用户名: 密码: 验证码:
橡胶树分子遗传图谱的构建及相关性状的初步定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然橡胶产业在我国属于典型的资源约束型产业,受气候条件的严重制约,产品具有明显的地域性、不可替代性,在国民经济建设和国家安全建设中具有重要的地位。近年来,随着经济的迅速增长,我国对天然橡胶的需求量大幅增加,自给率已由上世纪90年代的约50%下降到目前的不足1/3,且供需缺口在逐年加大。
     橡胶树优良品种的选育和推广是我国天然橡胶产业持续发展的基础。但橡胶树育种周期较长,橡胶树遗传基础研究薄弱,优良品种选育十分艰难。
     橡胶树的选育种主要是从不同的有性群体中筛选出高产单株并进行检验的过程。为了缩短育种年限,提高选育种效率,各国橡胶育种工作者发明了试割法、刺检法、形态预测法、叶脉胶法、小叶柄胶法等进行产量预测。但是这些方法都是从产量相关基因的表型进行的分析,受外界因素的影响较大,具有一定的局限性。从DNA水平研究橡胶树干胶产量、木材积蓄量、胶乳代谢生理指标等性状相关基因的信息,在橡胶树选育种中具有重要的指导意义。
     本研究用云南省热带作物科学研究所执行“九五”国家攻关项目期间选配的一个橡胶树人工授粉杂交组合GT1×IAN873的195个F1代群体,构建了AFLP连锁遗传图。提取了该群体中的174个单株的基因组DNA,用EcoRI和MseI酶切系统,筛选了13对选择性扩增引物,用ABI PRISM377 DNA测序仪电泳后,得到675个多态性位点,其中487个符合孟德尔分离规律,用Joinmap 3.0进行连锁分析,可以分为18个连锁群,连锁图含261个标记。18个连锁群中,第一群的图距最长,为125.64cM,含有43个标记;第16群的图距最短,图距为47.55cM,含有7个标记;第9、11连锁群标记最少,均为5个。连锁图谱的总图距为1455.57cM,各标记间平均图距为5.58cM。
     对该群体的性状鉴定表明,离地1.00米处的茎围在26.50-36.00cm之间,变异系数为0.209。2003年试割前三刀平均干胶产量A3和后五刀平均干胶产量A5分别在0.97-2.28和1.43-3.45克/株·次之间,变异系数分别为0.588和0.589。2006年试割前三刀和后五刀的平均干胶产量(B3和B5)分别在1.55-4.85和3.12-7.80克/株·次之间,变异系数分别为0.684和0.564。胶乳中的干胶含量在30.53%-38.32%之间,变异系数为0.159。群体胶乳蔗糖含量在10.48-19.88mM之间,变异系数为0.427。胶乳无机磷含量在17.73-25.53mM之间,变异系数为0.298。胶乳硫醇含量在0.26-0.46mM之间,变异系数为0.432。这些性状都有较大的变异幅度,出现明显分离,而且属于正态分布。说明橡胶树胶乳中的干胶含量、蔗糖含量、无机磷含量和硫醇含量等生理性状也可以进行QTL定位分析。
     用复合区间作图法对各性状进行了QTL初步定位。用WinQTLCart 2.5在LOD值大于或等于2.0的条件下,检测出与茎围相关的13个QTL,其中3个有加性效应,10个有负效应,贡献率在10.90%-20.74%之间。在LOD值大于或等于2.0的条件下,仅检测到两个与干胶含量相关的、具有加性效应的QTL,贡献率均为5.39%。在LOD值大于或等于6.0的条件下,CIM扫描得到10个与胶乳蔗糖含量相关的QTL,其中6个有加性效应,4个有负效应,贡献率在19.67%-31.00%之间。在LOD值大于或等于2.5的条件下,检测到与无机磷含量相关的QTL 10个,其中4个有加性效应,6个有负效应,贡献率在9.35%-14.15%之间。在LOD值大于或等于9.5的条件下,CIM扫描得到10个与硫醇含量相关的QTL,其中4个有加性效应,6个有负效应,贡献率在28.41%-34.25%之间。
     2003年试割的前三刀产量A3在LOD≥2.5时检测到13个QTL,其中4个有加性效应,贡献率在14.97%—19.70%之间,9个有负效应,贡献率在13.48%—21.25%之间。后五刀产量A5在LOD≥2.2时检测到14个QTL,8个有加性效应,贡献率在13.21%—22.86%之间,6个有负效应,贡献率在10.08%—21.76%之间。A3和A5检测到9个位置的效应均相同的QTL,贡献率在10.08%—22.50%之间。
     2006年试割的前三刀产量B3在LOD≥2.1时检测到16个QTL,其中6个有加性效应,贡献率在13.50%—29.66%之间,10个有负效应,贡献率在12.28%—25.09%之间。后五刀产量B5在LOD≥2.5时检测到9个QTL,5个有加性效应,贡献率在17.11%—31.97%之间,4个有负效应,贡献率在31.31%—35.37%之间。B3和B5检测到6个位置的效应均相同的QTL,贡献率在21.44%—35.37%之间。
     四次产量测定(即A3、A5和B3、B5)中,没有找到同时影响产量性状的QTL。但在其中三次测产有4个QTL同时影响产量。其中位于第五连锁群的两个QTL具有加性效应,贡献率在17.83%-24.42%之间;位于第18连锁群的两个QTL有负效应,贡献率在19.72%-21.93%之间。
     由于目前仍然缺乏一个可以用胶乳生理指标来综合判断各种橡胶树育种材料产胶潜力的量化模型,所以本研究也未用这些生理参数校正各个体的产量和生长量。
     橡胶树很难像短期农作物那样利用近交系和高世代群体构建遗传图谱,但橡胶树的作图群体可长时间保存,图谱完成后可用于长期的多方面的研究,这是其他作物图谱所不能比拟的,因此橡胶树分子遗传图谱的构建和相关性状的QTL定位,对研究橡胶树产量、生长量、抗性等农艺性状有重要意义。
Natural rubber plays an important role in national economy and security since its specific characteristics, although the industry is strictly confined by the ecological conditions in China. The demand of natural rubber is increasing rapidly along with Chinese economic development. The recent self-support is declined to 1/3 from 1/2 in 1990s.
     New planting material innovation becomes a formidable work since rubber tree improving requires a long evaluation period, relatively poor in genetic fundamental studies, as well as the narrow genetic bases.
     Rubber tree breeding and selection is a procedure of create new seedling populations and evaluate superior individuals. In order to shorten breeding cycle and improve selection efficiency, a variety of yield prediction methods are invented, such as young tree test tapping, puncture test, morphological prediction, leaf vein latex test, petiole latex test, and so on. However, these phenotypic tests may be greatly affected by environmental factors. Studies on genes or DNA segments related to rubber tree growth, yield and latex physiological characters could be informative.
     An AFLP linkage map is constructed using an artificial cross between two commercial Hevea brasiliensis clones, GT1 and IAN873. The F1 population is composed of 195 seedlings. 174 DNA samples were extracted. 13 EcoRI and MseI primers were selected. AFLP electrophoresis was conducted by ABI PRISM377 DNA Sequencer. There are 487 loci accord with Medal segregation among 675 poly-morphological loci. The map is consist of 261 markers and can be divided to 18 linkage groups. Group 1 is the longest with a distance of 125.64cM, contains 43 markers. Group 16 is the shortest with a distance of 47.55cM, contains 7 markers. Group 9 and 11 contain the least makers, both contain 5 markers. The total distance of the map is 1455.57cM. The average interval is 5.58cM.
     The seedling trial was established in Yunnan Institute of Tropical Crops in 1999. The range of girths (100cm above ground) of the population was from 26.50 to 36.00 cm; the variation is 0.209 in 2006. The ranges of average yield of first 3 tapping (A3) and next five tapping (A5) were 0.97 to 2.28 g/t/t and 1.43 to 3.45g/t/t; the variations were 0.588 and 0.589 in 2003. The trees were tapped in 2006 again, the range of B3 and B5 were 1.55 to 4.85g/t/t and 3.12 to 7.80g/t/t, and the variations were 0.684 and 0.564 respectively. The dry rubber contents of latex (DCR %) were ranged from 30.53% to 38.32%, the variation was 0.159. The contents of sucrose (Sue) were ranged from 10.48 to 19.88mM, the variation was 0.427. The contents of inorganic phosphorus in latex (Pi) were ranged from 17.73 to 25.53mM. the variation was 0.298.Thiol contents in latex (R-SH) were ranged from 0.26 to 0.46mM, the variation was 0.432. The trait segregations were normally distributed which indicated the physiological parameters could be analyzed by QTL scanning.
     Composite interval mapping method was employed in this study. There were 13 putative QTL were related to tree girth. Three of them showed positive additive effect while 10 showed negative additive effect. Phenotypic variation explained (PVE) by the putative QTL varied from 10.90% to 20.74%. Only two QTL were related to DCR%. Both showed positive additive effect, and PVE were 5.39. There were 10 QTL related to Sucrose content. 6 of them showed positive additive effect while 4 loci showed negative effect. PVE varied from 19.67% to 31.00%. There were 10 QTL related to R-SH content in latex. 4 of them were showed positive while 6 showed negative additive effect. The PVE ranged from 28.41 % to 34.25%.
     There were 13 QTL detected related to A3. 4 of them showed positive additive effect while 9 showed negative. The PVE ranged from 13.48% to 21.25%. There were 14 QTL related to A5, 8 of them showed positive while 6 loci showed negative additive effect. The PVE ranged from 10.08% to 22.86%. There were 9 loci showed the same position and additive effect in A3 and A5. The PVE varied from 10.08% to 22.50%.
     There were 16 QTL related to B3. 6 of them showed positive additive effect while 10 showed negative. The PVE ranged from 12.28% to 29.66%. There were 9 QTL related to B5, 5 of them showed positive while 4 loci showed negative additive effect. The PVE varied from 17.11% to 35.37%. There were 6 loci showed the same position and additive effect in B3 and B5. The PVE varied from 21.44% to 35.37%.
     No common QTL was detected among the 4 yield trait test, i e A3, A5, B3 and B5. However, 4 loci were common in 3 test tapping. Two loci showed positive and the other two showed negative additive effect. The PVE ranged from 17.83% to 24.42%.
     A quantitative model is lacked for evaluation yield and growth potential of the rubber tree according to latex physiological parameters. The yield and growth of the individuals could not be adjusted by the physiological parameters in this study.
     It is very hard to establish multi-backcross inbred lines or near-isogenic lines for rubber tree like annual crops. Nevertheless, the mapping population of rubber tree can be conserved easily. Once the map is well constructed, the agronomic traits can be evaluated by many ways. So the strategy will be useful for improving yield, growth, disease or cold resistance of the tree.
引文
1 何康,黄宗道.热带北缘橡胶树栽培.广东:广东科技出版社,1987.
    2 黄华孙.中国橡胶树育种五十年.北京:中国农业出版社,2005.
    3 姜天明,何世强.橡胶树良种选育与推广.广东:广东科技出版社,1994.
    4 曾霞,胡彦师,黄华孙,方家林.橡胶树1981'工RRDB种质主要性状鉴定评价—1987年定植种质鉴定评价研究报告.热带作物学报,2006,27(2):34-38.
    5 林盛等.几个亚马逊野生橡胶种质抗风性鉴定研究.热带作物研究,1994,(1):12-15.
    6 林盛deng.亚马逊野生橡胶种质的资源的抗寒性鉴定.热带作物学报,1994,15(增刊):89-93.
    7 胡东琼.橡胶热作种质资源鉴定评价.作物品种资源,1998,(2):16-18.
    8 胡东琼,黎亚平,吴惠兰.亚马逊野生橡胶种质的抗寒性鉴定.作物品种资源,1995,(2):23-25.
    9 胡东琼.橡胶品种资源的引进和利用.作物品种资源,1993,(增刊):166-169.
    10 敖硕昌,和丽岗,肖桂秀.巴西橡胶新种质鉴定及利用研究初报.云南热作科技,2000,23(4):1-3.
    11 Pan Huasun, Wang Zhengguo. Progress and Achievement of Rubber Tree Breeding and Selection in Yunnan. IRRDB Anual Symposium, 2004: Sept 8-10.
    12 Masahuling Benong. Status on the evaluation and utilization of the 198i IRRDB H, evea germplasm. IRRDB Plant Breeding, Agronomy and Socio-Economics Joint workshop, 28 Aug-7 Sept 2002, Malaysia & Indonesia.
    13 Ong, S. H, Mohd Noor, A.G. Status report of the Malaysian Germplasm. IRRDB Breeding Symposium, 1990, Oct. 5-6.
    14 Aidi-Daslin. AReport on the evaluation and utilization of the 1981IRRDB Hevea germplasrm in Indonesia. IRRDB Plant Breeding, Agronomy and Socio-Economics Joint Workshop, 28 Aug-7 Sept 2002, Malaysia&Indonesia.
    15 Clement-Demage A, Nicolas, D. Hevea germplasm African center status of the collection. IRRDB Breeding Symposium, 1990, Oct. 5-6.
    16 Legnate H, et al. Parent assessment and choice for senetic important of Hevea in Cote de voire. IRRDB Breeding Symposium, 1990: Oct 5-6.
    17 Legnate H, et al. Genetic improvement of Hevea in Cote de Ivoire, New strategies for the use of the Amazon germplasm. IRRDB Information Quarterly 1993, Part 3.
    18 Varghesem Y. A. et al. The 1981 IRRDB wild Hevea germplasm collection in India: Present status and future perspects. IRRDB Anual Symposium, 1999: Oct 18-22.
    19 Gobina, M. S et al. Field evaluation of Hevea clones for leaf desease resistance. IRRDB Anual Meeting Symposium, 1999: Oct 18-22.
    20 梁茂寰等.橡胶树有性系若干性状有关遗传参数的初步分析.热带作物学报,1980,1(1).
    21 刘乃见等.橡胶树数量遗传的初步研究.热带作物学报,1983,4(1).
    22 Kadir, S. A. Advances in Natural Rubber Production. Rubb. Chem. Thchnol, 1994, 67(3): 537-548.
    23 黄华孙,梁茂寰,吴运通等.中规模推广级橡胶树优良品种热研7-33-97的选育.热带作物学报.199,15(2):1-6.
    24 He Ligang, Xiao Guixiu et al. Breeding and Selection of Two Large Scale Recommended Hevea Clones: YITC77-2 and 77-4. IRRDB Annual Symposium, 2004, (Oct 8-10).
    25 敖硕昌,和丽岗,肖桂秀,陈建白,何长贵.橡胶树高产抗寒材料云研77-2、云研77-4的选育.云南热作科技,1998,21(2):3-8.
    26 卓书蝉,黄华孙,方家林,张伟算,田郎,李维国.橡胶树优良无性系热研8-79选育初报.云南热作科技,1999,22(3):5-6.
    27 黄华孙,方家林,卓书蝉等.橡胶树优良品种热研7-20-59的选育.热带作物学报,2000,21(2):1-6.
    28 陈秋波.中国天然橡胶科学技术研究进展.科技与产业,2004,4(3):32-38.
    29 Fernado B. M. et al. Early stage selection of Hevea seedlings. Quarterly Journal of RRIC 1970, 46(3-4).
    30 Simmonds N. W. Rubber Breeding. in Rubber(eds. Wester C. C. and Baulkwell W. J.): Longman Singapore Publishers, 1989. 85-124.
    31 周钟毓.国外巴西橡胶树产量早期预测方法研究概况.热带作物研究,1993,(2):77-85.
    32 S. Waidyanatha. RRIC Quarterly Journal parts 1-2, 1972, 49(1).
    33 Gomes J. B. RRIM Training Manual on Tapping. Tapping systems and Yield stimulation of Hevea. RRIM, 1980.
    34 周钟毓.袁樊辉等.巴西橡胶树苗期产最预测方法及其理论依据的研究.热带作物学报,1982,3(1):1-18.
    35 周钟毓.我国巴西橡胶树杂种后代早期选择方法的研究概况.云南热作科技,1994,17(3):1-5.
    36 周钟毓,黄香等.橡胶树乳管系与产量早期预测关系的研究.热带作物学报,1984,5(1):29-37.
    37 陈守才,邵寒霜,胡东琼,郑学勤.橡胶转移酶活性与橡胶树产胶能力关系的研究.热带作物学报,1993,15(增刊):1-6.
    38 陈守才,邵寒箱,胡东琼等.用RAPD技术鉴定橡胶树抗自粉病基因连锁标记.热带作物学报,1999,15(2):21-26.
    39 张银东,彭存智,曾宪松等.橡胶树遗传多样性RAPD分析技术各参数选定的研究.热带农业科学,1997}(4)20-24.热带农业科学,1997,(4):20-24.
    40 罗安定,陈守才,吴坤鑫,符少萍.AFLP在橡胶树优异种质研究中的应用.植物学报,2001,43(9):941—947.
    41 黄贵修,吴坤鑫,陈守才.利用mRNA差异显示技术分离橡胶树死皮病相关cDNA.热带作物学报,2002,23(3):36—42.
    42 安泽伟,孙爱花,程汉,黄华孙,方家林.用RAPD和ISSR检测的橡胶树野生种质和栽培品种的遗传多样性.热带亚热带植物学报,2005,13(3):246-252.
    43 姚庆收.橡胶树产量性状相关基因连锁标记的初步研究.热带农业科学,2006,26(3):1-4.
    44 Development of molecular markers for Hevea. Rubber Res. 1991, 6(3): 152-157.
    45 Besse P, Lebrun P, Seguin M, et aI. DNA fingerprint in Hevea brasiliensis (rubber tree) using human minisatellite probes. Heredity.1993, 70: 237—244.
    46 Besse P, Seguin M, Lebrun P, et al. Genetic diversity among wild and cultivated populations of Hevea brasiliensis assessed by nuclear RFLP alysis. Theo. Appl. Genet. 1994, 88: 199-207.
    47 Low F. C, Safiah Atan, Hafsah Jaafar, et al. Recent advance in the development of molecular markers for Heven brasiliensias. Journal of Natural Rubber Research, 1996, 11(1): 32-44.
    48 Lespinasse D, Grivet L, Troispoux V, et al. Identification of QTLs involved in the resistance to South American leaf blight (Microcyclus ulei) in the rubber tree. Theo.Appl.Genet.2000,100:975-984.
    
    49 Lespinasse D, Rodier-Goud M, Grivet L, Leconte A, Legnate H, Seguin M. A saturated genetic linkage map of rubber tree (Hevea spp.) based on RFLP, AFLP, microsatellite and siozyme markers. Theor Appl Genet, 2000,100:127-138.
    
    50 Venkatachalam P,Priya P,Saraswathy Amma C K,et al. Identification, cloning and sequence analysis of a dwarf genome-specific RAPD marker in rubber tree[Hevea brasiliensis (Muell.) Arg.]. Plant Cell Reports, 2004:327-332.
    
    51 Lynen, I. Biochemical problems of rubber synthesis. J. Rubb. Res. Inst. Malaya,1969,21:389-406.
    
    52 Arokiaraj, P, Jaafar, H, Hamzah. S, Yeang, H.Y, and Wan Abdul Rahaman, W.Y.Enhancement of Hevea crop potential by genetic transformation: HMGR activity in transformed tissue. Malaysia, 1995. 74-82.
    
    53 Arokiaraj, P, Jones, H, Jaafar, H, Coomber, S, Jones, H, Coomber,S, and Charlwood, B.V.CaMV 35S promoter directs β-glucuronidase expression in the laticiferous system of transgenic Hevea brasiliensis (rubber tree) .Plant Cell Reports 621-625,1998,17:621-625.
    
    54 Chrestin, H. Biochemical aspects of bark dryness induced by overstimulation of rubber frees with Ethrel, in Auzac. J.d, Jacob, J.-L. and Chrestin, H. (eds.), Physiology of Rubber Tree Latex. Boca Raton, Florida:CRC Press, 1989.
    
    55 Webster, C.C. and Baulkwill, W.J. Rubber. New York:John Wiley Sons, inc, 1989.614.
    
    56 Hertzberg, M. and Olsson, O. Molecular characterization of a novel plant homeobox gene expressed in the maturing xylem zone of Populus tremula x tremuloides.The Plant Journal,1998,16(3):285-295.
    
    57 Archer, B.L, Barnard, D, Cockbain, E.G, Dickenson, P.B, and McMullen, A.I. The Chemistry and Physics of Rubber-Like Substances, in Bateman, L. (ed). London, Wiley, New York:Maclaren & Sons Ltd, 1963. 43-72.
    
    58 Archer, B.L, Audley, B.G, McSweeney, G.P, and Tan, C. H. Studies on Composition of latex serum and 'Bottom Fraction' particles. J. Rubb. Res. Inst. Malaya, 1969,21(4):560-569.
    
    59 P, Jones, H, Cheong, K.F, Coomber, S, and Charlwood. B.V. Gene Insertion into Hevea brasiliensis. Plant Cell Reports, 1994,13:425-431.
    
    60 罗明武,邓柳红.巴西橡胶树产胶与排胶机制研究进展.林业科学,2006,42(9):127-130.
    
    61 Hao B Z, Wu J L. Hao B Z, Wu J L. 2000. Laticifer differentiation in Hevea brasiliesis,induction by exogenous jasmonic acid and linolenic acid.Ann Bot, 2000,85:37-43.
    
    62 Wu ,J L, Hao B Z,Tan H Y. 2002. Wound-induced differentiation in Hevea brrzsiliersis shoots mmediated by Jasmonic acidJ. Rubb Res 5(1):53- 6,2002,5(1):53-63.
    
    63 Cardosa M.T, Hamid S, Sunderasan E, et al. B-serum is hi_ghly immunogenic when compared to C-serum using enzyme immunoassays. J Nat Ruhber Res, 1994,9:205-211.
    
    64 D'Auzac J, Prevot J C, Jacob J L. What's new about lutoids? A vacuolar system model from Hevea latex. Plant Physio.l Biochem, 1995,33:765- 768.
    
    65 Wood D.F, Cornish K. Microstructure of purified rubber particles. International Journalof Plant Sciences, 2000,161(3):435-445.
    
    66 Chappell,J. Biochemistry and molecular biology of the isoprenoid biosynthetic pathway in plants. Annu. Rev. Plant Physiol.Plant Mol. Biol, 1995,46:512-547.
    
    67 Jacob,J.L, Prevot,J.C, Lacrotte, R,et al. The biological mechanisms controlling Hevea brasiliensis rubber yield. Plantatios,Recherche, Development, 1988,(3):5-7.
    68 范思伟,杨少琼.巴西橡胶树的乙烯生理学(上).热带作物研究,1991,(4):69-79.
    69 范思伟.巴西橡胶树的乙烯生理学(下).热带作物研究,1991,(4):75-85.
    70 校现周.乙烯代谢对橡胶树的伤害及其发生机制探讨.热带农业科学,2000,(4):7-11.
    71 敖硕昌,赵淑娟,何长贵.橡胶树高产生理条件的研究(总结报告).云南热作科技,1996,19(2):1-6.
    72 敖硕昌,赵淑娟,何长贵.橡胶树高产生理基础研究I.胶乳生理和排胶特性的研究.云南热作科技.1994,17(3):6-10.
    73 Jacob, et al. Physiological basis for latex diagnosis of the functioning of the laticiferous system in rubber trees. International Rubber Conference. Kuala Lumpur, 1985, 38-59.
    74 D'Auzac. A plant vacuolar system: the lutoids from Hevea brasiliensis Latex. Physiol. Veg, 1982, 20: 311—331.
    75 Jacob et al. Physiological activators of invertase from Hevea brasiliensis latex. Phytochem, 1982, 21 (4): 851—855.
    76 Jacob, et al. La pyruvate kinase du latex D'hevea. Rev. Gen. Caout. Plant, 1981, 612: 89-91.
    77 校现周.橡胶胶乳中R—SH的生理作用.热带农业研究.
    78 Serres, A et al. Proceedings of the IRRDB Rubber Physioloy and Explolitation Meeting, France, 1988.
    79 张福城 陈守才.巴西橡胶树天然橡胶生物合成中关键酶及相关基因研究进展.热带农业科学,2006,26(1):42-46.
    80 Chye M, Tan C. T, ChuabN. H. Three genes encode HMG-CoA reductase in Hevea brrzsiliensis: Imgl and Img3 are differentially expressed. Plant Mol Biol, 1992, 19: 473-480.
    81 Chey M, L, Kush A, Tan C. T. et al. Characterization of cDNA and genomic clones encoding HMG-CoA reductase from Hevea brasiliensis. Plant Mol Biol, 1991, 16: 567-572.
    82 Miao Z, Caynor, J. J. Moleculur cloning, characterization and expression of Mn-SOD from the rubber tree. Plant Mol Biol, 1993, 23(1): 173-179.
    83 Sivasubramaniam S, et al. Characterization of I-lEVER, a noval stress-induced gene from Hevea brasiliensis. Plant Mol Biol, 1995, 29(1): 173-179.
    84 Broekaert W, Lee H. I, Kush. A et al. Would-induced accumulation of mRNA Containing a herein seqnence in laticifer of puhber tree. Pros Natl Acad Sci USA, 1990, 87: 6733-6739.
    85 Martin M. N, et al. Cloning and characterization of chitinase cDNA from brasiliensis. Plant Physioi, 1991, 95(469-475).
    86 Oh S. K, Kang H, Shin D. H, et al. Isolation, characterization and functional analysis of a novel cDNA clone encoding a small rubber particle protein from Hevea brasiliensis. J Biol Chem, 1999, 274(24): 17132-17137.
    87 Chye M. L, Tan S. A. Isolation and nucleotide sequence of a eDNA clone encoding the beta subunit of mitochondrial ATP synthase from Hevea brasiliensis. Plant Mol Biol, 1992, 18(3): 611-617.
    88 Slater J. E, Vedvick T. Identfication, cloning, and sequence of major allergen (Hev b5) from natural latex. J Biol Chem, 1996, 271(41): 25394-25401.
    89 Rozynek P. Posch A, Baur X. Cloning, expression and characteriation of the major latex allergen prohevein. Clin Exp Allergy, 1998, 28(1): 1418-1421.
    90 Yeang H. Y, Ward M. A. Zamri A. Set al. Amino acid sequence simiarity of Hey b3 to two previously reported 27-and 23-KDa latex proteins allegenic to spina bifida patitends. Allergy, 1998, 53(5): 51-59.
    91 彭世清 陈守才.巴西橡胶树的分子生物学研究进展.生物技术通讯,2001,12(4):314-317.
    92 Asawatreratanakul K, Zhang Y W, Wititsuwannakul D, et al. Molecular cloning, expression and chacterization of cDNA encoding cis-prenyltransferases from Hevea brasiliensis. Eur J Biochem, 2003, 270: 4671-4680.
    93 Keightly P. D. Bulfield G. Detection of quantitative traits loci from frequency changes of marker alleles under selection. Genet. Res. Camb, 1993, 62: 195-203.
    94 Darvasi A, Soller M. Selective DNA pooling for determination of linkage between a marker and a locus. Genetics, I994, 138: 1365-1373.
    95 Soller M, Brody T, Genizi A. On the power of experimenyal designs for the detection of linkage between marker loci and quatitative loci in crosses between inbred lines. Theor. Appl. Genet, 1976, 47: 35-39.
    96 Lander E. S, Botstein D. Mapping mendeliian factors underlying Quantitative traits RFLP linkage maps. Genetics, 1989, 121: 185-199.
    97 Jensen J. Estimation of recombination parameters between a quantitative traits loci (QTL) and two marker gene loci. Theor. Appl. Genet, 1989, 78: 613-618.
    98 Knapp S. J, Bridges W. C, Birkes D. Mapping quantitative trait loci using molecular maker linkage maps. Theor. Appl. Genet, 1990, 79: 583-592.
    99 Zeng Z. B. Precision mapping of quantitative trait loci. Genetics, 1994, 136: 1457-1468.
    100 高用明,朱军.植物QTL定位方法的研究进展.遗传,2000,22(3):175-179.
    101 Falciner D. S. Introduction to quantitative genetics 2nd edn. London and New York, 1981.
    102 朱军.应用混合线性模型定位复杂数量性状基因的方法.浙江大学(自然科学版),1999,33(3):327-335.
    103 Wang D. L, Zhu J, Li Z. K. Mapping QTLs with epistatic effects and QTLxenvironment interactions by mixed linear model approaches. Theor. Appl. Genet, 1999, 99: 1255-1264.
    104 Churchill G. A, Doerge R. W. Empirical threshold values for quantitative trait mapping. Genetics, 1994, 138: 963-971.
    105 Alpert K. B, Tanksley S. D. High-resolution mapping and isolation of a yeast artificial chromosome contig containing fw 2.2: A major fruit weight quantitative trait locus in tomato. Proc. Natl. Acad. Sci USA, 1996, 93: 15503-15507.
    106 Yano M, Sasaki T. Genetic and molecular dessection of quantitative traits in rice. Plant Mol. Biol, 1997, 35: 145-153.
    107 Tanksley S. D, Nelson J. C. Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor. Appl. Genet, 1996, 92: 191-203.
    108 Taylor, G. Populus: arabidopsis for forestry. Do we need a model tree. Ann Bot, 2002, 90(6): 681-689.
    109 Bradshaw HD III, Stettler RF. Molecular genetics of growth and development in Populus. I. Triploidy in hybrid poplars. Theor Appl Genet, 1993, 86: 301-307.
    110 Grattapaglia D, Bert01ucci F. L, Penchel R, et al. Genetic mapping of quantitative trait loci controlling growth and wood quality traits in Eucalyptus grandis using a maternal haif-sib family and RAPD markers. Genetics, 1996, 114: 1205-1214.
    111 Lomas K. et al. Single tree genetic linkage maping in conifers using hapoid DNA from megagam entophytes. Bio-technolgy, 10: 686-690.
    112 Binelli G, G Bucci. A genetic linkage map of Picea abies Karst, based on RAPD markers, as a tool in population genetics. Theor Appl Genet, 1994, 88: 283-288.
    113 Paglia GP, Olivieri AM, Morgante M. Towards second-generation STS (sequence-tagged sites) linkage maps in conifers: a genetic map of Norway spruce (Picea abies K.). Molecular and General Genetics, 19981258(5): 466-478.
    114 Gocmen B, et al. Development of random amplified Polymorphic DNA markers for genetic mapping in Pacific yew. Canadian Journal of forest research, 1996, 26(3): 497-503.
    115 Nikaido AM, Ujino T, Iwata H, Yoshimura K, Yoshimura H, Suyama Y, Murai M, Nagasaka K, Tsumura Y. AFLP and CAPS linkage maps of Croptomeria japonica. Theor Appl Genet, 200, 100: 825-831.
    116 施手森,童春发.利用改进的复合区间作图法和F1代群体进行杉木的QTL作图.分子植物育种,2004,2(1):1-6.
    117 童春发,施季森.树木全同胞群体的多位点连锁分析.生物数学学报,2005,20(4):496-504.
    118 施手森,童春发.树木遗传图谱构建和QTL定位统计分析.北京:科学出版社,2006.
    119 童春发,施季森.利用杉木的F1代群体构建遗传连锁图谱.遗传学报,31(10):1149—1156.
    120 Arcrade A, Anselin F, Faivre Pampant P, Lesage MC, Paques LE, Prat D. Application of AFLP, RAPD and ISSR markers to genetic mapping of European and Japanese larch. Theor Appl Genet, 2000,100: 299-307.
    121 Jermstad KD, Bassoni .DL, Wheeler NC, Neale DB. A sex-averaged genetic linkage map in coastal Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco var 'menziesii') based on. RFLP and RAPD markers. Theor Appl Gene, 1998, 97: 762-770.
    122 Nelson CD, Nance WL, Doudrick RL. A Partial genetic linkage map of slash pine(Pinus elliottii Engelm. var. elliottii) based on random amplified polymorphic DNAs. Theor Appl Genet, 1993, 87: 145-151.
    123 Remington DL, Wheten RW, Liu B-H and O'Malley DM. Construction of an AFLP genetic map with nearly complete genome coverage in Pinus taeda. Theoretical and Applied Genetics, 1999, 98: 1279-1292.
    124 Sewell MM, Sherman K, Neale DB. A consensus map for loblolly pine (Pinus taeda L.). I. Costruction and Integration of individual linkage maps from two outbred three-generation pedigrees. Genetics, 1999, 151: 321-330.
    125 Devey M. E, T. A. Fiddler, B. -H. Liu, S. J. Knapp and D. B. Neale. An RFLP linkage map for loblolly pine based on a three-generation outbred pedigreee. Theor Appl Genet, 199, 88: 273-278.
    126 Groover A, Devey M, Fiddler T, Lee J, Mcgraw R, Mitchel-OldsT, Sherman B, Vujcic S, Williams C, Neale DB. Identification of quantitative trait loci influencing wood specific gravity in an outbred pedigree of loblolly pine. Genetics, 1994, 138: 1293-1300.
    127 Yazdani R, Yeh FC and Rimsha J. Genomic mapping of Pinus sylvestris (L.) using random amplified polymorphic DNA markers. Forest Genetics, 1995, 2(2): 109-116.
    128 Yin T. M, Huang M. R, Wang M. X, Zhu L. H, Zeng Z. B. and Wu R. L. Preliminary interspecific genetic maps of the Populus genome constructed from RAPD markers. Genome 2001, 4: 602-609, 2001, 4: 602-609.
    129 Costa P, Pot D, Dubos C, Frigerio JM, Pionneau C, Bodenes C, Bertocchi E, Devey ME, Sewell MM, Uren TL and Neale DB. Comparative mapping in loblolly and radiata pine using RFLP and microsatellite markers. Theor and Appl Genet, 1999, 99: 656-662.
    130 Plomion C, et al. Genetic analysis in maritime pine (Pinus pinaster), Comparision of two RAPD map using selfed and open-pollinated seeds the same individauls. Theor Appl Genet,1995,90:1028-1034.
    
    131 Devey ME, Bell JC, Smith DN, Neale DB, Moran GF. A genetic linkage map for Pinus radiata based on RFLP, RAPD, and microsatellite markers. Theor Appl Genet, 1996,92:673-679.
    
    132 Yin TM, DiFazio SP, Gunter LE, Reimenschneider D, Tuscan GA. Large-scale heterospecific segregation distortion in Populus revealed by a dense genetic map. Theor Appl Genet,2002,109:451-463.
    
    133 Kondo T, Terada K, Hayashi E, Kuramoto N, Okamura M, Kawasaki H. RAPD markers linked to a gene for resistance to pine needle gall midge in Japanese black pine (Pinus thunbergii).Theor Appl Genet, 2000,100:391-395.
    
    134 Kubisiak TL, Nelson CD, Nance WL, Stine M. RAPD linkage mapping in a longleaf pine X slash pine F1 family. Theor Appl Gene, 1995,90:1119-1127.
    
    135 Echt CS and Nelson CD. Linkage mapping and genome length ni eastern white pine (Pinus strobus L). Theor Appl Genet, 1997,94:1031-1037.
    
    136 Grattapaglia D,Bertolucci FL,Penchel R,et al. Genetic mapping of quantitative trait loci controlling growth and wood quality traits in Eucalyptus grandis using a maternal half? sib family and RAPD markers. Genetics, 1996,144:1205~1214.
    
    137 Grattapaglia D, Sederoff R. Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross mapping strategy and RAPD markers. Genetics,1994,137:1121-1137.
    
    138 Moran GF, Byrne M. Genetic mapping and breeding of temperate Eucalypts in Australia. International Wood Biotechnology Symposium, Japan, 1994:55-62.
    
    139 Vaillancourt RE, Potts BM, Manson A and REID JB. Detection of QTLs in a Eucalyptus gunniixE.globules F2 using a RAPD linkage map. International Wood Biotechnology Symposium, Japan, 1994:63-70.
    
    140 Liu Z, Furnier G R. Inheritance and linkage of allozymes and restriction fragment length polymorphisms trembling aspen. Journal of Heredity, 1993,84:419 - 424.
    
    141 Bradshaw HD et al. Molecular genetics of growth and development in Populus. l.Triploid in hybrid poplars. Theor Appl Genet, 1993,86:301-307.
    
    142 D. Sharon , P. B. Cregan, S. Mhameed, M. Kusharska , J. Hillel , E. Lahav , U. Lavi.An integrated genetic linkage map of avocado. Theor Appl Genet, 1997,95:911—921.
    
    143 Herran A, Estioko L, Becker D,et al. Linkage mapping and QLP analysis in coconut. Theor Apple Genet, 2000,101:292-300.
    
    144 Billotte N, Risterucci A.M, Barcelos E, Noyer J.L, Amblard P, Baurens F.C. Development and characterization of oil palm (Elaeis guineensis Jacq.) microsatellite markers. In:Proceedings of the MPOB International Symposium on Oil Palm Genetic Resources and Utilization. 2000,8/10 June:Wl-W17.
    
    145 T.Pugh, O.Fouet , A. M.Risterucci, P.Brottier, M.Abouladze,C.Deletrez, B.Courtois,D.Clement, P.Larmande, J.A.K.N.Goran, C.Lanaud. A new cacao linkage map based on codominant markers:development and integration of 201 new microsatellite markers. Theor Appl Genet, 2004,108:1151-1161.
    
    146 Lashermes P, Combes M.C, Prakash N.S, Trouslot P, M.Lorieux M. and Charrier A. Genetic linkage map of Coffea canephora: effect of segregation distortion and analysis of recombination rate in male and female meioses. Genome, 2001, 44: 489-496.
    147 Grattapaglia D, FL Bertoulucci, RR Sederoff. Genetic mapping of QTL controlling strategy and RAPD markers. Theor Appl Genet, 1995, 90: 933-947.
    148 Wu R, L. Genetic control of macro and micro-environmental sensitives in Populus. Theor Appl Genet, 1997, 94: 104-114.
    149 Knott S. A, Elson J. M, Sewell M. M. et al. Multiple marker mapping of quantitative trait loci using molecular in an outbred pedigree of loblolly pine. Theor Appl Genet, 1997, 94: 810-820.
    150 Muranty H. Power of tests for quantatitive trait loci detection using full-sib families in different schemes. Heredity, 76: 156-165.
    151 Vos P, Hogers R, Bleeker M, et al. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research, 1995, 23(21): 4407-4414.
    152 Selective restriction fragment amplification. A general method for DNA fingerprinting. European Patent Application 9420629.7(publication No.05348A1). Paris: European Patent office. 1993.
    153 Donini P, Elias M. L, Bougourd S. M. et al. AFLP fingerprinting reveals pattern differences between template DNA extracted from different plant organs. Genome, 1997, 40: 521-526.
    154 Keim P, Schupp J. M, Travis S. E. et al. A High-Density Soybean Genetic Map Based on AFLP Markers. Crop Sci, 1997, 37: 537-543.
    155 Powell W, Morgante M, Ander C. et al. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed, 1996, 2(225-238).
    156 Yamamoto T. et al. Breeding Science, 1998, 48(4): 359-363.
    157 祝军,王涛,赵玉军等.应用AFLP分子标记鉴定苹果品种.园艺学报,2000,27(2):102-106.
    158 Vendrame W. A, Kochert G, Wetzstein, et al. AFLP analysis of variation in pecan somatic embryos. Plant Cell Reports, 1999, 18(10): 853-857.
    159 房经贵,章镇,马正强等.AFLP标记在两个芒果品种间杂交F1代的多态性及分离方法.中国农业科学,2000,33(3):19-23.
    160 Sosinski B. Sossey-Alaoui, K. Rajapakse, et al. Use of AFLP and RFLP markers to create a combined linkage map in peach [Prunes Persica (L.) Batsch] for. use in marker assisted selection. Acta Hort, 1998, 465: 61-68.
    161 Dirlewanger, E. Moing, A. Pronier. et al. Detection of QTLs controlling peach fruit acidity and sweetness. Acta Hort, 1998, 465: 89-98.
    162 Applied Biosystems. AFLP Plant Mapping Protocol. 2000:www.appliedbiosystems. com.
    163 J. W. van Ooijen and R. E. Voorrips. Joinmap 3.0 Software for the caculation of genetic maps: Wageningen, 2001.
    164 张德强,张志毅,宋婉等.毛白杨遗传作图最适分离群体的选择.北京林业大学学报,2003,25(4):21-25.
    165 方宣钧,吴为人,唐纪良.作物DNA标记辅助育种.北京:科学出版社,2002.
    166 窦美安,郭森元,叶应福.中规模推广级橡胶抗寒高产品种IAN873的引种利用研究.热带作物学报,2002,23(3):21-26.
    167 许占友,常汝镇,邱丽娟等.不同DNA分子标记技术信息量比较.植物遗传资源科学,2000,1(4):41-46.
    168 Powell W, Morgante M. The comparison ofRFLP, AFLP and SSR Markers for germphasm analysis. Molecular Breeding, 1996: 252-258.
    169 Paran I, Aftergoot E, Shifriss C. Variation in Capsicum annuum revealed by RAPD and AFLP markers. Euphytica, 1998, 99(3): 167-173.
    170 李传友,郑洪刚,翁曼丽等.光敏核不育水稻等位突变系的AFLP分析.生物工程学报,2000,16(1):91-95.
    171 Foolad M, Arulsekar S, Becerra et al. A genetic map of Prunus based on an interspecific between peach and almond. Theor Appl Genet, 1995, 91(262-269).
    172 Xu S. J, Singh R. J, Hymowitz T. Establishment of a cytogenetic map soybean: Progress and Prospective. Soybean Genet. Newslet, 1997, 24: 121-122.
    173 Kinishita T. Report of the committee on gene mbolization, nomenclature and linkage group. Rice Genet neusl, 1991, 8: 2-37.
    174 Lagercrantz U, Lydiate D. J. RFLP mapping in Brassica nigra indicates differing recombination rates in male and female meioses. Genome, 1995, 38: 225-264.
    175 Whitkus R. Genetics of adaptive radiation in Hawaiian and Cook Island species of Tetramolopium(Asteraceae). Genetic linkage map and its implications for terspecific breeding barriers. Genetics, 1998, 150: 1209—1216, 1998, 150: 1209-1216.
    176 Jacob, J. L, Proevot J. C, Lacrotte R, Clement A, Serres E, Gohhet E. Clonal Typology of laticifer functioning in Hevea brasiliensis. Plantations, reecherehe, developpement, 1995, (Sept-Oct): 45-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700