用户名: 密码: 验证码:
电子元器件低频电噪声测试技术及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电子元器件低频电噪声是载流子微观运动的表现,其精确测量可为噪声特性、产生机理研究及其分析应用奠定基础。通过噪声测试能够有效验证电子元器件中与载流子输运相关的基础理论,同时能促进噪声现象的物理本源探索。电噪声的应用是噪声机理和噪声测试技术研究的目的之一。通过电子元器件缺陷、应力损伤、工艺水平、质量及可靠性等与低频电噪声的相关性研究,可发展基于噪声的表征方法,应用于元器件优化设计、工艺控制、质量评定和可靠性筛选等方面。
     本文系统地研究了电子元器件低频电噪声检测技术与应用方法。在测试技术方面,研究了偏置技术、低噪声放大技术、数据采集技术、噪声参数提取技术与测试误差分析方法。基于电子元器件低频噪声特性和相关测试技术,建立电子元器件低频电噪声测试系统。应用所研制的噪声测试系统,测试并分析了不同类型电子元器件的低频噪声。在噪声应用研究方面,对金属氧化物半导体场效应晶体管(MOSFET)、电阻器、光电探测器及微波与射频器件的噪声进行了测试,深入研究各元器件的噪声产生机理与模型。通过多种实验方法,提出或验证了噪声在元器件缺陷和可靠性等表征方面的应用。本文具体研究成果及创新点如下:
     (1)对噪声测试的简单直流偏置技术进行了改进,设计了基于桥结构的噪声测试偏置电路。对噪声测试的交流偏置技术提出了具体实现方案,同时比较了不同偏置源的噪声特性,设计制作了低噪声直流偏置源。
     (2)提出了并联结构的放大器设计,有效的降低了噪声测试系统放大部分的噪声。对电流放大技术进行了研究,提出了电流放大器的扩频测试方法。基于上述各技术,针对实际测试元器件建立了多套不同的噪声测试系统。
     (3)介观散粒噪声是元器件尺度缩小后出现的新噪声现象,本文重点研究了介观散粒噪声测试方法。根据散粒噪声特性,研究了散粒噪声测试的温度、偏置、频率和系统要求,提出了介观散粒噪声具体测试方法。在并联结构超低噪声放大器的基础上,建立了10K和77K的散粒噪声测试系统,并对该系统进行了验证测试。
     (4)通过对小尺寸MOSFET散粒噪声物理模型研究,建立了散粒噪声与背散射系数的关系,并据此提出了通过散粒噪声测试提取背散射系数的方法与步骤。此外,还探索了散粒噪声在MOS器件的可靠性表征中的应用。
     (5)分析了固定电阻器电流噪声系数测试国际标准中存在的问题,并提出了改正和改进方法。据此设计制作了电阻器噪声测试软硬件系统,并验证了本测试系统的合理性与准确性。在电阻器电流噪声系数测试的基础上,对薄厚膜电阻及电阻浆料噪声特性进行了测试研究。提出了通过噪声系数表征电阻浆料温度稳定性,以及噪声系数与功率谱密度共同表征薄厚膜电阻质量与可靠性中的方法。
     (6)搭建了光电探测器噪声测试系统。推导和实验验证了PbS多晶薄膜光导型红外探测器的1/f噪声和G-R噪声模型。提出了1/f噪声表征红外探测器表面缺陷态,以及G-R噪声测试提取不同温度下的深能级缺陷参数:缺陷激活能、载流子俘获截面的方法。对雪崩光电二极管进行了噪声测试,研究了基于噪声的可靠性表征参量和表征方法。
     (7)对微波与射频器件的噪声进行了较为深入的研究,分析了PHEMT器件噪声与潜在缺陷的内在联系。同时对微波与射频器件的热应力与静电应力损伤进行了分析,研究了其失效模式与失效机理。对多种样品进行了热应力与静电应力损伤前后噪声参数与电学参数的测试,并对测试结果进行了对比分析。提出高频器件的低频噪声参数表征方法,结果表明,噪声参数与电学参数在表征器件应力后的损伤方面具有一致性,此外部分噪声参量的表征灵敏度优于电学参数。如G-R噪声和1/f噪声幅度值在表征微波放大器热应力损伤方面具有较高的灵敏度,宽带噪声电压有效值能够反映射频放大器抗ESD能力。
     以上研究内容和成果一部分已经应用于实际生产和研究工作中,另一部分还处在探索研究阶段。这些研究能为进一步的噪声测试技术与应用研究奠定实验和理论基础。
Low frequency noise of electronic devices is related to the carriers’ microcosmicbehavior, through the study of the noise test technology, carrier transport-related theorycan be effectively verified, meanwhile, the exploration of the physical origin of noisephenomenon can be promoted. The accurate measurement of the noise is the base forresearch and analysis of noise characteristics, generation mechanism, and its application.One of the purposes to research the noise mechanisms and its testing technology is theapplication of electronic noise. Through the research of the relationship between thenoise and defects, stress damage, technological level, process quality and reliability ofelectrical devices, the characterization methods based on the noise can be built up, andthe methods can be used in the design optimizing, process controlling, qualityevaluating, and reliability screening.
     The paper systematically studies on the low frequency noise testing technology andits application method in electronic devices. In the noise testing technology, the researchon the bias, low noise amplifier, data acquisition, noise parameter extraction, and erroranalysis technology was carried out. Based on the low frequency noise characteristicsand the related testing technology, the electronic devices low frequency noise testsystem was established. By using this testing system, low frequency noises of differenttypes of electronic devices have been tested and analyzed. In the research of the noiseapplications, MOSFET, resistors, optical detectors, microwave, and RF devices aretested on their noise characteristics, and the noise generation mechanism as well asnoise models is deeply researched. The noise applications in devices defects andreliability characterization have been proposed and these applications are verified byvariety of experimental tests. The main works of this paper are:
     (1)The simple DC bias noise testing technology was improved by using thestructure of the bridge testing circuits. A specific implementation scheme was proposedfor AC bias test technology. Meanwhile, the noise characteristics of different biassources are compared with each other, and a low-noise DC bias source was designed.
     (2)The amplifier’s background noise was effectively reduced by the proposedparallel structure amplifier. The current amplifier technology was studied, and a methodof spread spectrum testing was presented in this thesis. Based on the technologiesdescribed above, different sets of noise test system have been built for a variety ofdevices.
     (3)Mesoscopic shot noise is a new phenomenon when device dimension of devices reduced, which is the reason why the relative test methods were specificallystudied. According to the characteristics of shot noise, the noises’ testing conditions,such as temperature, bias circuits, frequency and background noise were studied. Basedon the parallel amplifier, a low temperature (10K and77K) shot noise testing systemwas established, which was verified in experiments.
     (4)Through the research on the physical model of small-scaled MOSFET,relationship between the shot noise and the scattering coefficient was built up, and amethod of extracting scattering coefficient from shot noise was proposed consequently.Furthermore, the application of shot noise in MOS devices’ reliability characterizationwas explored.
     (5)The problems exist in the standard of measurement of current noisegeneration in fixed resistors were discussed, and improved methods are proposed torectify those problems. A resistor noise test software and hardware system was designed,and its rationality and accuracy were verified. Then, film resistors’ noise characteristicswere tested by the system. The methods of characterizing the temperature stability ofresistance paste by current noise index, and characterizing the quality and reliability ofresistor by the power spectral density were proposed.
     (6)The photoelectric detector noise test system is established. The1/f and G-Rnoise physical models of PbS infrared detectors were deduced and experimental verified.The1/f noise was employed to characterize the surface defects of infrared detector. Inaddition, G-R noise was employed to characterize the defect parameters includingdefect activate energy, degeneracy factor and capture section. Besides, the noise ofavalanche photo diode (APD) was tested, and the reliability characterization parametersand method were studied.
     (7)The noise of microwave and RF devices was studied. The relationshipbetween the noise and internal potential defects of PHEMT devices was analyzed.Analyses of thermal stress and ESD stress in microwave and RF devices are carried out.Then the damages of devices were characterized by noise tests and electrical tests. Amethod for characterizing the degradation by low-frequency noise in high-frequencydevices was proposed consequently. The results shown the noise parameters andelectrical parameters are coincident in characterizing the damage from stress; however,noise parameters are more sensitive than electrical parameters. For example, theamplitude of G-R and1/f noise is more sensitive in characterizing the thermal stressdamage of microwave amplifier; the wide band noise voltage reflects the antistatic property of the device.
     The works and achievements stated above were partly used in the real productionand research already; some of these works are still under further exploration. All theworks in this thesis established a foundation for further research on noise testing andapplication both experimentally and theoretically.
引文
[1] M. Jevti, Noise as a diagnostic and prediction tool in reliability physics,Microelectronics and reliability,1995,35:455-477.
    [2] J. Sikula,P. Hruska, Noise and transport reliability indicators for microelectronicsdevices, in PROC.20th INTERNATIONAL CONFERENCE ONMICROELECTRONICS,1995,225-230vol.1.
    [3] A. Raychaudhuri, Measurement of1/f noise and its application in materials science,Current Opinion in Solid State and Materials Science,2002,6:67-85.
    [4]张志勇,王太宏,用散粒噪声测量碳纳米管中Luttinger参数,物理学报,2004,53:942-946.
    [5] C. Beenakker,C. Sch nenberger, Quantum shot noise, Physics Today,2003,56:37-42.
    [6] S. Andersson,C. Svensson, Direct experimental verification of shot noise in shortchannel MOS transistors, Electron Lett,2005,41:869-871.
    [7] X. Jehl, P. Payet-Burin, C. Baraduc, et al., Andreev reflection enhanced shot noise inmesoscopic SNS junctions, Physical Review Letters,1999,83:1660-1663.
    [8] D. Fleetwood,N. Giordano, Direct link between1/f noise and defects in metal films,Physical Review B,1985,31:1157.
    [9] M. Kirton,M. Uren, Noise in solid-state microstructures: A new perspective onindividual defects, interface states and low-frequency (1/f) noise, Advances inPhysics,1989,38:367-468.
    [10] D. Fleetwood,J. H. Scofield, Evidence that similar point defects cause1/f noise andradiation-induced-hole trapping in metal-oxide-semiconductor transistors, Physicalreview letters,1990,64:579-582.
    [11] J. Pelz,J. Clarke, Dependence of1/f noise on defects induced in copper films byelectron irradiation, Physical review letters,1985,55:738-741.
    [12] G. Ghibaudo,T. Boutchacha, Electrical noise and RTS fluctuations in advancedCMOS devices, Microelectronics Reliability,2002,42:573-582.
    [13] O. Roux, B. Dierickx, E. Simoen, et al., Investigation of drain current RTS noise insmall area silicon MOS transistors, Microelectronic Engineering,1991,15:547-550.
    [14] F. Martinez, C. Leyris, G. Neau, et al., Oxide traps characterization of45nm MOStransistors by gate current RTS noise measurements, Microelectronic Engineering,2005,80:54-57.
    [15] E. Simoen, B. Dierickx, C. L. Claeys, et al., Explaining the amplitude of RTS noisein submicrometer MOSFETs, Electron Devices, IEEE Transactions on,1992,39:422-429.
    [16]庄奕琪,孙青,半导体器件中的噪声及其低噪声化技术北京中国:国防工业出版社,1993.
    [17] J. Connelly, Low-Noise Electronic System Design: John Wiley&Sons, Inc.,1993.
    [18] P. Bagnoli, A. Diligenti, B. Neri, et al., Noise measurements in thin\filminterconnections: A nondestructive technique to characterize electromigration,Journal Of Applied Physics,1988,63:1448-1451.
    [19] J. H. Scofield,D. Fleetwood, Physical basis for nondestructive tests of MOSradiation hardness, Nuclear Science, IEEE Transactions on,1991,38:1567-1577.
    [20] L. K. J. Vandamme,A. J. Van Kemenade, Resistance noise measurement: A betterdiagnostic tool to detect stress and current induced degradation, Microelectronicsand Reliability,1997,37:87-93.
    [21] Z. Chobola, Noise as a tool for non-destructive testing of single-crystal silicon solarcells, Microelectronics Reliability,2001,41:1947-1952.
    [22] A. Ghosh, S. Kar, A. Bid, et al., A set-up for measurement of low frequencyconductance fluctuation (noise) using digital signal processing techniques, Arxivpreprint cond-mat/0402130,2004,
    [23] G. Giusi, F. Crupi, C. Ciofi, et al., Ultrasensitive method for current noisemeasurements, Review of scientific instruments,2006,77:015107-015107-5.
    [24] B. Neri, B. Pellegrini,R. Saletti, Ultra low-noise preamplifier for low-frequencynoise measurements in electron devices, Instrumentation and Measurement, IEEETransactions on,1991,40:2-6.
    [25] Y. Ma, Y. Shi,Y. Dai, Weak signal measurement via an accurate cross-spectralSVD-TLS approach,2000,275-278.
    [26] C. Ciofi, F. Crupi, C. Pace, et al., Micro-prober for wafer-level low-noisemeasurements in MOS devices, Instrumentation and Measurement, IEEETransactions on,2003,52:1533-1536.
    [27] X. Jehl, P. Payet-Burin, C. Baraduc, et al., Superconducting quantum interferencedevice based resistance bridge for shot noise measurement on low impedancesamples, Rev Sci Instrum,1999,70:2711-2714.
    [28] A. M. Yassine,C. Tsong-Ming Chen, Electromigration noise measurements using anovel AC/DC wafer-level noise measurement system, Electron Devices, IEEETransactions on,1997,44:180-184.
    [29] G. L. de Haas-Lorentz, Over de theorie van de Brown'sche beweging en daarmedeverwante verschijnselen: E. Ijdo,1912.
    [30] W. Schottky,Ann, Shot noise in diodes, Phys,1918,57:541.
    [31] J. B. Johnson, The Schottky effect in low frequency circuits, Physical review,1925,26:71.
    [32] J. B. Johnson, Thermal agitation of electricity in conductors, Nature,1927,119:50?51.
    [33] H. Nyquist, Thermal agitation of electric charge in conductors, Physical review,1928,32:110-113.
    [34] A. Van der Ziel, Noise in solid state devices and circuits,1986,
    [35] A. Van der Ziel, Noise. Sources, characterization, measurement, Prentice-HallInformation and System Sciences Series, Englewood Cliffs: Prentice-Hall,1970,1970,1:
    [36] A. Van der Ziel, Fluctuation phenomena in semi-conductors,1959,
    [37] A. Van Der Ziel, On the noise spectra of semi-conductor noise and of flicker effect,Physica,1950,16:359-372.
    [38] A. Van der Ziel, Noise: Prentice-Hall New York,1954.
    [39] A. Van Der Ziel, Noise in solid-state devices and lasers, Proceedings of the IEEE,1970,58:1178-1206.
    [40] F. Hooge, T. Kleinpenning,L. Vandamme, Experimental studies on1/f noise,Reports on progress in Physics,1981,44:479.
    [41] B. Debney,J. Joshi, A theory of noise in GaAs FET microwave oscillators and itsexperimental verification, Electron Devices, IEEE Transactions on,1983,30:769-776.
    [42] J. M. Peransin, P. Vignaud, D. Rigaud, et al.,1/f noise in MODFETs at low drainbias, Electron Devices, IEEE Transactions on,1990,37:2250-2253.
    [43] M. Uren, D. Day,M. Kirton,1/f and random telegraph noise in siliconmetal?oxide?semiconductor field?effect transistors, Applied Physics Letters,1985,47:1195-1197.
    [44] J. H. Scofield, N. Borland,D. M. Fleetwood, Reconciliation of different gate-voltagedependencies of1/f noise in n-MOS and p-MOS transistors, Electron Devices, IEEETransactions on,1994,41:1946-1952.
    [45] T. Meisenheimer,D. Fleetwood, Effect of radiation-induced charge on1/f noise inMOS devices, Nuclear Science, IEEE Transactions on,1990,37:1696-1702.
    [46] D. M. Fleetwood, T. L. Meisenheimer,J. H. Scofield,1/f noise and radiation effectsin MOS devices, Electron Devices, IEEE Transactions on,1994,41:1953-1964.
    [47] A. V. Vertiatchikh,L. F. Eastman, Effect of the surface and barrier defects on theAlGaN/GaN HEMT low-frequency noise performance, Electron Device Letters,IEEE,2003,24:535-537.
    [48] A. Cappy, Noise modeling and measurement techniques [HEMTs], MicrowaveTheory and Techniques, IEEE Transactions on,1988,36:1-10.
    [49] A. Van Der Ziel,1/f noise in HEMT-type GaAs FETs at low drain bias, Solid-StateElectronics,1983,26:385-386.
    [50] E. Snow, J. Novak, M. Lay, et al.,1? f noise in single-walled carbon nanotubedevices, Applied Physics Letters,2004,85:4172.
    [51] L. B. Kish, End of Moore's law: thermal (noise) death of integration in micro andnano electronics, Physics letters A,2002,305:144-149.
    [52] K. S. Ralls,R. A. Buhrman, Microscopic study of1/f noise in metal nanobridges,Physical Review B,1991,44:5800.
    [53] D. Tobias, M. Ishigami, A. Tselev, et al., Origins of1? f noise in individualsemiconducting carbon nanotube field-effect transistors, Physical Review B,2008,77:033407.
    [54] P. G. Collins, M. Fuhrer,A. Zettl,1/f noise in carbon nanotubes, Applied PhysicsLetters,2000,76:894.
    [55] A. H. Steinbach, J. M. Martinis,M. H. Devoret, Observation of Hot-Electron ShotNoise in a Metallic Resistor, Physical Review Letters,1996,76:3806.
    [56] W. H. Louisell, Radiation and noise in quantum electronics: RE Krieger Pub. Co.,1964.
    [57] M. Reznikov, M. Heiblum, H. Shtrikman, et al., Temporal correlation of electrons:Suppression of shot noise in a ballistic quantum point contact, Physical reviewletters,1995,75:3340-3343.
    [58] C. Dekker, A. Scholten, F. Liefrink, et al., Spontaneous resistance switching andlow-frequency noise in quantum point contacts, Physical review letters,1991,66:2148-2151.
    [59] G. Conrad Jr, Noise Measurements of Composition Resistors; Part II. Characteristicsand Comparison of Resistors, Component Parts, IRE Transactions on,1955,4:79-92.
    [60] G. Conrad Jr, N. Newman,A. Stansbury, A recommended standard resistor-noise testsystem, Component Parts, IRE Transactions on,1960,7:71-88.
    [61] G. Conrad Jr, Noise Measurements of Composition Resistors; Part I. The Methodand Equipment, Component Parts, IRE Transactions on,1955,4:61-78.
    [62]戴逸松,低频噪声测量技术的现状及最新进展,计量学报,1994,15:314-319.
    [63] J. H. Scofield, ac method for measuring low\frequency resistance fluctuationspectra, Review of scientific instruments,1987,58:985-993.
    [64] C. Cismaru, M. Banbrook,P. J. Zampardi, High-Volume Low Frequency NoiseCharacterization Technique,
    [65] L. Vandamme, Noise Measurement Technique, Advanced Experimental MethodsFor Noise Research in Nanoscale Electronic Devices,2005,189-202.
    [66] J. H. Scofield, ac method for measuring low‐frequency resistance fluctuationspectra, Review of scientific instruments,1987,58:985-993.
    [67] J. Sikula,M. Levinshtein, Advanced experimental methods for noise research innanoscale electronic devices: Springer,2004,151.
    [68] R. Jongen, L. Vandamme, H. Bonné, et al.,1/f NOISE AS A DIAGNOSTIC TOOLTO INVESTIGATE THE QUALITY OF ANISOTROPIC CONDUCTIVEADHESIVE (ACA) BONDS FOR BALL GRID ARRAYS (BGA’S), Fluctuationand Noise Letters,2003,3: L31.
    [69] S. Pralgauskaite, V. Palenskis, J. Matukas, et al., Noise characteristics and reliabilityof light emitting diodes based on nitrides, Florence, Italy,2007,66001H-10.
    [70] J. G. Curtis, Current Noise Measurement as a Failure Analysis Tool for FilmResistors, in Physics of Failure in Electronics,1962. First Annual Symposium on the,1962,204-213.
    [71] B. Szentpali,V. Rakovics, Noise in PbS IR photoresistors,2004,367.
    [72]黄杨程,刘大福,梁晋穗等,短波碲镉汞光伏器件的低频噪声研究,物理学报,2005,54:2261-2266.
    [73]孙涛,陈兴国,胡晓宁等, HgCdTe长波光伏探测器的表面漏电流及1/f噪声研究,物理学报,2005,54:3357-3362.
    [74] C. Lin, Y. Su, S. Chang, et al., Effects of passivation and extraction surface trapdensity on the1/f noise of HgCdTe photoconductive detector, Photonics TechnologyLetters, IEEE,1997,9:232-234.
    [75] J. H. Scofield, T. Doerr,D. Fleetwood, Correlation between preirradiation1/f noiseand postirradiation oxide-trapped charge in MOS transistors, Nuclear Science, IEEETransactions on,1989,36:1946-1953.
    [76] D. Fleetwood, H. Xiong, Z. Y. Lu, et al., Unified model of hole trapping,1/f noise,and thermally stimulated current in MOS devices, Nuclear Science, IEEETransactions on,2002,49:2674-2683.
    [77] T. Meisenheimer, D. Fleetwood, M. Shaneyfelt, et al.,1/f noise in n-and p-channelMOS devices through irradiation and annealing, Nuclear Science, IEEETransactions on,1991,38:1297-1303.
    [78]刘宇安,杜磊,包军林,金属氧化物半导体场效应管热载流子退化的1/f噪声相关性研究,物理学报,2008,57:2468-2475.
    [79]赵志刚,杜磊,包军林等,用于DC/DC转换器的VDMOS器件抗辐照性能与低频噪声研究,混合微电子技术,2007,18:1-4.
    [80]陈伟华,杜磊,庄奕琪等, MOS结构电离辐射效应模型研究,物理学报,2009,58:4090-4095.
    [81] M. S. Obrecht, E. Abou-Allam,T. Manku, Diffusion current and its effect on noise insubmicron MOSFETs, Electron Devices, IEEE Transactions on,2002,49:524-526.
    [82] G. Gomila, C. Pennetta, L. Reggiani, et al., Shot noise in linear macroscopicresistors, Phys Rev Lett, Jun42004,92:226601.
    [83] J. A. McNeill, Noise in short channel MOSFETs, in Custom Integrated CircuitsConference,2009. CICC '09. IEEE,2009,567-572.
    [84] Y. Blanter,M. Büttiker, Shot noise in mesoscopic conductors, Physics Reports,2000,336:1-166.
    [85] J. Lee, G. Bosman, K. Green, et al., Noise model of gate-leakage current in ultrathinoxide MOSFETs, IEEE transactions on electron devices,2003,50:2499-2506.
    [86] O. Bulashenko,J. Rub¨a, Shot noise as a tool to probe an electron energy distribution,Physica E: Low-dimensional Systems and Nanostructures,2002,12:857-860.
    [87]陈华,杜磊,庄奕琪,相干介观系统中散粒噪声的Monte Carlo模拟方法研究,物理学报,2008,57:2438-2444.
    [88]陈华,杜磊,庄奕琪等,散粒噪声用于纳米电子器件与结构的量子效应表征,微纳电子技术,2009,201-208.
    [89]陈华,杜磊,庄奕琪等, Rashba自旋轨道耦合作用下电荷流散粒噪声与自旋极化的关系研究,物理学报,2009,5685-5692.
    [90] T. Griffiths, E. Comforti, M. Heiblum, et al., Evolution of quasiparticle charge in thefractional quantum hall regime, Physical Review Letters,2000,85:3918-3921.
    [91] L. Saminadayar, D. Glattli, Y. Jin, et al., Observation of the e/3fractionally chargedLaughlin quasiparticle, Physical Review Letters,1997,79:2526-2529.
    [92] R. De-Picciotto, M. Reznikov, M. Heiblum, et al., Direct observation of a fractionalcharge, Physica B: Physics of Condensed Matter,1998,249:395-400.
    [93] M. Devoret,C. Glattli, Single-electron transistors, Physics world,1998,11:29-33.
    [94] D. C. Glattli, Tunneling experiments in the fractional quantum hall effect regime,The Quantum Hall Effect,2005,163-197.
    [95] M. Reznikov, Direct Observation of a Fractional Charge,1998.
    [96]张志勇,王太宏,用散粒噪声测量碳纳米管中Luttinger参数,物理学报,2004,53:942-946.
    [97] H. Chen, L. Du, Y. Q. Zhuang, et al., Relation between charge shot noise and spinpolarization governed by Rashba spin orbit interaction, Acta Physica Sinica, Aug2009,58:5685-5692.
    [98]郑磊,杜磊,陈文豪,短沟道MOSFET散粒噪声测试方法研究,电子科技,2009,101-103.
    [99]李春梅,杜磊,散粒噪声时间序列测试方案研究,电子科技,2009,75-77.
    [100]孙亚杰,杜磊,陈华,量子点接触结构中散粒噪声的模拟方法研究,电子科技,2010,83-85+88.
    [101]M. Celasco, F. Fiorillo,P. Mazzetti, Thermal-equilibrium properties of vacancies inmetals through current-noise measurements, Physical review letters,1976,36:38-42.
    [102]杜磊,庄奕琪,薛丽君, VLSI金属互连线噪声指数与电迁移失效,电子学报,2003,
    [103]宗兆翔,杜磊,庄奕琪等,超大规模集成电路互连电迁移自由体积电阻模型,物理学报,2005,54:5872-5872.
    [104]何亮,杜磊,庄奕琪等,金属互连电迁移噪声的相关维数研究,物理学报,2007,56:
    [105]何亮,杜磊,庄奕琪等,金属互连电迁移噪声的多尺度熵复杂度分析,物理学报,2008,57:6545-6550.
    [106]陈春霞,杜磊,何亮等,金属互连电迁移噪声的分形特征,物理学报,2007,56:
    [107]杜磊,庄奕琪,薛丽君,金属薄膜电迁移1/f噪声与1/f2噪声统一模型,物理学报,2002,51:2836-2842.
    [108]H. Liang, D. Lei, Z. Yi-Qi, et al., A new model for electromigration grain boundarynoise based on free volume, Chinese Physics B,2010,19:097202.
    [109]E. Simoen, U. Magnusson,A. L. P. Rotondaro, The kink-related excesslow-frequency noise in silicon-on-insulator MOST's, Electron Devices, IEEETransactions on,1994,41:330-339.
    [110] W. Chim, S. Leang,D. Chan, Extraction of metal-oxide-semiconductorfield-effect-transistor interface state and trapped charge spatial distributions using aphysics-based algorithm, Journal Of Applied Physics,1997,81:1992.
    [111] J. C. Nallatamby, M. Prigent, M. Camiade, et al., An advanced low-frequency noisemodel of GaInP-GaAs HBT for accurate prediction of phase noise in oscillators,Microwave Theory and Techniques, IEEE Transactions on,2005,53:1601-1612.
    [112] B. Van Haaren, M. Regis, O. Llopis, et al., Low-frequency noise properties of SiGeHBT's and application to ultra-low phase-noise oscillators, Microwave Theory andTechniques, IEEE Transactions on,1998,46:647-652.
    [113] A. Balandin, S. Morozov, S. Cai, et al., Low flicker-noise GaN/AlGaNheterostructure field-effect transistors for microwave communications, MicrowaveTheory and Techniques, IEEE Transactions on,1999,47:1413-1417.
    [114] G. Cibiel, L. Escotte,O. Llopis, A study of the correlation between high-frequencynoise and phase noise in low-noise silicon-based transistors, Microwave Theory andTechniques, IEEE Transactions on,2004,52:183-190.
    [115] J. Garrido, B. Foutz, J. Smart, et al., Low-frequency noise and mobility fluctuationsin AlGaN/GaN heterostructure field-effect transistors, Applied Physics Letters,2000,76:3442.
    [116] D. Costa,J. Harris Jr, Low-frequency noise properties of Npn AlGaAs/GaAsheterojunction bipolar transistors, Electron Devices, IEEE Transactions on,1992,39:2383-2394.
    [117] G. I. Ng, D. Pavlidis, M. Tutt, et al., Low-frequency noise characteristics oflattice-matched (x=0.53) and strained (x>0.53) In0.52Al0.48As/InxGa1-xAsHEMT's, Electron Devices, IEEE Transactions on,1992,39:523-532.
    [118] D. Kuksenkov, H. Temkin, R. Gaska, et al., Low-frequency noise in AlGaN/GaNheterostructure field effect transistors, Electron Device Letters, IEEE,1998,19:222-224.
    [119] A. Balandin, S. Morozov, G. Wijeratne, et al., Effect of channel doping on thelow-frequency noise in GaN/AlGaN heterostructure field-effect transistors, AppliedPhysics Letters,1999,75:2064.
    [120]L. Loreck, H. Dambkes, K. Heime, et al., Deep-level analysis in (AlGa) As? GaAs2-D electron gas devices by means of low-frequency noise measurements, ElectronDevice Letters, IEEE,1984,5:9-11.
    [121]Y. J. Chan,D. Pavlidis, Trap studies in GaInP/GaAs and AlGaAs/GaAs HEMT's bymeans of low-frequency noise and transconductance dispersion characterizations,Electron Devices, IEEE Transactions on,1994,41:637-642.
    [122]J. B. Johnson, Thermal agitation of electricity in conductors, Physical review,1928,32:97.
    [123]A. McWhorter,1/f noise and germanium surface properties, Semiconductor SurfacePhysics,1957,207-228.
    [124]F. N. Hooge,1/[latin small letter f with hook] noise is no surface effect, Physicsletters A,1969,29:139-140.
    [125]A. McWhorter, Semiconductor surface physics, University of Pennsylvania Press,Philadelphia,1957,207:
    [126]K. K. Hung, P. K. Ko, C. Hu, et al., Random telegraph noise of deep-submicrometerMOSFETs, Electron Device Letters, IEEE,1990,11:90-92.
    [127]P. Fang, K. K. Hung, P. Ko, et al., Hot-electron-induced traps studied through therandom telegraph noise, Electron Device Letters, IEEE,1991,12:273-275.
    [128]C. Surya,T. Y. Hsiang, A thermal activation model for1/[latin small letter f withhook] y noise in Si-MOSFETs, Solid-State Electronics,1988,31:959-964.
    [129]A. Van der Ziel, Unified presentation of1/f noise in electron devices: fundamental1/f noise sources, Proceedings of the IEEE,1988,76:233-258.
    [130]L. Varani, L. Reggiani, T. Kuhn, et al., Microscopic simulation of electronic noise insemiconductor materials and devices, Electron Devices, IEEE Transactions on,1994,41:1916-1925.
    [131]L. Reggiani, P. Golinelli, L. Varani, et al., Monte Carlo analysis of electronic noisein semiconductor materials and devices, Microelectronics journal,1997,28:183-198.
    [132]G. Giusi, F. Crupi, C. Ciofi, et al., Three-channel amplifier for high-sensitivityvoltage noise measurements, Review of scientific instruments,2006,77:095104-095104-5.
    [133]F. Crupi, G. Giusi,C. Pace, Two-channel amplifier for high-sensitivity voltage noisemeasurements,2007,1-4.
    [134]戴逸松,微弱信号检测方法及仪器:国防工业出版社,1994.
    [135]D2K-DASK Function Reference Manual,2010,台湾:
    [136]W. Schottky,Ann, Phys,1918,57:541.
    [137]O. Bulashenko, J. Mateos, D. Pardo, et al., Electron-number statistics and shot-noisesuppression by Coulomb correlation in nondegenerate ballistic transport, Phys RevB,1998,57:1366-1369.
    [138]H. S. Sim,H. Schomerus, Shot noise in ballistic quantum dots with a mixed classicalphase space, Phys Rev Lett, Aug52002,89:066801.
    [139]C. Yan, N. Guofu, A. Rezvani, et al., Measurement and Modeling of Drain CurrentThermal Noise to Shot Noise Ratio in90nm CMOS, in Silicon MonolithicIntegrated Circuits in RF Systems,2008. SiRF2008. IEEE Topical Meeting on,2008,118-121.
    [140]C. Chen,M. Deen, Channel noise modeling of deep submicron MOSFETs, ElectronDevices, IEEE Transactions on,2002,49:1484-1487.
    [141]P. Klein, An analytical thermal noise model of deep submicron MOSFET's, ElectronDevice Letters, IEEE,2002,20:399-401.
    [142]R. Navid,R. Dutton, The physical phenomena responsible for excess noise inshort-channel MOS devices, in2002Simulation of Semiconductor Processes andDevices,2002. SISPAD2002. International Conference on, Kobe,Japan,2002,75-78.
    [143]R. Navid, C. Jungemann, T. Lee, et al., High-frequency noise in nanoscale metaloxide semiconductor field effect transistors, J Appl Phys,2007,101:124501.
    [144]J. Jeon, J. Lee, J. Kim, et al., The first observation of shot noise characteristics in10-nm scale MOSFETs, in VLSI Technology,2009Symposium on,2009,48-49.
    [145]M. De Jong,C. Beenakker, Semiclassical theory of shot noise in mesoscopicconductors, Physica A: Statistical and Theoretical Physics,1996,230:219-248.
    [146]G. Gomila,L. Reggiani, The role of boundary conditions in shot noise in elasticdiffusive conductors, Semiconductor science and technology,2000,15:829.
    [147]Y. Naveh, D. Averin,K. Likharev, Shot noise in diffusive conductors: A quantitativeanalysis of electron-phonon interaction effects, Physical Review B,1998,58:15371.
    [148]O. Bulashenko,J. Rub, Shot noise as a tool to probe an electron energy distribution,Physica E: Low-dimensional Systems and Nanostructures,2002,12:857-860.
    [149]C. Beenakker,M. Büttiker, Suppression of shot noise in metallic diffusiveconductors, Physical Review B,1992,46:1889.
    [150]K. Nagaev, On the shot noise in dirty metal contacts, Physics letters A,1992,169:103-107.
    [151]H. Schomerus, E. Mishchenko,C. Beenakker, Kinetic theory of shot noise innondegenerate diffusive conductors, Physical Review B,1999,60:5839.
    [152]T. González, J. Mateos, D. Pardo, et al., Shot-noise suppression in nondegeneratesemiconductors: the role of an energy-dependent scattering time, Physica B:Condensed Matter,1999,272:282-284.
    [153]Y. Blanter,M. B¨1ttiker, Shot noise in mesoscopic conductors, Physics Reports,2000,336:1-166.
    [154]E. Onac, F. Balestro, B. Trauzettel, et al., Shot-noise detection in a carbon nanotubequantum dot, Phys Rev Lett, Jan202006,96:026803.
    [155]S. Pralgauskait, V. Palenskis, J. Matukas, et al., Noise characteristic and qualityinvestigation of ultrafast avalanche photodiodes,2007,66000L.
    [156]R. Wang, H. Liu, R. Huang, et al., Experimental investigations on carrier transportin Si nanowire transistors: Ballistic efficiency and apparent mobility, ElectronDevices, IEEE Transactions on,2008,55:2960-2967.
    [157]D. W. Rumsey, ELECTRICAL CHARACTERIZATION OF BULK MOSFETS INTERMS OF BACKSCATTERING COEFFICIENTS, Citeseer,2001.
    [158]M. Zilli, P. Palestri, D. Esseni, et al., On the experimental determination of channelback-scattering in nanoMOSFETs,2007,105-108.
    [159]V. Barral, T. Poiroux, J. Saint-Martin, et al., Experimental investigation on thequasi-ballistic transport: Part I Determination of a new backscattering coefficientextraction methodology, Electron Devices, IEEE Transactions on,2009,56:408-419.
    [160]V. Barral, T. Poiroux, D. Munteanu, et al., Experimental investigation on thequasi-ballistic transport: Part II Backscattering coefficient extraction and link withthe mobility, Electron Devices, IEEE Transactions on,2009,56:420-430.
    [161]G. Giusi, F. Crupi,P. Magnone, Criticisms on and comparison of experimentalchannel backscattering extraction methods, Microelectronic Engineering,2011,88:76-81.
    [162]唐冬和,杜磊,王婷岚等,纳米尺度MOSFET过剩噪声的定性分析,物理学报,2011,10:
    [163]R. Navid,R. W. Dutton, The physical phenomena responsible for excess noise inshort-channel MOS devices,2002,75-78.
    [164]唐冬和,纳米MOSFET散粒噪声抑制及其应用,西安电子科技大学,2011.
    [165]G. Iannaccone, F. Crupi, B. Neri, et al., Theory and experiment of suppressed shotnoise in'stress-induced leakage currents, Electron Devices, IEEE Transactions on,2003,50:1363-1369.
    [166]G. Conrad, Jr., A Proposed Current-Noise Index for Composition Resistors,Component Parts, IRE Transactions on,1956,3:14-20.
    [167]L. J. DeFelice,1/f resistor noise, Journal of Applied Physics,1976,47:350-352.
    [168]G. Conrad, Jr., N. Newman,A. Stansbury, A Recommended Standard Resistor-NoiseTest System, Component Parts, IRE Transactions on,1960,7:71-88.
    [169]G. Conrad, Jr., Noise Measurements of Composition Resistors; Part I. The Methodand Equipment, Component Parts, Transactions of the IRE Professional Group on,1955,4:61-78.
    [170]P. Hruska, Thin film resistor technology and noise reliability indicators,1997,663-666vol.2.
    [171]S. Rumyantsev, N. Pala, M. Shur, et al., Thin n-GaN films with low level of1/fnoise, Electronics Letters,2001,37:720-721.
    [172]F. Hooge,1/f noise sources, Electron Devices, IEEE Transactions on,1994,41:1926-1935.
    [173]苏功宗,钌系厚膜电阻导电机理探讨,电子元件与材料,1993,1-6.
    [174]巨新,杨建红,施朝淑等,钉基厚膜电阻中钽钌酸铅颗粒尺寸效应的研究,电子学报,1993,96-98.
    [175]张晓民,王晓云, RuO_2厚膜电阻器的传导模型,贵金属,1997,
    [176]A. Kusy,A. Szpytma, On noise in RuO2-based thick resistive films, Solid-StateElectronics,1986,29:657-665.
    [177]C. Rogers,R. Buhrman, Composition of1/f noise in metal-insulator-metal tunneljunctions, Physical review letters,1984,53:1272-1275.
    [178]刘帅洪,仵建平,吴勇等,厚膜电阻例行可靠性实验噪声特性研究,混合微电子技术,2007,18:61-64.
    [179]M. Jevtic, Z. Stanimirovic,I. Stanimirovic, Evaluation of thick-film resistorstructural parameters based on noise index measurements, MicroelectronicsReliability,2001,41:59-66.
    [180]D. Rocak, D. Belavic, M. Hrovat, et al., Low-frequency noise of thick-film resistorsas quality and reliability indicator, Microelectronics Reliability,2001,41:531-542.
    [181]万欣,红外光电探测器及其材料:北京:科学出版社,1960.
    [182]S. Melkonyan, Noise and Information in Nanoelectronics, Sensors, and Standards II,50.
    [183]贾宝军,应明炯,低温光导型InSb红外探测器研究,激光与红外,2002,32:51-53.
    [184]B. H. Leung, W. K. Fong, C. F. Zhu, et al., Study of low-frequency excess noise inGaN thin films deposited by RF-MBE on intermediate-temperature buffer layers,Electron Devices, IEEE Transactions on,2001,48:2400-2404.
    [185]S. Mohammadi,D. Pavlidis, A nonfundamental theory of low-frequency noise insemiconductor devices, Electron Devices, IEEE Transactions on,2000,47:2009-2017.
    [186]B. K. Jones, Low-frequency noise spectroscopy, Electron Devices, IEEETransactions on,1994,41:2188-2197.
    [187]M. Jevtic, Low-frequency noise diagnostic of microelectronic devices,1995,219-224vol.1.
    [188]R. McIntyre, Multiplication noise in uniform avalanche diodes, Electron Devices,IEEE Transactions on,1966,13:164-168.
    [189]M. M. Hayat, B. E. A. Saleh,M. C. Teich, Effect of dead space on gain and noise ofdouble-carrier-multiplication avalanche photodiodes, Electron Devices, IEEETransactions on,1992,39:546-552.
    [190]M. M. Hayat, W. L. Sargeant,B. E. A. Saleh, Effect of dead space on gain and noisein Si and GaAs avalanche photodiodes, Quantum Electronics, IEEE Journal of,1992,28:1360-1365.
    [191]B. E. A. Saleh, M. M. Hayat,M. C. Teich, Effect of dead space on the excess noisefactor and time response of avalanche photodiodes, Electron Devices, IEEETransactions on,1990,37:1976-1984.
    [192]黄德修,半导体光电子学:电子科技大学出版社,1994.
    [193]K. Johnson, High-speed photodiode signal enhancement at avalanche breakdownvoltage, Electron Devices, IEEE Transactions on,1965,12:55-63.
    [194]J. Campbell, A. Dentai, W. Holden, et al., High-performance avalanche photodiodewith separate absorptiongrading and multiplication regions, Electronics Letters,1983,19:818-820.
    [195]B. Kasper, J. Campbell,A. Dentai, Measurements of the statistics of excess noise inseparate absorption, grading and multiplication (SAGM) avalanche photodiodes,Electronics Letters,1984,20:796-798.
    [196]J. Matukas, V. Palenskis, S. Pralgauskaite, et al., Photosensitivity and NoiseCharacteristic Investigation of Ultrafast InGaAs/InP Avalanche photodetectors,2006,173-176.
    [197]S. Pralgauskait, V. Palenskis, J. Matukas, et al., Noise characteristic and qualityinvestigation of ultrafast avalanche photodiodes,2007,66000L.
    [198]K. Brennan, Y. Wang, M. Teich, et al., Theory of the temporal response of a simplemultiquantum-well avalanche photodiode, Electron Devices, IEEE Transactions on,1988,35:1456-1467.
    [199]K. Matsuo, M. Teich,B. Saleh, Noise properties and time response of the staircaseavalanche photodiode, Lightwave Technology, Journal of,1985,3:1223-1231.
    [200]S. Smetona, J. Matukas, V. Palenskis, et al., Low-frequency noise, reliability, andquality of high-speed avalanche breakdown detectors,2004,834.
    [201]C. Ma, M. Deen,L. Tarof, Dark Current Noise Characteristics of SeparateAbsorption, Grading, Charge, and Multiplication InP/InGaAs AvalanchePhotodiodes,1994,727-730.
    [202]A. Rochas, A. R. Pauchard, P. A. Besse, et al., Low-noise silicon avalanchephotodiodes fabricated in conventional CMOS technologies, Electron Devices,IEEE Transactions on,2002,49:387-394.
    [203]S. An,M. J. Deen, Low-frequency noise in single growth planar separate absorption,grading, charge, and multiplication avalanche photodiodes, Electron Devices, IEEETransactions on,2000,47:537-543.
    [204]W. Leigh, J. Blakemore,R. Koyama, Interfacial effects related to backgating inion-implanted GaAs MESFET's, Electron Devices, IEEE Transactions on,1985,32:1835-1841.
    [205]Y. Chou, G. Li, K. Yu, et al., Hot carrier reliability in high-power PHEMTs,1996,46-49.
    [206]H. Au, C. Ling, B. Panda, et al., EL2deep donor state in semi-insulating GaAsrevealed by frequency dependent positron mobility measurements, Physical reviewletters,1994,73:2732-2735.
    [207]G. Blasquez, Excess noise sources due to defects in forward biased junctions,Solid-State Electronics,1978,21:1425-1430.
    [208]M. Mihaila,K. Amberiadis, Noise phenomena associated with dislocations in bipolartransistors, Solid-State Electronics,1983,26:109-113.
    [209]许燕,黄云,邓文基,GaAsPHEMT器件的失效模式及机理,电子产品可靠性与环境试验,2007,25:19-22.
    [210]J. Del Alamo,A. Villanueva, Thermal, electrical and environmental reliability of InPHEMTs and GaAs PHEMTs,2004,1019-1022.
    [211]费庆宇,黄云, GaAs MESFET栅极漏电流退化机理分析,电子产品可靠性与环境试验,2000,8-11.
    [212]党冀萍, n型GaAs上的欧姆接触,半导体技术,1994,26-34.
    [213]T. M. Chen,A. M. Yassine, Electrical noise and VLSI interconnect reliability,Electron Devices, IEEE Transactions on,1994,41:2165-2172.
    [214]C. Ciofi,B. Neri, Low-frequency noise measurements as a characterization tool fordegradation phenomena in solid-state devices, Journal of Physics D: AppliedPhysics,2000,33: R199.
    [215]刘恩科,朱秉升,罗晋生,半导体物理学:国防工业出版社,1994.
    [216]C. Beling, S. Fung, H. Au, et al., Positron deep level transient spectroscopy--a newapplication of positron annihilation to semiconductor physics, Applied surfacescience,1997,116:121-128.
    [217]A. Van der Ziel, P. Handel, X. Zhu, et al., A theory of the Hooge parameters ofsolid-state devices, Electron Devices, IEEE Transactions on,1985,32:667-671.
    [218]M. Takikawa, Electrical properties of interface-traps in selectively dopedAlGaAs/GaAs heterostructures, J. Appt. Phys,1987,26:2026-2032.
    [219]K. Bock, ESD issues in compound semiconductor high-frequency devices andcircuits, Microelectronics and reliability,1998,38:1781-1793.
    [220]T. Bilodeau, THEORETICAL AND EMPIRICAL ANALYSES OF THE EFFECTSOF CIRCUIT PARASITICS ON THE CALIBRATION OF HBM ESDSIMULATORS,1990,43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700