用户名: 密码: 验证码:
银杏内酯B对大鼠局灶性脑缺血再灌注损伤的保护作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
缺血再灌注脑组织自由基大量产生和血小板活化因子等活性物质的释放与神经元损伤密切相关,开发具有清除自由基和对抗血小板活化因子作用的神经保护剂对减轻缺血再灌注损伤具有重要意义。
     银杏内酯B(ginkgolide B, GinB)为银杏提取物的主要活性成分之一,是血小板活化因子特异性的拮抗剂,研究显示银杏内酯B通过抑制血小板活化因子功能而抑制缺血所致炎性反应、改善脑能量代谢和脑组织病理学改变,保护脑组织免受缺血再灌注损伤。本研究拟采用大鼠局灶性脑缺血再灌注模型,通过观察银杏内酯B对缺血后脑组织形态学、血清中丙二醛(MDA)含量、羟自由基(·OH)产生能力、超氧化物歧化酶(SOD)活力及脑组织中超氧化物歧化酶(SOD)和诱导型一氧化氮合酶(iNOS)的表达,评价银杏内酯B对缺血再灌注脑损伤的神经保护作用,并对其作用机制进行探讨。
     目的:评价银杏内酯B在大鼠局灶性脑缺血再灌注损伤中的神经保护作用。
     方法:SD大鼠随机分为溶剂对照组、假手术组、GinB 1mg·kg-1组,GinB 2mg·kg-1组,GinB 4mg·kg-1组和金纳多12 mg·kg-1组。采用线拴法闭塞大脑中动脉(MCAO)制备大鼠局灶性脑缺血再灌注模型,并于插入拴线后尾静脉立即分别注射溶剂生理盐水、金纳多和不同剂量的银杏内酯B(GinB),假手术组行手术通路,除不插线外,其余操作步骤同手术组。手术后6小时进行神经功能评分、TTC染色法测定脑梗塞体积、HE染色法观察脑组织形态学变化、黄嘌呤氧化酶法测定血清中超氧化物歧化酶(SOD)活性、硫代巴比妥酸法丙二醛(MDA)含量、Fenton反应测定羟自由基(·OH)产生能力、免疫组织化学法观察脑缺血再灌注损伤后大鼠脑组织中超氧化物歧化酶(SOD)和诱导型一氧化氮合酶(iNOS)的表达及银杏内酯B对超氧化物歧化酶和诱导型一氧化氮合酶的表达的影响。
     结果:
     1.大鼠脑缺血再灌注后,假手术组未见行为异常,神经功能评分为0分;溶剂对照组大鼠于缺血再灌注后出现明显的行为改变,神经功能评分最高,为9.50±0.53分,金纳多与银杏内酯B 1、2和4 mg·kg-1可不同程度的改善大鼠的神经症状,神经功能评分分别降低至6.38±0.92分、8.38±0.52分、7.50±0.53分和6.38±1.06分,与溶剂对照组比较均具有显著性差异(P<0.01,P<0.05)。
     2.手术后6小时,除假手术组外,其余各组大鼠大脑皮质和纹状体均出现明显的梗死灶,银杏内酯B 1、2和4 mg·kg-1可明显缩小脑缺血再灌注损伤后脑梗死体积,脑梗死体积分别为(20.89±3.19)%、(19.65±3.27)%和(17.38±2.62)%,与溶剂对照组比较(27.97±2.16)%梗死体积分别降低25.31%、29.75%和37.86%,差异具有显著性(P<0.01);金纳多可产生与银杏内酯B相似的作用,梗死体积降至(19.29±3.59)%,与溶剂对照组相比有显著性差异(P<0.01)。
     3.溶剂对照组大鼠脑缺血再灌注后脑含水量为(81.1±1.2)%,明显高于假手术组(78.3±1.2)%,两者比较有显著性差异(P<0.01)。4 mg·kg-1 GinB可明显降低大鼠脑缺血再灌注损伤后脑含水量,与溶剂对照组相比较有极显著性差异(P<0.01)。金纳多、1 mg·kg-1和2 mg·kg-1银杏内酯B虽有一定降低脑含水量的作用,但与溶剂对照组比较无显著性差异(P>0.05)。
     4.脑缺血再灌注损伤后,溶剂对照组血清超氧化物歧化酶(SOD)活力为148±33 U·ml-1,明显低于假手术组401±87 U·ml-1,降低幅度达63%;金纳多和银杏内酯B 4mg·kg-1可明显对抗脑缺血再灌注损伤所致SOD活力的降低,SOD活力分别为315±79 U·ml-1和250±78 U·ml-1,与溶剂对照组比较有显著性差异(P<0.01);银杏内酯B1 mg·kg-1和2 mg·kg-1虽可增加血清SOD活力(分别为166±28 U·ml-1和202±35 U·ml-1),但与溶剂对照组比较无显著性差异(P>0.05)。
     5.大鼠大脑中动脉闭塞后,溶剂对照组血清MDA含量为20.97±2.92 nmol·ml-1,明显高于假手术组14.77±1.80 nmol·ml-1(P<0.01),金纳多和不同剂量的银杏内酯B均可显著降低脑缺血再灌注损伤引起的脂质过氧化产物MDA含量的升高,分别为:金纳多组17.20±2.20 nmol·ml-1、银杏内酯B 1 mg·kg-1组18.24±3.12 mmol·ml-1、银杏内酯B 2 mg·kg-1组17.95±2.81 mmol·ml-1、银杏内酯B4 mg·kg-1组16.12±2.24 mmol·ml-1,降低幅度分别达17.98%、13.02%、14.40%和23.13%,与溶剂对照组比较具有显著性差异(P<0.05,P<0.01)。
     6.手术后,假手术组血清羟自由基生成能力为145±52 U·ml-1,明显低于溶剂对照组294±40 U·ml-1(P<0.01),金纳多和银杏内酯B具有清除羟自由基的作用,可明显降低脑缺血再灌注损伤后血清·OH水平的升高,降低幅度达35.71%、13.95%、29.25%和31.63%,金纳多和银杏内酯B2 mg·kg-1、4 mg·kg-1清除血清·OH作用强,为189±37 U·ml-1、208±21 U·ml-1和201±28 U·ml-1,与溶剂对照组比较有极显著性差异(P<0.01),银杏内酯B 1mg·kg-1虽可降低·OH的生成能力,但与溶剂对照组比较无显著性差异(253±31 U·ml-1,P>0.05)。
     7.组织形态学观察结果显示,溶剂对照组缺血侧大脑皮层和纹状体出现明显坏死病灶,神经元大量消失;金纳多和银杏内酯B组可见神经元变性,神经元细胞核增大、浓染,核仁、核膜不清等病理改变,但与溶剂对照组比较有明显的改善;银杏内酯B组随着剂量增加,坏死神经元数目明显减少;假手术组未见明显的组织病理学改变,大脑皮层细胞形态完整,神经细胞核仁清晰,核圆形,核膜完整,神经胶质细胞少,且散在分布。
     8.免疫组织化学检测显示,假手术组神经元胞浆可见Mn-SOD弱阳性表达;溶剂对照组神经元变性,可见不同程度Mn-SOD阳性表达;金纳多组神经元阳性表达明显增强;不同剂量银杏内酯B组变性神经元阳性表达较溶剂对照组组增强,但阳性表达明显较金纳多组弱。
     9.各组脑组织在脉络膜上皮细胞均有iNOS阳性表达,大脑皮层神经元和神经胶质细胞偶见表达,假手术组皮质内小血管内皮细胞弱阳性表达;溶剂对照组可见皮质内小血管内皮细胞表达增强,金纳多组内皮细胞阳性表达较溶剂对照表达减弱,但较假手术组表达增强。银杏内酯B组随着剂量的增大,内皮细胞NO表达逐渐减弱。
     结论:银杏内酯B对脑缺血再灌注损伤有明显的保护作用,其作用机制与拮抗血小板活化因子受体,抑制和减少体内脂质过氧化产物和自由基的产生,增强机体内源性抗氧化酶系统功能有关。
The pathogenesis of brain ischemia-reperfusion injury results from the generation of many active substances, including free radicals and platelet-activating factor. It is of significance against ischemia reperfusion injury to develop effective neuroprotectors through scavenging free radicals and antagonizing platelet-activating factor.
     Ginkgolide B, one of the main active component of the Ginkgo biloba extract, is a specific antagonist of platelet-activating factor. Experimental studies demonstrated that ginkgolide B could inhibit inflammatory reaction, improve energy metabolism and the pathological changes after ischemia reperfusion injury through antagonism of platelet-activating factor. In present study the brain histomorphology, the activity of superoxide dismutase (SOD), the content of malondialdehyde (MDA), the generation capacity of hydroxyl radical, the expression of superoxide dismutase (SOD) and inducible nitric oxide synthase (iNOS) in brain were taken to evaluate the neuroprotective effects and the mechanisms of ginkgolide B action on the transient focal cerebral ischemia in rats.
     Objective: To evaluate the neuroprotective effects of ginkgolide B on focal cerebral ischemia-reperfusion injury.
     Methods: The rats were randomly divided into 6 groups, which were solvent group, sham group, GinB 1mg·kg-1 group, GinB 2mg·kg-1 group, GinB 4mg·kg-1 group and ginaton 12mg·kg-1 group. Focal cerebral ischemia-reperfusion was produced by introducing a nylon suture above the bifurcation of the internal carotid artery (ICA) to block the blood flow to the middle cerebral artery (MCA) for 2 hours and drawing the nylon suture and keeping the reperfusion for 4 hours. The rats in sham group underwent the same surgical procedure without inserting nylon suture into the ICA. The rats in other groups were injected intravenously solvent, ginaton or different dosages of ginkgolide B (GinB)immediately after inserting nylon suture. The infarct volume, the histological changes of brain tissue, the neurological score, the brain water content, the activity of superoxide dismutase (SOD), the content of malondialdehyde (MDA), the generation capacity of hydroxyl radical, the expression of superoxide dismutase (SOD) and inducible nitric oxide synthase (iNOS) in cerebral cortex were determined respectively at 6 hour after the middle cerebral artery occlusion (MCAO) to evaluate the effects of ginkgolide B.
     Results:
     1. At 6 hour after MCAO, the neurological score of sham group was 0. The rats in solvent group showed apparente neurologic deficits with the highest neurological score. Ginaton, GinB 1mg·kg-1, 2mg·kg-1 and 4 mg·kg-1 could ameliorate the neurologic deficits and the neurological score were reduced to (6.38±0.92), (8.38±0.52), (7.50±0.53) and (6.38±1.06) respectively, as compared to (9.50±0.53) in solvent group (P<0.01, P<0.05).
     2. All the rats developed obvious infarction in the ischemic hemisphere after MCAO except those in sham operation group. GinB 1, 2 and 4 mg·kg-1 showed a 25.31%, 29.75% and 37.86% reduction in cerebral infarct volume, compared with solvent group (P<0.01). A similar effect of reducing cerebral infarct volume was also observed in ginaton-treated group.
     3. The brain water content was(81.1±1.2)% in solvent group after MCAO, significantly higher than that in sham group (P<0.01). GinB4 mg·kg-1 could remarkedly reduce the brain water content(P<0.01). A reduction of brain water content were observed in the other group, but there was no significant difference compared to solvent group (P>0.05).
     4. The activity of superoxide dismutase(SOD)in serum was (148±33)U·ml-1 in solvent group after MCAO, much lower than (401±87) U·ml-1 in sham group, (315±79) U·ml-1 in ginaton-treated group and (250±78) U·ml-1 in GinB 4mg·kg-1 -treated group (P<0.01). GinB 1 and 2mg·kg-1 could raise SOD activity too, but there was no significant difference compared with solvent group (P>0.05).
     5. MDA content in sham group was 14.77±1.80 nmol·ml-1. After MCAO, the MDA content in serum raised to 20.97±2.92 nmol·ml-1 in solvent group. Ginaton and different dosages of GinB could significantly decreased the MDA content (17.20±2.20nmol·ml-1 in ginaton group with 17.98% reduction, 18.24±3.12 mol·ml-1 in GinB 1mg·kg-1 group with 13.02% reduction, 17.95±2.81 mmol·ml-1 in GinB 2mg·kg-1 group with 14.40% reduction and 16.12±2.24 mmol·ml-1 in GinB 4mg·kg-1 group with 23.13% reduction) in serum, compared with solvent group(P<0.05,P<0.01).
     6. A generation capacity of hydroxyl radicals in serum was 145±52 U·ml-1 in sham group, lower than 294±40 U·ml-1 in solvent group(P<0.01). Ginaton and GinB1, 2 and 4 mg·kg-1 could inhibit the generation of hydroxyl radical after MCAO and showed 35.71%, 13.95%, 29.25% and 31.63% reduction of hydroxyl radical in serum, respectively. Ginaton, GinB 2mg·kg-1 and 4mg·kg-1 showed significant effects on the clearance of hydroxyl radical as compared with solvent group(P<0.01), but GinB 1mg·kg-1 did not.
     7. In HE staining, cerebral tissue structure in solvent group showed ischemic damage both in cortex and striatum characterized by the degeneration and necrosis of neurons. Ginaton and GinB could improve the pathological changes induced by ischemia-reperfusion although the neuronal degeneration was observed. The number of necrotic cell in ginaton and GinB-treated group was less than that in solvent group. No pathological changes were observed in sham group.
     8. The immunochemical positive expression for Mn-SOD appeared in cytoplasm. A weak positive expression for Mn-SOD was observed in sham group. Compared with solvent group, the positive staining remarkedly increased in ginaton and GinB group. The positive expression in GinB group was weaker than that in ginaton group.
     9. There was positive expression for iNOS in cytoplasm. The positive expression notably appeared in chorioidal epithelium, but was rare in neuron and glia in all experimental group. The positive staining was obvious within vascular endothelial cell in solvent group than those in sham group. The positive expression for iNOS became weak in ginaton-treated and GinB-treated group compared with solvent group, and still a little stronger than that in sham group. With the dosage increasing,the iNOS expression became weak in GinB-treated group.
     Conclusion: Ginkgolide B showed significant protective effects against cerebral ischemic-reperfusion injury. The mechanism maybe related to antagonizing platelet-activating factor receptor, inhibiting the production of lipid peroxidants and the generation of free radicals, enhancing endogenous antioxidant enzyme activity.
引文
1 Martin RL. Experimental neuronal protection in cerebral ischaemia. Part I1: Potential neuroprotective drugs. J. Clin. Neuroscience, 1997, 4 (3): 290-310
    2 Langley SM, Chai PJ, Jaggers JJ, et al. Platelet-Activating Factor Receptor Antagonism Improves Cerebral Recovery After Circulatory Arrest. Ann Thorac Surg, 1999, 68: 1578-1585
    3 Yan D, Fang WR, Li YM, et al. Blood-brain barrier breakdown by PAF and protection by XQ-1H due to antagonism of PAF effects. Eur. J. Pharmacol, 2009, 616: 43-47
    4 Nishizawa Y. Glutamate release and neuronal damage in ischemia. Life Sciencese, 2001, 69 (4): 369-381
    5 Aarts MM, Tymianski M. Novel treatment of excitotoxicity: targeted disruption of intracellular signalling from glutamate receptors. Biochem Pharmacol, 2003, 66: 877-886
    6王旋,顾振纶,秦振红,张慧灵.银杏内酯A和B混合物对大鼠永久性局灶性脑缺血的保护作用.中草药,2007,38(2):241-244
    7徐江平,孙莉莎,杨雪梅.银杏内酯对大鼠脑缺血再灌注损伤的保护作用.中国中西医结合急救杂志,2003,10(1):31-33
    8马常升,马文领,戴维国,等.插线法制备大鼠局灶性脑缺血再灌注模型的研究.解剖学杂志,1999;22 (3): 209-211
    9杨世芳,闵宝珍,周锡英.大鼠局灶性脑缺血再灌注模型的研究。洪峰与神经疾病杂志,1996,13 (1): 15-18
    10 Bederson JB,Pitts LH,Tsuji M,et al. Rat middle cerebral artery occlusion: evaluation of the model and development of a neurological examination. Stroke, 1986, 17 (3): 472-476
    11 Lin[Lin Y, hillis JW. Deoxycoformycin and oxypurinol: protection against focal ischemic brain injury in the rat. Brain Res, 1992, 571 (2): 272-280
    12 Dirnagl U, Iadecola C, Moskowitz MA. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci, 1999, 22: 391-397
    13 0Yan D, Fang WR, Li YM, et al. Blood-brain barrier breakdown by PAF and protection by XQ-1H due to antagonism of PAF effects. Eur. J. Pharmacol, 2009, 616: 43-47
    14王伟,徐建华.血小板活化因子对神经细胞内游离钙离子作用的研究.中华神经科杂志,1999,32(2):83-85
    15徐运,王岚,管得宁,等.血小板活化因子介导神经元损伤与天门冬氨酸信号通路的研究.临床神经病学杂志,2004,17(5):339-341
    16王岚,张颖冬,徐运,等.大鼠脑缺血再灌注后血小板活化因子及其受体的病理作用.临床神经病学杂志,2006,19(1):34-37
    17张新江,王荣,杨金升等.全脑缺血大鼠海马及血液血小板激活因子动态变化的研究.临床神经病学杂志,2000,13(1):10-12
    18 LI Shu-qing, ZHANG Ying and YANG Li-jun. Improving effect of Ginkgolide B on mitochondrial respiration of ischemic neuron after cerebral thrombosis in tree shrews. Chin Med J, 2007, 120 (17): 1529-1533
    19 Fang WR, Deng Y, Li YM, et al. Blood brain barrier permeability and therapeutic time window of Ginkgolide B in ischemia-reperfusion injury. Euro J Pharm Sci, 2010, 39: 8-14
    20 Yan D, Fang WR, Li YM, et al. Blood-brain barrier breakdown by PAF and protection by XQ-1H due to antagonism of PAF effects. Eur. J. Pharmacol, 2009, 616: 43-47
    21徐江平,孙莉莎,杨雪梅.银杏内酯对大鼠脑缺血再灌注损伤的保护作用.中国中西医结合急救杂志,2003,10(1):31-33
    22张硕峰,贾占红,吴金英,等.银杏内酯B注射液对局灶性脑缺血的保护作用.中日友好医院学报,2006,20(4):229-231
    23 Crack PJ, Taylor JM. Reactive oxygen species and the modulation of stroke. Free Radic Biol Med. 2005, 38: 1433-1444
    24颜学军,韩苏闽,于常州,等.黄芩素甙对沙土鼠脑缺血再灌注损伤的影响.中国临床康复,2004,8(22):4550-4552
    25李学君,孙凤燕.羟自由基和脑缺血.中国药理学通报,1998,14:44-47
    26沈霞,许鹏程.沙土鼠脑缺血和再灌流期间羟自由基的变化.临床神经病学杂志,2000,13(2):70-72
    27秦兵,张根葆,陈冬云,等.银杏内酯B对脑缺血再灌注神经元损伤的保护作用.中国中西医结合急救杂志,2005,12(1):17-20
    28吴雪丰,王秋娟,楼凤昌.银杏内酯对大鼠局灶性脑缺血的保护作用.中国药科大学学报,2001,32 (2):141-145
    29 Margaill I, Plotkine M, Lerouet D. Antioxidant strategies in the treatment of stroke. Free Radic Bio Med. 2005, 39: 429-443
    30 Zelko IN, Mariani TJ and Folz RJ. superoxide dismutase multigene family: a comparison of the Cu/Zn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene Structures, evolution, and expression. Free Radic Bio Med, 2002, 33 (3): 337-349
    31 Ookawara T, Imazeki N, Matsubara O, et al. Tissue distribution of immunoreactive mouse extracellular superoxide dismutase, Cell Physiol. 1998, 275: C840-C847
    32 Fujimura M, Morita-Fujimura Y, Copin J, et al. Reduction of copper, zinc-superoxide dismutase in knockout mice does not affect edema or infarction volumes and the early release of mitochondrial cytochrome c after permanent focal cerebral ischemia. Brain Res, 2001,889: 208-213
    33 Smi CK, Park KA, Lee HJ, et al. Temporal changes in cerebral antioxidant enzyme activities after ischemia and reperfusion in a rat focal brain ischemia model: effect of dietary fish oil. Develop Brain Res, 2004, 152: 11-18
    34 Noshita N, Hayashi T, Saito A, et al. Attenuation of neuronal cell death by SOD1 is associated with extracellular signal-regulated kinase after transient focal cerebral ischemia in mice. International Congress Series. 2003, 1252: 275-283
    35 Kondo T, Reaume AG, Huang T, et al. Reduction of Cu Zn-superoxide dismutase activity exacerbates neuronal cell injury and edema of formation after transient focal cerebral ischaemia. J Neurosci, 1997, 17: 4180-4189
    36 Murakami K, Kondo T, Kawase M, et al. Mitochondrial susceptibility to oxidative stress exacerbates cerebral infarction that follows permanent focal cerebral ischemia in mutant mice with manganese superoxide dismutase deficiency. J. Neurosci, 1998, 18: 205-213
    37 Keller JN, Kindy MS, Holtsberg FW, et al. Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction. J. Neurosci. 1998, 18: 687-697
    38 Subbanna PKT, Tyagi MG. PAF antagonism modifies neuroprotective action of histone deacetylase and calcineurin phosphatase inhibitors in mice. Indian J Experi Bio. 2006, 44: 886-891
    39马怡,黑爱莲,金有豫,等.银杏叶注射液对实验性大鼠局灶性脑缺血的保护作用.首都医科大学学报.1999,20(1):21-23
    40杲海霞,李军霞,王永利.银杏叶提取物对缺血再灌注大鼠脑线粒体的保护作用.中草药,2006,37(9):1380-1383
    41 Willmota M, Gibsona C, Gray L, et al. Nitric oxide synthase inhibitors in experimental ischemic stroke and their effects on infarct size and cerebral blood flow: A systematic review. Free Radic Bio Med, 2005, 39: 412-425
    42 Sehara Y, Hayashi T, Deguchi K, et al. Distribution of inducible nitric oxide synthase and cell proliferation in rat brain after transient middle cerebral artery occlusion. Brain Res, 2006, 1093: 190-197
    43 Holtz ML, Craddock SD and Pettigrew LC. Rapid expression of neuronal and inducible nitric oxide synthases during post-ischemic reperfusion in rat brain. Brain Research, 2001, 898: 49-60
    44 Loihl AK, Asensio V, Campbell I, et al. Expression of nitric oxide synthase(NOS)-2 following permanent focal ischemia and the role of nitric oxide in infarct generation in male, female and NOS-2 gene-deficient mice. Brain Res, 1999, 830: 155-164
    1 Liebgott T, Miollan M, Berchadsky Y, et al. Complementary cardioprotective effects of flavonoid metabolites and terpenoid constituents of Ginkgo biloba extract (EGb 761) during ischemia and reperfusion. Basic Res Cardiol, 2000, 95 (5): 368-377
    2 Xu JP, Sun LS, Yang XM. Protective effects of ginkgolide on cerebral ischemia-reperfusion injury in rats. Chin J Integr Tradit West Med Intensive Crit Care, 2003, 10 (1): 31-33
    3 Wu XF, Wang QJ, Lou FC. Protective effect of ginkgolides on rat focal brain ischemia. J China Pharm Univ, 2001, 32 (2): 141-145
    4 Kusmic C, Basta G, Lazzcrini G, et al. The effect of Ginkgo biloba in isolated ischemic/reperfused ratheart: a link between vitamin E preservation and prostaglandin biosynthesis. J Cardiovasc Pharmacol, 2004, 44 (3): 356
    5 Wu XM, Chen HS, Jing SY, et al. Effects of ginkgolides against injury of neurocytes induced by H2O2 and expression of ginkgolides immediate early genes. Chin J Clin Pharmacol Ther, 2003, 34 (4): 401
    6 Chavez, Mary L, Chavez, et al. Ginkgo (Part 1): History, Use, and Pharmacologic Properties. Hospital Pharmcy, 1998, 33 (6)∶658
    7 Hu B, Sun S, Mei G, et al. Protective effects of Ginkgo biloba extract on rats during cerebral ischemia/reperfusion. Chin Medical Journal, 2002, 115 (9): 1316-1320
    8 Johnston CM. GABA activated ion channel: medicinal chemistry and molecular biology. Med Chem, 2000, 43 (5): 1427-1447
    9 Brochet D, Chermat R, Defeudis F V, et al. Effects of single intraperitoneal injections of an extract of Ginkgo biloba (EGb761) and its terpene trilactone constituents on barbital-induced narcosis in the mouse. Gen Pharmacol, 1999, 3 (6): 249-256
    10 Huang SH, Duke RK. Chebib M, et al. Ginkgolides, diterpene trilactones ofGinkgo biloba, as antagonists at recombinantα1β2γ2LGABAA receptors.Eur J Pharmacol, 2004, 494 (2-3): 131-138
    11 Oken BS, Storzbach DM, Kaye JA. The efficacy of Ginkgo biloba on cognitive function in Alzheimer disease. Arch Neurol, 1998, 55 (11)∶1409-1415
    12 Li JL, Li SQ. Relations between cerebral ischemia and IL-8 and protection of ginkgolide B in tree shrews. Chin J Parthophysiol, 2001, 1 (10): 63
    13 Wang H, Qiu XY, Yang LS. Experimental research on effects of ginkgolides made in China on cerebral ischemia injury in rats. Chin J Basic Med Tradit Chin Med, 2002, 8(6): 17-18
    14 Chavez, Mary L, Chavez, Pedro I. Ginkgo (Part 1): History, Use and Pharmacologic Properties. Hospital Pharmcy, 1998, 33 (6)∶658
    15 Jiao XY, Luo N, Zhi JM, et al. Effects of exogenous platelet activating factor and its antagonist ginkgolideB on ischemia-reperfusion injury of myocardium in rats.中国药理学与毒理学杂志(英文版), 2002, 16 (2)∶81
    16 Li JL, Li SQ. Changes in monoamine oxidase activity during thrombotic cerebral ischemia and protection mechanisms of ginkgolide B in tree shrews. Chin J Pathophysiol, 2001, 17 (11): 1048-1051
    17 Huang Z, Jin GH, Zhang XH, et al. The inducing effects of ginkgolide B on neural stem cells differentiating into neurons. Acta Anatom Sin, 2003, 8 (4): 367-371
    18 Yuan Y, Zhang PY, Jin SY, et al. Effects of ginkgolide on early apoptosis of rat cortical neurons induced by hypoxia. China J Pharm Univ, 2003, 34 (5): 465-468
    19 Tian ML, Qin JJ, Jin GH, et al. Effects of ginkgolide on the apoptosis of cultured neurons in the rat embryonic basal forebrain. Acta Acad Med Nantong, 2003, 23 (2): 130-132
    20 Gao XD, Chen P, Liu JY, et al. Improving effects of ginkgolide A on nucleus basalis of Meynert lesion-induced learning and memory deficitsin SD rats.Chin Tradit Herb Drugs, 2002, 33 (4): 346-348
    21 Zhao HW, Li XY. Ginkgolide A, B, and huperzine A inhibit nitric oxideproduction from rat C6 and human BT325 glioma cells. Acta Pharmacol Sin (Chin), 1999, 20 (10): 941-943
    22 Chen L, Liu CJ, Tang M, et al. Action of aluminum on high voltage-dependent calcium current and its modulation by ginkgolide B. Acta Pharmacol Sin, 2005, 26 (5): 539-545
    23 Wang SJ, Chen HH. Ginkgolide B, a constituent of Ginkgobiloba, facilitates glutamate exocytosis from rat hippocampal nerve terminals. Eur J Pharmacol, 2005, 514 (2-3): 141-149
    24 Tan CB, Gong QY, Yao MH, et al. Effects of ginkgo biloba extract on inflammation following focal ischemic brain injury in rats. Chin J New Drugs Clin Rem, 2002, 21 (7)∶385
    25 Qi XY, Zhang ZX, Xu YQ. Effects of Ginkgolide B on action potential and calcium, potassium current in guinea pig ventricular myocytes. Acta Pharmacol Sin, 2004, 25 (2): 203-207
    26 Kim J, Li Q, Fang CX, et al. Paradoxical effects of ginkgolide B on cardiomyocyte contractile function in normal and high-glucose environments. Acta Pharmacol Sin (Chin), 2006, 27(5): 536-542
    27 Qi XY, Zhang ZX, Cui QQ. The effect of ginkgolide B on action potential, L-type calcium current and delayed rectifier potassium current in ischemic guinea pig ventricular myocytes. Chin J Appl Physiol, 2004, 20 (1): 24-28
    28 Cheung F, Siow YL, Karmin O. Inhibition by ginkgolides and bilobalide of the production of nitric oxide in macrophages (THP-1) but not in endothelial cells (HUVEC). Biochem Pharmacol, 2001, 61 (4): 503-510
    29 Fitzl G, Welt K, Wassilew G, et al. The influence of hypoxia on the myocardium of experimentally diabetic rats with and without protection by ginkgo biloba extract. III: Ultrastructural investigations on mitochondria. Exp Toxicol Pathol, 2001, 52 (6): 557-568
    30 Fitzl G, Martin R, Dettmer D, et al. Protective effects of gingko biloba extract (EGB 761) on myocardium of experimentally diabetic rats. I: ultrastructural and biochemical investigation on cardiomyocytes. Exp Toxicol Pathol, 1999, 51 (3): 189-198
    31 Varga E, Bodi A, Ferdinandy P, Droy Lefaix MT, Blasig IE, Tosaki A. The protective effect of EGB 761 in isolated ischemic/reperfused rat hearts: A link between cardiac function and nitric oxide production. J Cardiovasc Pharmacol, 1999, 34 (5): 711-717
    32 Lu XQ, Li XD, Zu SY, et al. Expression of tissue factor gene induced by mmLDL and inhibited by ginkgolides B in ECV304. Basic Med Sci Clin, 2002; 22 (3): 241-243
    33 Wai EH, Rao MR, Ji ND, et al. Inhibitory effects of ginkgolides B on proliferation of bovine aortic smooth muscle cells. Acta Pharm Sin, 2002, 37 (2): 90-93
    34 Palojoki E, Saraste A, Eriksson A, et al. Cardiomyocyte apoptosis and ventricular remodeling after myocardial infarction in rats. Am J Physiol Heart Circ Physiol, 2001, 280 (6): 2726-2731
    35 Fang J, Akaike T, Maeda H. Antiapoptotic role of heme oxygenase(HO) and the potential of HO as a target in anticancer treatment. Apoptosis, 2004, 9 (1): 27
    36 Chen JX, Zeng H, Chen X, et al. Induction ofheme-oxygenase-1 by Ginkgo biloba extractbutnot its terpenoidspartiallymediated itsprotective effect against lysophosphatidylcholine-induced damage. Phamacol Res, 2001, 43 (1): 6
    37 Takahashi T, Morita K, Akagi R, et al. Heme oxygenase-1: a novel therapeutic target in oxidative tissue injuries. Curr Med Chem, 2004, 11 (12): 1545
    38 Vulapalli SR, Chen Z, Chua BH, et al. Cardioselective overexpression of HO-1 prevents I/R-induced cardiac dysfunction and apoptosis. Am J PhysiolHeartCirc Physio, 2002, 283 (2): 688
    39 Schmidt H, Ebeling D, Bauer H, et al. Influence of the platelet-activating factor receptor antagonist BN52021 on endotoxin-induced leukocyte adherence in rat mesenteric venules. J Surg Res, 1996; 60(1): 29-35
    40 Liu B, Zhang H, Li S, et al. Effects of MTX and BN52021 on PAF-induced chemotaxis of PMNs and intraepidermal accumulation ofinflammatory cells in guinea pigs. Chin Med J, 1996, 109 (6): 467-470
    41 Desouza IA, Hyslop S, Franco-Penteado CF, et al. Evidence for the involvement of a macrophage-derived chemotactic mediator in the neutrophil recruitment induced by staphylococcal enterotoxin B in mice. Toxicon, 2002, 40 (12): 1709-1717
    42 Nie ZG, Peng SY, Wang WJ. Effects of ginkgolide B on lipopolysaccharide-induced TNFalpha production in mouse peritoneal macrophages and NF-kappaB activation in rat pleural polymorphonuclear leukocytes. Acta Pharmacol Sin (Chin), 2004, 39 (6): 415-418
    43 Du ZY, Li XY. Effects of ginkgolides on interleukin-1, tumor necrosis factor-alpha and nitric oxide production by rat microglia stimulated with lipopolysaccharides in vitro. Arzneimittel Forschung Drug Res, 1998, 48 (12): 1126-1130
    44 Mahmoud F, Abul H, Onadeko B, et al. In vitro effects of Ginkgolide B on lymphocyte activation in atopic asthma: comparison with cyclosporin A. Jpn J Pharmacol, 2000, 83 (3): 241-245
    45 Mahmoud FF, Haines DD, Abul HT, et al. In vitro effects of astaxanthin combined with ginkgolide B on T lymphocyte activation in peripheral blood mononuclear cells from asthmatic subjects. J Pharmacol Sci, 2004, 94 (2): 129-136
    46 Sandoval D, Gukovskaya A, Reavey P, et al. The role of neutrophils and platelet-activating factor in mediating experimental pancreatitis. Gastroenterology, 1996, 111 (4): 1081-1091
    47 Xia SH, Fang DC, Hu CX, et al. Effect of BN52021 on NFκ-Bp65 expression in pancreatic tissues of rats with severe acute pancreatitis. World J Gastroenterol, 2007, 13 (6): 882-888
    48 de Souza LJ, Sampietre SN, Assis RS, et al. Effect of platelet-activating factor antagonists (BN-52021, WEB-2170, and BB-882) on bacterial translocation in acute pancreatitis. J Gastrointest Surg, 2001, 5 (4): 364-370
    49 Bedirli A, Gokahmetoglu S, Sakrak O, et al. Beneficial effects ofrecombinant plateletactivating factor acetylhydrolase and BN52021 on bacterial translocation in cerulein-induced pancreatitis. Eur Surg Res, 2004, 36 (3): 136-141
    50 Papadopoulos V, Kapsis A, Li H, et al. Drug-induced inhibition of the peripheral-type benzodiazepine receptor expression and cell proliferation in human breast cancer cells. Anticancer Res, 2000, 20 (5): 2835-2847
    51 Biancone L, Cantaluppi V, Boccellino M, et al. Motility induced by human immunodeficiency virus-1 Tat on Kaposi's sarcoma cells requires platelet-activating factor synthesis. Am J Pathol, 1999, 155 (5): 1731-1739
    52 Cheng D, Chen W. Effects of ginkgolide B on isobaric hypoxic pulmonary hypertension in rats. Chin Med J, 1996, 109 (11): 881-884
    53 Lineu FM, Ione Maria DM. Heparin or a PAF antagonist (BN52021) prevents the acute pulmonary edema induced by Tityus serrulatus scorpion venom in the rat. Toxicom, 1993, 31 (9): 1207-1210
    54 Yang YP, Ma XM, Wang CP, et al. Effect of increased hepatic platelet activating factor and its receptor portal hypertension in CCl4-induced liver cirrhosis. World J Gastroenterol, 2006, 12 (5): 709-715
    55 Lima RG, Moreira L, Paes-Leme J, et al. Interaction of macrophages with apoptotic cells enhances HIV Type 1 replication through PGE2, PAF, and vitronectin receptor. AIDS Res Hum Retroviruses, 2006, 22 (8): 763-769
    56 Agni D, Grypioti, Georgia K, et al. Demopoulos, Anastasios Roussos and Michael Mykoniatis. Platelet Activating Factor (PAF) Antagonism with Ginkgolide B Protects the Liver Against Acute Injury. Importance of Controlling the Receptor of PAF. Digestive Diseases and Sciences, 2008, 53 (4): 1054-1062
    57 Brown SL, Jala VR, Raghuwanshi SK, et al. Activation and regulation of platelet-activating factor receptor: role of G(i) and G(q) in receptor-mediated chemotactic, cytotoxic, and cross-regulatory signals. J Immunol, 2006, 177 (5): 3242-3249
    58 Assemi M. Herbs affecting the central nervous system: gingko, kava, St. John’s wort, and valerian. Clinical Obsterics and Gynecology, 2001, 44(4)∶824-835
    59 Dennehy, Cathi. Botanicals in Cardiovascular Health. Clinical Obstetrics and Gynecology, 2001, 44 (4)∶82

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700