Home. Recovery of valuables and stabilization ofchrome(Ⅵ) in stainless steel flue dust fines. Steelmaking Conference Proceedings. 2002, (85): 661-668
    [40] M. Pelino, A. Karamanov, P. Pisciella, S. Crisucci, D. Zonetti. Vitrification of electric arc furnace dusts. Waste Management. 2002, 22(8): 945-949
    [41] P. Pisciella, S. Crisucci, A. Karamanov, M. Pelino. Chemical dutability of glasses obtained by vitrification of industrial wastes. Waste Management. 2001, 21(1): 1-9
    [42] Robert W. Fuessle, Max A. Taylor. Long-term solidification/stabilization and toxicity characteristic eaching procedure for an electric arc furnace dust. Journal of Environmental Engineering. 2004, 130(5): 492-498
    [43] F. Skvara, F. Kastanek, J. Pavelkova, Q. Solcova, Y. Maleterova, P. Schneider. Solidification of waste steel foundry dust with Portland cement. Journal of Hazardous Materials. 2002, 89(1): 67-81
    [44] Ray Funderburk. The chemistry of solidification. Pollution Engineering. 2004, 36(1): 22-24
    [45] Choon-Keun Park. Hydration and solidification of hazardous wastes containing heavy metals using modified cementitious materials. Cement and Concrete Research. 2000, 30(3): 429-435
    [46] K. W. Grieshaber, C. T. Philipp, G. F. Bennet. Process for recycling spent potliner and electric arc furnace dust into commercial products using oxygen enrichment. Waste Management, 1994, 14(3-4): 267-276
    [47] M. Pelino, A. Karamanov, P. Pisciella, S. Crisucci, D. Zonetti. Vitrification of electric arc furnace dusts. Waste Management, 2002, 22(8): 945-949
    [48] P. Pisciella, S. Crisucci, A. Karamanov, M. Pelino. Chemical durability of glasses obtained by vitrification of industrial wastes. Waste Management, 2001, 21(1): 1-9
    [49] 彭兵,张传福,彭及.电弧炉炼钢粉尘的固化处理.中南工业大学学报,2000,31(2):124-126
    [50] C. Moore, R. I. Marshall. Steelmaking. The Institute of Metals. 1991: 172-173
    [51] Charles J. Labee. Plasma technology takes hold in Sweden. Iron and Steel Enginer, 1983, (10): 205-212
    [52] Guozhu Ye, Eric Burstrom, Michael Kuhn, Jacques Piret. Reduction of steel-making slags for recovery of valuable metals and oxide materials. Scandinavian Journal of Metallurgy, 2003, 32(1): 7-14
    [53] R. Lightfoot. Hi-Plas treating steelwork dust. Steel Times, 1991, 219(10): 559, 562
    [54] Guozhu Ye, Eric Burstrom, Michael Kuhn, Jacques Piret. Reduction of steel-making slags for recovery of valuable metals and oxide materials. Scandinavian Journal of Metallurgy. 2003, 32(1): 7-14
    [55] Shinji Hasegawa, Haruo Kokubu. Development of a smelting reduction process for recycling steelmaking dust. Kawasaki Steel Technical Report, Kawasaki Steel Corp., n38 Apr. 1998
    [56] Hiroshi Itaya. Recent activities of ironmaking laboratory. Kawasaki Steel Technical Report, Kawasaki Steel Corp. n41 Oct. 1999
    [57] N. Honjo, Y. Sakoma, H. Shinkai, M. Sakata. Results of AOD dust melting in an arc furnace. ISIJ. 1997, (10): 50-53
    [58] Toshikatsu, Sasamoto, Hirohiko. New technologies of treating EAF dust vacuum heating reduction. SEAISI Quarterly, 1999 Apr.
    [59] Slag resistance furnace for treatment of EAF dust. Steel Times, Jun 1991
    [60] R. J. Matway, N. L. Deferrari, R. L. Deszo. On-site recycling of flue dust and other waste streams by briquetting. Proc. 47th Electric Furnace Conferrence, ISS. 1989: 113-119
    [61] R. H. Hanesald, W. A. Munson, D. L. Sxhweyer. Processing EAF dusts and other nickel-chromium waste materials pyrometallurgically at INMETCO. Minerals & Metallurgical Processing, 1992, 9(4): 169-173
    [62] K. L. Money, R. H. Hanewald, R. R. Bleakney. Processing steel wastes pyrometallurgically at INMETCO. Proceedings of the TMS Fall Extraction and Processing Conference, 2000: 397-408
    [63] R. H. Hanewald, W. A. Munson, D. L. Schweyer. Processing EAF dusts and other nickel-chromium waste materials pyrometallurgically at INMETCO. Miner & Metall Process, 1992, 9(4): 169-174
    [64] 王尚槐,张健,冯俊小.盖碳保护敞焰加热直接还原工艺的研究.钢铁,1998,(5):123-135
    [65] K. E. Joyner. Fastmet/Fastmelt: The final steps in waste recovery. Revue de Metallurgie. Cahiers D' Informations Techniques, 2000, 97(4): 461-469
    [66] C. Raggio. Fasteel-An economic and environmental benefit to steelmakers. Steel Times International, 2004, 28(8): 16-22
    [67] Hidetoshi Tanaka, Takao Harada, Shohei Yoshida. Development of coal-based direct reduction ironmaking process. South East Asia Iron and Steel Institute, 2005, 34(4): 26-33
    [68] Frank Griscom, John T. Kopfle, Mark Landow. Don't waste waste-it could mean profit. Steel Times International, 1999, 23(1): 29-30
    [69] Zhang Chuanfu, Peng Bing, Peng Ji, et al. Electric arc furnace dust non-isothermal reduction kinetics, Transactions of Nonferrous Metals Society of China, 2000, 10 (4): 524-530
    [70] C. F. Zhang, B. Peng, J. Peng, J. Lobel and J. A. Kozinski. The Direct Recycling of Electric Arc Furnace Stainless Steelmaking Dust. The 6th International Symposium on East Asian Resources Recycling Technology. Oct. 23-25, 2001, Gyeongiu, Korea, The Korean Institute of Resources Recycling: 404~408
    [71] 彭兵,张传福,彭及,柴立元,Jonathan Lobel,Janusz A.Kozinski.不锈钢电弧炉粉尘直接还原回收工艺研究.上海金属,2002,24(5):33-39
    [72] Frank J. Weiss. Operation of new pellet technology facility promises more economical iron and steelmaking processes. Industrial Heating, 1987, 54(1): 18-20
    [73] 任志国,周渝生,王来久,李万珍.含碳冷固结球团矿冶金性能研究.烧结球团,1996,21(6):16-21
    [74] 吴铿,齐渊洪,赵继伟,冯根生,杜春荣.含碳球团的还原性和还原冷却后的强度.北京科技大学学报,2000,22(2):101-104
    [75] 江琦,杨兆祥,孙家富,田济民,李文忠.含碳球团在氧化性气氛中的还原机理.钢铁研究学报,1998,10(3):1-4
    [76] 杨学民,郭占成,王大光,谢裕生.含碳球团还原机理研究.化工冶金,1995,16(2):118-127
    [77] Y. L. Ding, N. A. Warner. Kinetics and mechanism of reduction of carbon-chromite composite pellets. Ironmaking and Steelmaking, 1997, 24(3): 224-229
    [78] Y. L. Ding, A. J. Merchant. Kinetics and mechanism of smelting reduction of fluxed chromite. Part 1: Carbon-chromite-flux composite pellets in Fe-Cr-C-Si melts. Ironmaking and Steelmaking, 1999, 26(4): 247-253
    [79] Yoshiaki Iguchi, Shohei Yokomoto. Kinetics of the reactions in carbon composite iron ore pellets under various pressures from vacuum to 0.1 MPa. ISIJ International, 2004, 44(12): 2008-2017
    [80] 蒋国昌,徐建伦,徐匡迪.铬矿团块还原过程的基础研究.铁合金,1989,(5):23-30
    [81] 片山博等.预还原铬铁矿的熔融还原研究.湖南冶多,1998,(5):59-64
    [82] 章奉山,倪红卫.铬矿直接还原合金化冶炼不锈钢的研究.特殊钢,2001,(4):30-38
    [83] 彭兵.不锈钢电弧炉粉尘处理的基础理论及工艺研究.中南大学博士学位论文,2000
    [84] 杨双平.粉状铬矿的等离子还原法研究.铁合金,2000,6(6):17-19
    [85] 马兴亚,姜茂发.含碳球团还原技术研究现状.烧结球团,1999,5(3):24-26
    [86] 牛永胜,马永磊等.含碳球团配碳比的试验研究.河北冶金,2001,2(2):8-11
    [87] 胡凌标.微碳铬铁工艺过程中熔体的化学物理变化及Cr2O3还原因素浅析.铁合金,1996,(2):5-11
    [88] 袁章福,万天骥,任大宁等.含碳铬矿球团的还原性能.北京科技大学学报,1989,9(5):399-405
    [89] 周进华.铁合金冶炼.冶金工业出版社,1989,北京:273
    [90] J. C. Huber, F. Patisson, P. Rocabois, et al. Some means to reduce emissions and improve the recovery of electric arc furnace dust by controlling the formation mechanisms. Proceedings of the TMS Fall Extraction and Processing Conference. 1999, (2): 1483-1492
    [91] Z. Han, L. Holappa. Bubble bursting phenomenon in Gas/Metal/Slag systems. Metallurgical and Materials Transactions. B, Process Metallurgy and Materials Processing Science, 2003, 34 (5): 525-532
    [92] A. G. Guezennec, J. C. Huber, F. Patisson, et al. Dust. formation by bubble-burst phenomenon at the surface of a liquid steel bath. LSLJ International, 2004, 44(8): 1328-1333
    [93] A. G. Guezennec, J. C. Huber, F. Patisson, et al. Experimental study of the bubble-burst phenomenon at the surface of a liquid steel bath. TMS Annual Meeting, EPD Congress 2004-Proceedings of the Symposium Sponsored by the Extraction and Processing Division of the Minerals, Metals and Materials Society, TMS, 2004: 767-777
    [94] A. G. Guezennec, J. C. Huber, F. Patisson, et al. Dust formation in Electric Arc Furnace: Birth of the particles. Powder Technology. 2005, 157(1-3): 2-11
    [95] Anne-Gwenaelle Guezennec, Jean-Christophe Huber, Fabrice Patisson, Philippe Sessiecq, Jean-Pierre Birat, Denis Ablitze. Dust formation in Electric Arc Furnace: Birth of the particles. Powder Technology, 2005, 157(1-3): 2-11
    [96] H. Unger, J. Starflinger, U. Brockmeier, M. K. Koch, W. Schutz. Modelling of fission product release by re-entrainment due to bursting bubbles. Kerntechnik, 1996, 61(1): 16-22
    [97] F. J. Resch, J. S. Darrozes. Liquid aerosol formation by air bubble bursting. Pergamon Press, 1986; 79-82
    [98] F. J. Resch, G. M. Afeti. Invited lecture. Gas-liquid conversion at a free interface and its environmental implications. Proceedings of the World Conference on Experimental Heat Transfer, Fluid Mechanic, and Thermodynamics, 1991: 1066-1068
    [99] A. G. Guezennec, F. Patisson, P. Sessiecq, et al. Dust emission and agglomeration in electric arc furnace (EAF). REWAS'04-Global Symposium on Recycling, Waste Treatment and Clean Technology, REWAS'04-Global Symposium on Recycling, Waste Treatment and Clean Technology-Proceedings. 2005: 2113-2123
    [100] K. T. Muller, L. Holappa, D. Neuschutz. Control of ejections caused by bubble bursting in steelmaking processes. Steel Research. 2003, 74(2): 61-69
    [101] J. C. Huber, F. Patisson, P. Rocabois, et al. Some means to reduce emissions and improve the recovery of electric arc furnace dust by controlling the formation mechanisms. Proceedings of the TMS Fall Extraction and Processing Conference. 1999, (2): 1483-1492
    [102] J. H. Downing. Basis for producing ferroalloys in an electric smelting furnace. Electric furnace steelmaking, ISS, USA, 1985: 391-398
    [103] B. Peng, J. Lobel, J. A. Kozhinski et al. Non-isothermal reduction kinetics of EAF dust-based pellets, CIM BULLETIN, 2001, 94 (1049): 64-70
    [104] Peng Ji, Peng Bing, Yu Di, et al. Kinetics of isothermal reduction of stainless steelmaking dust pellets. Transactions of Nonferrous Metals Society of China, 2004, 14(3): 593-598
    [105] G. J. Buistin, C. H. Bamford, C. F. H. Tipper. Comprehensive Chemical Kinetics. Elsevier, Amsterdam, 1972, 6: 435-437
    [106] S. Paul, S. Mukherjee. Non-Isothermal and isothermal reduction of iron ore agglomerates. Ironmaking and steelmaking, 1992, 19(3): 190-193
    [107] N. Tsuneyama, M. Takewaki, M. Yasukawa. Production of Zinc Oxide for Zinc Smelting Process from EAF Dust at Shisaka Works. In: T. S. Mackey and R. D. Prengaman (editors), Lead-Zinc '90, TMS, Warrendale, 1990: 465-476
    [108] 曲英.炼钢学原理.冶金工业出版社,北京,1980.12,
    [109] S. M. James, C. O. Bounds. Recycling Lead and Cadmium, as well as Zinc, from EAF Dust. In: T. S. Mackey and R. D. Prengaman (editors), Lead-Zinc '90, TMS, Warrendale, 1990: 477-495
    [110] C. E. Seaton, J. J. Foster, J. Velasco. Reduction Kinetics of Hematite and Magnetite Pellets Containing Coal Char. ISIJ International, 1983, 23: 490-496
    [111] S. Paul, S. Mukherjee. Non-Isothermal and isothermal reduction of iron ore agglomerates. Ironmaking and steelmaking, 1992, 19(3): 190-193
    [112] S. Prakash. Non-Isothermal kinetics of iron ore reduction, Ironmaking and steelmaking, 1994, 21 (3): 237-243
    [113] J. L. Johnson. Kenetics of Coal Gasification. John Wiley & Sons, New York, 1979: 19~36
    [114] Albert F. S. Schoukens, The Enviroplas Process for the Recovery of Zinc, Chromium and Nickel from Steel-Plant Dust. Electric Furnace Conference Proceedings, 1996: 341-350
    [115] Y. L. Ding, N. A. Warner. Kinetics and mechanism of reduction of carbon-chromite composite pellets. Ironmaking and Steelmaking, 1997, 24(3): 224-229
    [116] Projjal Basu, S. B. Sarkar, H. S. Ray. Isothermal Reduction of Coal Mixed Iron Oxide Pellets. Transaction of the Indian Institute of Metals, 1989, 42(2): 165-172
    [117] A. K. Mazumder, T. Sharma, G. V. Reddy. Reduction Kinetics of Iron Oxide Pellet by Non-Coking Coal. Transaction of the Indian Institute of Metals, 1989, 42(3): 299-305
    [118] G. J. Buistin, C. H. Bamford, C. F. H. Tipper. Comprehensive Chemical Kinetics. Elsevier Amsterdam, 1972, Vol. 6: 435-437
    [119] Q. Wang, Z. Yang, J. Tian, W. Li, J. Sun. Reduction Kinetics of Iron Ore-coal Pellet during Fast Heating. Ironmaking and Steelmaking, 1998, 25(6): 443-447
    [120] 莫鼎成.冶金反应动力学.中南工业大学出版社,1985
    [121] V. K. Trujic, Z. D. Zivkovic. Influence of Addition of Anthracite with Different Particle Size on Reduction Kinetics of Magnetite Pellets. Materials Transactions JIM, 1998, 39(10): 1012-1016
    [122] C. Bryk, W. K. Lu. Reduction Phenomena in Composites of Iron Ore Concentrates and Coals. Ironmaking and Steelmaking, 1986, 13: 70~75
    [123] J. P. Roqler, L. J. Heaslip, M. Mehrvar. Physical modelling of inclusion removal in a tundish by gas bubbling. Canadian Metallurgical Quarterly, 2005, 44(3): 357-368
    [124] Alan W. Cramb. Secondary steelmaking and casting: The basis for control of steel properties and quality. Scandinavian Journal of Metallurgy, 1997, 26(1): 2-7
    [125] V. Tussel, C. Marique, H. Mathy, et al. Cleanness assessment of high quality steels produed by RH treatment. Ironmaking and Steelmaking, 2003, 30(2): 142-145
    [126] Zhang Lifeng, S. Taniquchi. Fundamentals of inclusion removal from liquid steel by attachment to rising bubbles. Iron and Steelmaker, 2001, 28(9): 55-78
    [127] Zhang Lifeng, Jun Aoki, G. Brian. Inclusion removal by bubble flotation in continuous casting mold. Materials Science and Technology, Volume 2: AIST/TMS Proceedings. 2004: 161-177
    [128] Zhang Lifeng, S. Taniquchi, K. Matsumoto. Water model study on inclusion removal from liquid steel by bubble flotation under turbulent conditions. Ironmaking and Steelmaking, 2002, 29(5): 326-336
    [129] Yu. A. Buyevich, B. W. Webbon. Bubble formation at submerged orifice in reduced gravity. Chemical Engineering Science, 1996, 51(21): 4843-4857
    [130] Koichi Terasaka, Hideki Tsuqe. Bubble formation at orifice in viscoelastic liquids. AIChE Journal, 1997, 43(11): 2903-2910
    [131] Huai Z. Li, Youssef Mouline, Noel Midoux. Modelling the bubble formation dynamics in non-Newtonian fluids. Chemical Engineering Science, 2002, 57(3): 339-346
    [132] V. Chevrier, A. W. Cramb. Observation and measurement of bubble separation at liquid-liquid interfaces. Steel Research International, 2004, 75(10): 645-658
    [133] V. Chevrier, A. W. Cramb. Observation and measurement of bubble separation at liquid steel-slag interfaces. Scandinavian Journal of Metallurgy, 2005, 34(2): 89-99
    [134] R. J. Fruehan. Research on sustainable steelmaking. Iron and Steel Technology, 2005, 2(2): 108-117
    [135] J. P. Bennett, K. S. Kwong, Modeling of EAF slag chemistry for optimal slag foaming and refractory service life. Yazawa International Symposium: Metallurgical and Materials Processing: Principles and Techologies; High-Temperature Metal Production, 2003, (2): 753-766
    [136] D. L. Schroeder. Advantages of foaming slag control in EAF operation. Steel Times. 2000, 228(10): 368
    [137] B. Bhoi, A. K. Jouhari, H. S. Ray, et al. Smelting reduction reactions by solid carbon using induction furnace: Foaming behaviour and kinetics of FeO reduction in CaO-SiO2-FeO slag. Ironmaking and Steelmaking, 2006, 33(3): 245-252
    [138] M. Divakar, M. Gornerup, A. K. Lahiri. Reduction of iron oxide by carbon in stainless steelmaking slags. High Temperature Materials and Processes. 2001, 20(5-6): 393-401
    [139] S. P. Oliveira. Thermodynamics of the Silicon Reaction with Stainless Steel Slags. CISR Progress Report, Carnegie Mellon University, Pittsburgh, PA, USA, May, 2001
    [140] P. Tuvnes. Foaming of stainless steel slags by calcium nitrate steelcal. Norsk Hydro,ASA Research Centre, Prosgrunn, Norway
    [141] J. J. Kerr, R. J. Fruehan. Foamability of stainless steelmaking slags in an EAF. Iron and Steelmaker, 2002, 29(4): 45-52
    [142] K. Wu, W. Qian, S. Chu, et al, Behavior of slag foaming caused by blowing gas in molten slags. ISIJ International, 2000, 40(10): 954-957
    [143] A. Kapilashrami, A.K. Lahiri, S. Seetharaman. Bubble formation through reaction at liquid-liquid interfaces. Steel Research International, 2005, 76(9): 616-623
    [144] C. F. Cooper, J. A. Kitchener. The foaming of molten silicates. Journal of The Iron and Steel Institute. 1959, (9): 48-55
    [145] J. H. Swisher, C. L. McCabe. Cr2O3 as a foaming agent in CaO-SiO2 slags. Transactions of the metallurgical society of AIME. 1964, 230(12): 1669-1675
    [146] 兰杰,姜周华,黄宗泽等.CaO-Al2O3-CaF2-SiO2-MgO 五元精炼渣系的起泡性能.钢铁研究学报,1999,11(2):14-19
    [147] K. Ito, R. J. Fruehan. Study on the forming of CaO-SiO2-FeO slags: Part I. Foaming parameters and experimental results. Metallurgical Transactions B. 1989, 20(4): 509-514
    [148] K. Ito, Richard J. Fruehan. Slag foaming in smelting reduction processes. Steel Research. 1989, 60(3-4): 151-156
    [149] R. Jiang, R. J. Fruchan. Slag foaming in bath smelting. Metallurgical Transactions B. 1991, 22(8): 481-489
    [150] D. R. Gaskell, D. Skupien. The surface tensions and foaming behavior of melts in the system CaO-FeO-SiO2. Iron and Steelmaker, 2001, 28(3): 41-44
    [151] Y. Zhang, R. J. Fruchan. Effect of the bubble size and chemical reactions on slag foaming. Metallurgical Transactions B. 1995, 26(8): 803-812
    [152] A. Kapilashrami, M. Gornerup, A. K. Lahiri, et al. Foaming of slags under dynamic conditions. Metallurgical and Materials Transactions B, 2006, 37(1): 109-117
    [153] M. Zhu, D. Sichen. Modelling study of slag foaming phenomenon. Steel Research, 2000, 71(3): 76-82
    [154] S. Chu, Q. Niu, K. Wu, et al. Decomposition of CaCO3 in molten borate and its effect on slag foaming behavior. ISIJ International, 2000, 40(6): 549-553
    [155] D. Lotun, L. Pilon, Physical modeling of slag foaming for various operating conditions and slag compositions. ISIJ International, 2005, 45(6): 835-840
    [156] J. J. Kerr, R. J. Fruehan. Additions to generate foam in stainless steelmaking. Metallurgical and Materials Transactions B, 2004, 35(4): 643-650
    [157] P. Tuvnes, T. A. Engh. Foaming of stainless steel slags in EAFs using calcium nitrate. Iron and Steelmake. 2003. 30(1): 43-47
    [158] 牛四通,张鉴,成国光等.LF埋弧渣技术的开发及其应用.钢铁,1997,32(3):21-24
    [159] R. J. Fruehan. The rate of reduction of iron oxides by carbon. Metallurgical Transaction B, 1977, 8B: 279-286
    [160] S. Meissner, I. Kobayashi, Y. Tanigaki, et al. Reduction and melting model of carbon composite ore pellets [J]. Ironmaking and Steelmaking, 2003, 30(2): 170-176
    [161] Paul W. Cleary, Nick Stokes, Mahesh Prakash, et al. Simulation of reactive pellets in a pyrometallurgical bath using SPH. Proceedings of Sessions and Symposia Sponsored by the Extraction and Processing Division of The Minerals, TMS Annual Meeting, EPD Congress 2005, Metals and Materials Society, San Francisco, United States. 2005: 647-654
    [162] Peng Bing, Peng Ji, Yu Di. Modeling of thermal conductivity of stainless-steelmaking dust pellets. Trans. Nonferrous Met. China., 2004, 14(1): 184-189
    [163] Ding Y. L., Wamer N. A., Merchant A. J. Mathematical modelling of the reduction of carbon-chromite composite pellets. Scandinavian Journal of Metallurgy, 1997, 26(1): 1-8
    [164] Akiyama T., Ohta H., Takahashi R. et al. Measurement and modeling of thermal conductivity for dense iron oxide and porous iron ore agglomerates in stepwise reduction [J]. ISIJ International, 1992, 32(7): 829-837
    [165] Turkdogan E. t.; Physicochemical Properties of Molton Slags and Glasses, The Metals society, London 1983: 2-59
    [166] 陈家祥.炼钢常用图标数据手册.冶金工业出版社,北京,1984:183-215
    [167] 张鉴.炉外精炼的理论与实践.冶金工业出版社,北京,1999:77-78
    [168] 徐匡迪.不锈钢精炼.上海科学技术出版社,上海,1985:48-62
    [169] H. Ishii, R. J. Fruehan. Dephosphorization equilibria between liquid iron and highly basic CaO-based slags saturated with MgO. ISS Transactions, 1997, 2: 47-54
    [170] H. Suito, F. Inoue. Effect of calcium fluoride on phosphorus distribution between MgO saturated slags of the system CaO-MgO-FeO_x-SiO_2 and liquid iron. Trans. ISIJ, 1982, 22: 869-877
    [171] H. Suito, F. Inoue, M. Takada. Phosphorus distribution between liquid iron and MgO saturated slags of the system CaO-MgO-FeO_x-SiO_2. Trans. ISIJ, 1981 21: 251-259
    [172] O. Wijk. The phosphorus problem in rion and steelmaking. Scandinavian Journal of Metallurgy, 1993, 22: 130-138
    [173] K. lde. Evaluation of phosphorus reaction equilibrium steelmaking and kinetics in foaming slag. Masters Thesis, Department of Materials Ccience and Engineering, Carnegie Mellon University, USA, 1999
    [174] X. F. Zhang, I. D. Sommerville, J. M. Tiger. An equation for the equilibrium distribution of phosphorus between basic slags and steel. ISS Trans., 1985, 6: 29-34
    [175] E. T. Turkdogan. Steelmaking Fundamentals. Press of Institute of Materials, London, 1996: 186-189
    [176] S. Mukawa, Y. Mizukami. Effect of stirring energy and rate of oxygen supply on the rate of jot metal dephosphorization. ISIJ International, 1995 35: 1374-1380
    [177] M. Motlagh. Dephosphorization of steel during melting. ISS Trans, 1985, 6: 202-213
    [178] S. Kitamura, T. Kitamura, K. Shibata, et al. Effect of stirring energy temperature and flux composition on hot metal dephosphorization. ISIJ International, 1991, 31(11): 1322-1328
    [179] E. Oktay, R. J. Fruehan. On the hot metal desulfurization. Steel Research, 1995, 66(3): 93-95
    [180] L. B. Mcfeaters, R. J. Fruehan. Desulfurization of bath smelter metal. Metallurgical Transactions B, 1993, 24B: 441-447
    [181] Y. F. Zhao, G. A. Irons. Calcium carbide powder injection into hot metal: Part 2 simltaneous desulphurization and deoxidation. Ironmaking and Steelmaking, 1994, 21(4): 309-317
    [182] A. T. M. Andersson, T. I. L. Jonsson, P. G Jonsson. Thermodynamic and kinetic model of reoxidation and desulphurization in the ladle furnace. ISIJ International, 2000, 40(11): 1080-1088
    [183] E. T. Turkdogan. Slag composition variations causing variations in steel dephosphorization and desulphurization in oxygen steelmaking. ISLJ International, 2000, 40(9): 827-832
    [184] D. Takahashi, M. Kamo, Y. Kurose, H. Nomura. Deep steel desulphurization technology in ladle furnace at KSC. Ironmaking and Steelmaking, 2003, 30(2): 116-119
    [185] J. H. Wei, S. J. Zhu, N. W. Yu. Kinetic model of desulphurization by powder injection and blowing in RH refining of molten steel. Ironmaking and Steelmaking, 2000, 27(2): 129-137
    [186] J. Yang, M. Kuwabara, T. Teshigawara, M. Sano. Mechanism of resulfurization in magnesium desulfurization process of molten iron. ISIJ International, 2005, 45(11): 1607-1615
    [187] E. Shibata, T. Nakamura, T. Nishida, M. Endo, H. Itou, T. Takastu. Evaluation of desulphurization flux in CaO-Al_2O_3-BaO-CeO_2-MgO system. Steel Research International, 2004, 75(5): 308-313
    [188] Peng Bing, Peng Ji, Zhang Chuanfu, et al. Thermodynamics Calculation on the Oxidation and Sulfur Removal Ability of Slag in EAF Dust Pellet Reduction Process. Journal of Central South University of Technology, 2001, 8 (1): 64-68
    [189] R. J. Fruehan, A. W. Cramb. Fundamental issues of steel refining. Procedings of the Julian Szekely Memorial Symposium, TMS, 1997: 209-230
    [190] Johannes Gerhardt Bekker, Ian Keith Craig, Petrus Christiaan Pistorius. Modeling and Simulation of an Electric Arc Furnace Process. ISIJ International, 1999, 39(1): 23-32
    [191] S. Chirattananon, Z. Gao. A Model for the Performance Evaluation of the Operation of Electric Arc Furnace. Energy Convers. Mgmt, 1996, 37(2): 161-166
    [192] R. Kh. Mukhutdinov and N. A. Samoilov. Effect of the Type of Binder on Strength and Catalytic Properties of Catalyst Coatings Based on Ultrafine Metal Oxide Powders. Russian Journal of Applied Chemistry, 1998, 71(10): 1775-1778
    [193] V. E. Lotosh. Change in the Properties of Unbaked Pellets with a Lime-Dust Binder During Long Storage. Steel Translation, 1995, 25(12): 1213
    [194] S. K. Dutta, A. Ghosh. Evaluation of Various Cold Bonding Techniques for Iron Ore-Coal/Char Composite Pellets. Trans. Indian Inst. Met., 1995, 48(1): 1-13
    [195] J. Srb, Z. Ruzickova. Developments in Mineral Processing: Pelletization of Fines. Elsevier Science Publishing Company, New York, 1988
    [196] 李心广.新型冷固(含碳)球团的研究.上海金属,1995,17(3):31-35
    [197] Johannes Gerhardt Bekker, Ian Keith Craig, Petrus Christiaan Pistodus. Modeling and Simulation of an Electric Arc Furnace Process. ISIJ International, 1999, 39(1): 23-32
    [198] S. Chirattananon, Z. Gao. A Model for the Performance Evaluation of the Operation of Electric Arc Furnace. Energy Convers. Mgmt, 1996, 37(2): 161-166
    [199] S. Prakash, B. K. Dhindaw, S. Sengupta. Smelting Reduction of Prereduced Iron Ore. Ironmaking and Steelmaking, 1997, 24(6): 468-475
    [200] P. G. Barnard, W. M. Dressel, M. M. Fine. Arc Furnace Recycling of Chromium-Nickel From Stainless Steel Wastes. U. S. Bureau of Mines, Report of Investigations 8218, 1975
    [201] M. Susa, K. Nagata. Mathematical Model for Ion Refractivity of Oxygen in Slags. Ironmaking and Steelmaking, 1997, 24(3): 239-242
    [202] Shuang Xu, Laud Holappa. Heating and Melting of Wustite Pellets in Liquid Slag. Steel Research, 1994, 65(11): 459-465
    [203] Mitsutaka Hino, Ken-Ichi Higuchi, Tetsuya Nagasaka, Shiro Ban-Ya. Thermodynamic Estimation on the Reduction Behavior of Iron-Chromium Ore with Carbon. Metallurgical and Materials Transactions B, 1998, 29B: 351-360
    [204] R. Urquhart. The Production of High-Carbon Ferrochromium in a Submerged-ARC Furnace. Minerals Schience and Engineering, 1972(4): 48-65
    [205] N. W. Jones. Kinetics of Carbon Dissolution in Fe-C Alloy at 1550℃. Ironmaking and Steelmaking, 1998, 25(6): 460-465
    [206] F. Chejne Janna, J. C. Ruiz Sierra, J. M. Badie. Mathematical Model for Energy Saving in Induration of Iron Ore Pellets. Ironmaking and Steelmaking, 1996, 23(5): 406-410
    [207] Catharina Baverman, Annika Sapiej, Lius Moreno, Ivars Neretnieks. Serial Batch Tests Performed on Municipal Solid Waste Incineration Bottom Ash and Electric Arc Furnace Slag in Combination with Computer Modelling. Waste Management & Research, 1997, 15: 55~71
    [208] T. Utigard, G. Sanchez, J. Manriquez, et al. Reduction Kinetics of Liquid Iron Oxide-Containing Slags by Carbon Monoxide. Metallurgical and Materials Transactions B, 1997, 28: 821-826
    [209] E. T. Turkdogan. Physicochemical properties of molten slags and glasses. Press of the Insiitute of Materials, London, 1983: 516-517
    [210] Constantino F. Pereira, Miguel Rodriguez-Pinero, Jose Vale. Solidification/stabilization of electric arc furnace dust using coal fly ash. Journal of Hazardous Materials, 2001, (B82): 183-195
    [211] D. Ionescu, T. R. Meadowcroft, P. V. Barr. Glassification of EAF dust: The limits for Fe_2O_3 and ZnO content and an assessment of leach performance. Canadian Metallurgical Quarterly, 1997, 36(4): 269-281
    [212] J. R. Conner, S. L. Hoeffner. Critical review of stabilization/solidification technology. Environmental Science and Technology, 1998, 28 (4): 397-462
    [213] D. J. Hassett, D. F. Pflughoeft-Hassett. Use of coal combustion by-products for solidification/stabilization of hazardous wastes. Proceedings of the Annual meeting of the North Dakota Academy of Science, Grand Forks, Washington, DC, April 1997: 24-25
    [214] K. L. Knoll C. Behr-Andres. Fluidized-bed-combustion ash for the solidification and stabilization of a metal-hydroxide sludge. Journal of Air Waste Management, 1998, 48 (1): 35-43
    [215] M, Rodriguez-Pinero, C. Fernandez Pereira, C. Ruiz de Elvira Francoy, J. F. Vale Parapar. Stabilization of a chromium-containing solid waste: immobilization of hexavalent chromium. Journal of Air Waste Management, 1998, 48 (11): 1093-1099
    [216] M. Pelino, A. Karamanov, P. Pisciella, S. Crisucci, D. Zonetti. Vitrification of electric arc furnace dusts. Waste Management, 2002, 22: 945-949
    [217] S. A. Mikhail, A. M. Turcotte, J. Aota. Thermoanalytical study of EAF dust and its vitrification product. Thermochimica Acta, 1996, 287: 71-79
    [218] Peng Ji, Peng Bing, Yu Di, et al. Thermo-analytical study on stainless steelmaking dust. Journal of Central South University of Technology, 2003, 10(1): 20-26

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700