用户名: 密码: 验证码:
库布齐沙漠几种沙生灌木光合、耗水及耐旱生理生态特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究围绕土壤—植物—大气连续体系统(SPAC)内水分运动的动态观测,对库布齐沙漠的主要造林灌木四翅滨藜(Atripldex canescens(Purgh.)Butt.)、小叶锦鸡儿(Caragana microphylla Lam)、杨柴(Hedysarum laeve Maxim)、柽柳(Tamarixchinensis Loar)、互叶醉鱼草(Buddleja alternifolia Maxim)和蒙古莸(Caryopterismongolica Bunge)等树种的蒸腾耗水特性、水势以及生理生态等方面进行了系统研究,以对干旱、半干旱地区林业生态工程树种选择提供依据。
     主要探讨以下问题:
     1.研究区气候特征分析。
     2.不同植物(6种)的光合速率、蒸腾速率对土壤水分的日响应过程与机制。
     3.不同土壤水分条件对6种植物的光响应曲线的影响。
     4.环境因子对6种植物的叶水势日进程曲线的影响。
     5.SPAC中的势能梯度变化。
     6.土壤水分胁迫对6种植物的游离脯氨酸、可溶性糖含量的影响分析。
     7.土壤水分胁迫对6种植物SOD和CAT含量进行分析。
     8.土壤水分胁迫对6种植物MDA含量进行分析。
     9.探讨各供试灌木树种的耐旱机理。
     10.应用多指标进行各供试灌木树种耐旱性综合评价。
     主要研究结果:
     1.生长季6树种的耗水量大小排列顺序为:互叶醉鱼草(141.88mm)>小叶锦鸡儿(134.48mm)>杨柴(129.75mm)>柽柳(113.83mm)>四翅滨藜(108.70mm)>蒙古莸(103.54mm)。
     2.通过对不同林木光响应和日过程以及光合速率与土壤水分的关系研究,我们分别获得四翅滨藜、蒙古莸、柽柳、小叶锦鸡儿、杨柴和互叶醉鱼草6树种的光饱和点分别为:1611.00、1479.33、1476.67、1430.00、1391.00和1287.33μmol·s-1·m~(-2);土壤水合补偿点分别为3.89%、4.55%、4.3%、4.4%、4.54%和4.46%。
     3.从清晨水势季节变化看,杨柴在生长季中的水分恢复是最好的,四翅滨藜和小叶锦鸡儿则显示有水分亏缺,植物水分胁迫的发生程度和它们的水分恢复的程度有一定关联.
     4.叶水势的日变化是由植物蒸腾作用消耗水分的速率和根系的水分供应能力的差异造成的,气象因子会通过影响植物的蒸腾作用而影响植物水势的变化。
     5.水分在SPAC连续体的运移中,能量主要消耗在最末端“叶—气”这一环节上,其次为“土—根”界面,在植物体内部,能量主要消耗在“茎—叶”节点中。水势差基本上随着季节推进呈现先增加后减小的趋势,其中“叶—气”水势差6月份最大,8月份最小,土根水势差7月份最大,9月份最小。
     6.从7月份蒸腾速率日变化的测定结果看,四翅滨藜保持着正常的蒸腾作用,反映出它有着良好的水分状况,并不存在水分亏缺;小叶锦鸡儿和杨柴的日变化则显示水分供应不充足,其中杨柴的水分状况更差一些。
     7.不同土壤水分处理对各供试灌木树种蒸腾、光合日进程规律的影响作用不大。随着水分胁迫的加剧,树种的蒸腾速率呈先上升后下降的趋势,四翅滨藜的光合速率随着胁迫的发展逐渐提高;小叶锦鸡儿和柽柳在轻度胁迫时光合速率处于最高值,随着水分胁迫的发展,光合速率又降低;杨柴则随着水分胁迫的发展,光合作用一直处于下降趋势。经过干旱胁迫处理的苗木,光响应曲线降低,水分胁迫越严重,降低的程度也越大。
     8.四翅滨藜、小叶锦鸡儿、杨柴、互叶醉鱼草、柽柳、蒙古莸6种盆栽苗木的萎蔫系数分别为:0.578%、0.711%、0.687%、2.11%、1.09%和1.22%,苗木的土壤水分利用率都在90%以上,根据耗水指数排序,得出6种苗木耐旱性排序:四翅滨藜>小叶锦鸡儿>杨柴>蒙古莸>互叶醉鱼草>柽柳。
     9.基于叶水势与土壤含水量的关系判断苗木的耐旱机理:小叶锦鸡儿、杨柴和蒙古莸为高水势延迟脱水耐旱树种,四翅滨藜、互叶醉鱼草为亚高水势延迟脱水耐旱树种,柽柳为亚低水势忍耐脱水耐旱树种。
     10.多指标综合评价供试树种的耐旱性:用模糊数学隶属函数公式对6个树种的21个指标进行了综合排序,其中年蒸腾量、土壤水合补偿点、干旱胁迫天数、萎蔫系数、耗水指数和b值等指标采用反隶属函数法。综合评价结果表明:6个树种耐旱能力大小依次为杨柴>四翅宾藜>柽柳>蒙古莸>小叶锦鸡儿>互叶醉鱼草。
In order to provide reliable proof for the selections of plants in the course of vegetation recovering,a series of studies on Water Consumption Characteristics,water potential and Photosynthetic Characteristics of Atriplex canescens,Caragana microphylla,Hedysarum laeve, Tamarix chinensis,Buddleja alternifolia and Caryopteris mongolica were done in Kubuqi desert.
     The focused aspects are as following:
     1.Analysis of the climate character of the research area
     2.Study on the diurnal courses and mechanism of net photosynthetic and transpiration rate of six plants in different soil water content.
     3.Study on the responses of Photosynthesis and Transpiration of six plants in different soil moisture to light.
     4.Study on the influence of environmental factors on the diurnal courses of leaf water potential of six plants;
     5.The changes of water potential grades in the system of Soil-Plant-Atmosphere Continuum
     6.Responses of free proline and soluble sugar of six plants to the water pressure
     7.Responses of superoxide dismutase and catalase of six plants to the water pressure
     8.Responses of malondialdehyde of six plants to the water pressure
     9.Study on drought resistance mechanism of the potted plants,
     10.A comprehensive evaluation of drought resistance of the potted plants.
     Major conclusions are as following:
     1.The order of water Consumption of six shrubs in annual growing stage is 113.831mm、134.48mm、129.75mm、108.7mm、103.54mm and 141.88mm;
     2.Through the study on the relationship between growing and photosynthesis characteristics under different soil water content and light intensity,the light saturation point is differently:1611.00, 1479.33,1476.67,1430.00,1391.00,1287.33μmol·s-1-m~(-2),and the light compensate point differently is:4.3%,4.4%,4.54%,4.46%,4.55%,3.89%.
     3.According to the change of leaf water potential in early morning,water recovery of Hedysarum mongolicum Turcz is the best.And it shows that some water wane in Acriplex canescens(Purgh.)Butt and Caragana microphylla.There has relationship between the degree of water wane and water recover.
     4.The change of leaf water potential is the result of the rate of transpiration and water supply of roots,and some meteorologic factors can effect leaf water potential through effect transpiration.
     5.Main energy is consumed in the link of leaf and atmosphere in the system of SPAC,and secondly in the link of soil and root.Energy is consumed in the link of stem and leaf similarly.The difference of water potential takes a trend of falling follow increasing.The highest difference of leaf water potential and atmosphere water potential is in June and the lowest is in August.The highest difference of soil water potential and root water potential is in July and the lowest is in September.
     6.The result of daily course of transpiration in July shows that Atriplex canescensButt has normal transpiration,which indicates that it has better water condition,and that water supply is not ample in Caragana microphylla and Hedysarum laeve,so the water supply of Hedysarum laeve is worse.
     7.Tt has little difference in the daily change of Transpriation and Photosynthesis of potted plants under different soil water content.Tr takes a trend of falling follow increasing with the development of drough.At the same time,Pn of Atriplex canescens increase continually,whereas Hedysarum laeve falls continually,and Caragana microphylla and Tamarix ramosissma take a trend of falling follow increasing.The light responses of potted plants lower continually with the development of water drough.
     8 The Soil water content is 0.578%of Atriplex canescens,0.711%of Caragana microphylla, 0.687%of Hedysarum laeve,2.11%of Caryopteris mongolicaoT,1.09%of Tamarix ramosissma Ledeb,1.22%of Caryopteris mongolica Bunge differently when potted plants withered.The efficiency of water using of potted plants are all above 90%.The capability of plants resisting drough is sized up according soil water depleted index as following:Acriplex canescens(Purgh.)Butt>Caragana microphylla > Hedysarum laeve > Caryopteris mongolica > Caryopteris mongolicaor > Tamarix ramosissma.
     9.The resisting drough Mechanism of potted plants based on the relatationship between leaf water potential and soil water content is summed up as Caragana microphylla,Hedysarum laeve and Caryopteris mongolica belong to the plant that have high water potential to delaying dehydration; Atriplex canescens and Caryopteris mongolica belong to the plant that have sub-high water potential to delaying dehydration;Tamarix ramosissma belongs to the plant that has sub-low water potential to resisting dehydration.
     10.12 indexes of six trees were contrasted and compared by the way of subordination function of vague mathematics.The transpiration rate.,the drought-resistant abilities of the six trees species were listed in descending order as following:Hedysarum laeve >Atripldex canescens >Tamarix chinensis>Caryopteris mongolica >Caragana microphylla >Buddleja alternifolia.
引文
[1]白瑞琴,孙丽华,吕占江,等.不同砧木苹果树水势日变化的研究[J].内蒙古农业大学学报,2000,21(1):63-68.
    [2]常国梁.青海大通退耕还林工程区的林木耗水特性[J].中国水土保持科学,2005,3(1):58-65.
    [3]陈家宙,何圆球,吕国安.红壤农田中花生SPAC水势分布[J].华中农业大学学报,2003,22(2):130-132.
    [4]陈发河,张维一.低温胁迫对甜椒果实游离脯氨酸的影响[J].植物生理学通讯,1991,27(5):301-320.
    [5]陈乾,陈添宇.利用NOAA AVHRR遥感数据估算复杂地形下流域的蒸散发[J].地理学报,1993,48(1):61-69.
    [6]陈尚谟.旱区农田水分利用效率探讨[J].干旱地区农业研究,1995,1:14-19.
    [7]陈贻竹.低温对植物叶片中超氧物歧化酶、过氧化氢酶和过氧化氢水平的影响[J].植物生理学报,1988,14(4):323-328.
    [8]梁宗锁,李有新,康绍忠.影响夏玉米单叶WUE的冠层因子分析[J].西北农业学报,1996,5(1):13-16.
    [9]段华平,卞新民,谢小立,等.农田水循环:地表—大气界面水分传输研究进展[J].中国农业气象.2003,24(1):36-40.
    [10]傅松玲,刘胜清.石灰岩地区几种物种抗旱特性的研究[J].水土保持学报,2001,15(5):89~94.
    [11]高三基,罗俊,张华,陈如凯,林彦铨.甘蔗抗旱性生理生化鉴定指标[J].应用生态学报,2006,17(6):1051~1054.
    [12]郭建茂,王连喜,郑有飞,等.宁夏南部区域蒸发(散)量遥感估算方法[J].南京气象学院学报,2004,27(3):302-309.
    [13]郭庆荣,李玉山.土壤-植物-大气连续体中能量变化和分布规律[J].水土保持学报,1994,8(3):81-86.
    [14]郭庆荣,张秉刚.土壤水分有效性研究综述[J].热带亚热带土壤科学,1995,4(2):119-124.
    [15]郭庆荣,张秉刚,钟继洪,等.南亚热带丘陵赤红壤—龙眼—大气连续体水分运移力能变化及分布规律[J].生态科学.1997,16(2):65-68.
    [16]韩德儒,杨文斌,杨茂仁.干旱半干旱区沙地灌(乔)木种水分动态关系及其应用[M].北京:中国科学技术出报社,1996,1~7.
    [17]贺康宁.黄土高原半干旱区集水造林水分生产潜力研究[M].北京林业大学博士论文,2000,14-57.
    [18]贺康宁,田阳,张光灿.刺槐日蒸腾过程的Penman-monteith方程模拟[J].生态学报,2003,23(2):251-258.
    [19]贺康宁,张光灿,田阳,等.黄土半干旱区集水造林条件下林木生长适宜的土壤水分环境[J].林业科学,2003,39(1):10-16.
    [20]何兴东,高玉葆.植物水势系数及其应用实例[J].南开大学学报.2003,36(4):89-92.
    [21]蒋高明,何维明.毛乌素沙地若干植物光合作用、蒸腾作用和水分利用效率种间及生境间差异[J].植物学报,1999,41(10):1114~1124.
    [22]康绍忠,张建华,梁建生.土壤水分与温度共同作用对植物根系水分传导的效应[J].植物生态学报,1999,23(3):211~219.
    [22]雷志栋,杨诗秀,谢森传.土壤水动力学[J].北京:清华大学出版社,1988.185-205.
    [23]李禄军,蒋志荣,李正平,邵玲玲.3物种抗旱性的综合评价及其抗旱指标的选取[J].水土保持研究,2006,13(6):253-259.
    [24]李洪建,王孟本,柴宝峰.黄土区4个树种水势特征的研究[J].植物研究,2001,21(1):100-105.
    [25]郭连生,田有亮.9种针阔叶幼树的蒸腾速率、叶水势与环境因子关系的研究[J].生态学报,1992,12(1):47-52.
    [26]李风民.半干旱黄土高原集水高效农业的发展[J].生态学报,1999,19(2):152-157.
    [27]李吉跃.植物耐早性及其机理[J].北京林业大学学报,1991,13(3):2-97.
    [28]李吉跃,翟洪波.木本植物水力结构与抗旱性[J].应用生态学报,2000,11(2):301-305.
    [29]李金光,王有年.离体杏叶片失水过程中几个生理指标变化研究[J].北京农学院学报,1995,10(2):49-52.
    [30]李美茹,王以柔,刘鸿先,等.光照强度调控4种亚热带森林植物叶片的抗氧化能力[J].植物生态学报,2001,25:460-464.
    [21]李少昆,马富裕,李蒙春,等.棉花叶片水分利用效率及其影响因素的研究[J].棉花学报,1997,9(4):314-317.
    [22]李云荫.综合评价冬小麦的抗旱性[J].植物生理学通讯,1990,(20):17-20.
    李卫国,杨吉华,冀宪领,等.不同桑树品种水分生理特性的研究[J].蚕业科学,2003,29(1):24-27.
    [23]李运喜,康文星.杉木人工林水汽扩散规律研究[J].中南林学院学报,1998,18(2):34-38.
    [24]廖汝棠,张文军.毛乌素沙地适宜植被覆盖率研究-1沙生往物的分布及盖度状况[C].毛乌素沙地开发整治研究中心文集.内蒙古大学出版社.1992,84-92.
    [25]凌祖铭,李自超,余华,等.水、陆稻根部性状的研究[J].中国农业大学学报,2002,7(3):7~11.
    [26]刘昌明,于沪宁主编.土壤—作物—大气系统水分运动实验研究[M].北京:气象出版社,1997:36-79.
    [27]刘金祥,李文送,刘家琼.模拟光条件下有性繁殖香根草光合生理的研究[J].生态学杂志[J],2005,24(4):390-394.
    [28]刘鸿先,曾韶西,王以柔,等.低温对不同耐寒力黄瓜幼苗子叶各细胞器中超氧物歧化酶的影响[J].植物生理学报,1985(1):48-57.
    [29]刘玉燕,王艳荣,杨迎春.半干旱地区草坪草和主要杂草水势日变化特征分析[J].内蒙古大学学报(自然科学版),2003,34(3):308-311.
    [30]刘祖琪,张石城.植物抗旱生物学[M].北京:中国农业出版社,1994.
    [31]马成仓等.小叶锦鸡儿和狭叶锦鸡儿的光合特性及保护酶系统比较[J].生态学报,2004,24(8).
    [32]马成仓等.小叶锦鸡儿和狭叶锦鸡儿的生态和水分调节特性比较研究[J].生态学报,2004,24(7).
    [33]马全林,王继和,纪永福,等.固沙树种梭梭在不同水分梯度下的光合生理特征[J].西北植物学报2003,23(12):2120-2126.
    [34]马雪华.川西高山暗针叶林区的采伐与水土保持[J].林业科学,1963,1(1):21-26.
    [35]马宗仁,郭博.短芒披碱草和老芒麦在水分胁迫下游离脯氨酸积累的研究—植物的抗旱性
    [36]与脯氨酸积累能力关系的标准[J].中国草地,1991,(4):12-16.
    [37]满荣洲.华北油松人工林蒸腾的研究[J].北京林业大学学报,1986,18(2):1-7.
    [38]孟平,张劲松,王鹤松,等.苹果树蒸腾规律及其与冠层微气象要素的关系[J].生态学报,2005,25(5):1075-1081.
    [39]莫兴国,林忠辉,刘苏峡.基于Penman-monteith公式的双源模型的改进[J].水利学报.2000,(5)6-11.
    [40]潘瑞炽.植物生理[M].北京:高等教育出版社,2001.
    [41]齐亚东,周晓峰等.天然柞木次生林的能量关系和蒸腾、蒸发的研究[J].1987年国际森林水文学研究方法讨论会论文,1987,15-21.
    [42]阮成江,李代琼.半干旱黄土丘陵区沙棘叶水势及其影响因子[J].陕西林业科技,2000,(1):1-4.
    [43]阮宏华,郑阿宝,钟育谦.次生栎林蒸腾强度与蒸腾量的研究[J].南京林业大学学报,1999,23(4):32-35.
    [44]宋耀选,周茂先,张小由,肖洪浪.额济纳绿洲主要植物的水势与环境因子的关系[J].中国沙漠,2005,25(4):496-499.
    [45]苏培玺,张立新,杜明武,等.胡杨不同叶形光合特性、水分利用效率及其对加富CO_2的响应[J].植物生态学报,2003,27(1):34-40.
    [46]苏培玺,赵爱芬,张立新,等.荒漠植物梭梭和沙拐枣光合作用、蒸腾作用及水分利用效率特征[J].西北植物学报,2003,23(1):11-17.
    [47]苏培玺,严巧嫡,陈怀顺.荒漠植物叶片或同化枝~(13)C值及水分利用效率研究[J].西北植物学报,2005,25(4):727-732.
    [48]孙彩霞,沈秀瑛,刘志刚.作物抗旱性生理生化机制的研究现状和进展[J].杂粮作物,2002,22(5):285-288.
    [49]孙鹏森.京北水源保护林格局及不同尺度树种蒸腾耗水特性研究[M].北京林业大学博士学位论文,2000,1(1):1-11.
    [50]孙鹏森,马李一,马履一等.油松刺槐林潜在耗水量的预测及其与造林密度的关系[J].北京林业大学学报,2001,23(2):1-6.
    [51]孙伟,王德利,王立,等.白草(Pennisetum flaccidum)蒸腾特性与水分利用效率对有效光辐射强度和CO_2浓度的响应[J].草业科学进展,2002,120-126.
    [52]孙长忠,黄宝龙,陈海滨,等.黄土高原人工植被与其水分环境相互作用关系研究[J].北京林业大学学报,1998,20(3):7-14.
    [53]邵明安,杨文治,李玉山.土壤—植物—大气连续体中的水流阻力及相对重要性.水利学报.1986(9):8-14.
    [54]邵明安,杨文治,李玉山.植物根系吸收土壤水分的数学模型.土壤学报,1987,24(4):295-305
    [55]山仑,徐萌.节水农业及其生理生态基础[J].应用生态学保,1991,2(1):70-76.
    [56]山仑.提高农田水分利用效率的途径[J].植物生理学通讯,1997,33(6):475-476.
    [57]汤章城.植物对水分胁迫的反应和适应性[J].植物生理学通讯,1983,4.
    [58]田晶会,贺康宁,王百田,等.黄土半干旱区侧柏蒸腾作用及其与环境因子的关系[J].北京林业大学学报.2005,27(3):53-56.
    [59]王安志.裴铁璠.森林蒸散测算方法研究进展与展望[J].应用生态学报.2001,12(6):933-937.
    [60]王斌瑞,王百田.黄土高原径流林业[M].北京:中国林业出版社,1996.
    [61]王飞.历史时期黄土高原生态环境建设分析[J].水土保持研究,2001,8(2):137-141.
    [62]王贺正,马均,李旭毅等.水稻开花期抗旱性鉴定指标的筛选[J].作物学报,2005,31(11):1485-1489.
    [63]王华田.北京市水源保护林区主要树种耗水性的研究[M].博士学问论文.北京林业大学,2002.
    [64]王会肖,刘昌明.作物水分利用效率内涵及研究进展[J].水科学进展,2000,11(1):99-104.
    [65]王克勤.黄土高原半干旱区集水造林水利用效率的研究[J].北京林业大学博士论文,1997.
    [66]王克勤,等.集水造林防止人工林植被土壤干化的初步研究[J].林业科学,1998,34(4):14-21.
    [67]王克勤,王斌瑞.土壤水分对金矮生苹果光合速率的影响[J].生态学报,2002,22:206-214.
    [68]王学臣,贾文琐.水分胁迫下蚕豆气孔关闭与叶细胞ABA区隔化与再分配的关系[J].植物生理学报,1995,21(4):324-328.
    [69]王彦辉,张星耀,张守攻.我国林业生态环境的建设[J].科学对社会的影响,2002,(3):31-37.
    [70]武宝玕,格林·托德.小麦幼苗中过氧化物歧化酶活性与幼苗脱水耐力相关性的研究[J].植物学报,1985,27(2):152-160.
    [71]武应霞,苗作云,汪泽军,何威.桃、杏、樱桃幼树叶水势日间变化及其与气象因子关系的研究[J].河南林业科技,2005,25(2):6-8.
    [72]杨晓光.夏玉米农田SPAC系统水分传输势能及其变化规律研究[J].中国生态农业学报,2003,11(1):27-29.
    [73]魏天兴,朱金兆,张学培,等.晋西南黄土区刺槐油松林地耗水规律的研究[J].北京林业大学学报.1998,20(4):36-40.
    [74]魏天兴,朱金兆.林分蒸散耗水量测定方法述评[J].北京林业大学学报,1999,21(3):85-91.
    [75]魏天兴,朱金兆,张学培.林分蒸散耗水量测定方法述评[J].北京林业大学学报.1999,21(3):85-91.
    [76]吴琦,张希明.水分条件对梭梭气体交换特性的影响[J].干旱区研究.2005,22(1):79-84.
    [77]谢贤群,吴凯.麦田蒸腾需水量的计算模式[J].地理学报,1997,52(6):528-535.
    [78]熊伟,王彦辉,程积民,等.三种草本植物蒸散量的对比试验研究[J].水土保持学报,2003,17(1):170-172.
    [79]熊伟,王彦辉,于澎涛.树木水分利用效率研究综述[J].生态学杂志2005,24(4):417-421.
    [80]徐炳成,山仑,李凤民.黄土丘陵半干旱区引种禾草柳枝稷的生物量与水分利用效率[J].生态学报.2005,25(9):2206-2213.
    [81]徐恒刚.内蒙古西部沙区荒漠灌丛植被及沙区生态建设[M].北京:中国农业科学技术出版社,2005:11~13.
    [82]许红梅,高琼,黄永梅,等.黄土高原森林草原区6种植物光合特性研究[J].植物生态学报,2004,28(2):157-163.
    [83]杨建伟,梁宗锁,韩蕊莲,等.不同干旱条件下杨树的耗水规律及水分利用效率的研究[J].植物生态学报,2004,28(5):630-636.
    [84]杨建伟,韩蕊莲,刘淑明,等.不同土壤水分下杨树的蒸腾变化及抗旱适应性研究[J].西北林学院学报2004,19(3):7-10.
    [85]杨丽涛,陈超军,李杨璐,等.甘蔗叶片气体交换及对光的响应和水势的日变化[J].甘蔗,2002,9(2):1~9.
    [86]叶其蓝,黄辉白,高飞飞.柑桔叶与果之间的水分转移:水势测定与氚水示踪的新证据[J].园艺学报,1989,16(1):5-10.
    [87]杨朝选,王新峰.干旱过程中桃树茎和叶水势的变化[J].果树科学,1999,16(4):267-271.
    [88]杨朝选,焦国利,郑先波.重水分胁迫下苹果树茎、叶水势的变化[J].果树学报.2002,19(2):71-74.
    [89]余新晓.土壤水动力学及其应用[M].北京:中国林业出版社,1995:143-149.
    [90]喻方圆,徐锡增,Robert D.Guy.水分和热胁迫处理对4种针叶树苗木气体交换和水分利用效率德影响[J].林业科学,2004,40(2):38-44.
    [91]王爱国,邵从本,罗广华等.丙二醛作为植物脂质过氧化指标的探讨[J].植物生理学通讯,1986,22(2):55-57.
    [92]曾小平,赵平,蔡锡安,等.不同土壤水分条件下焕镛木幼苗的生理生态特性[J].生态学杂志,2004,23(2):26-31.
    [93]詹志明,冯兆东,秦其明.陇西黄土高原陆面蒸散的遥感研究[J].地理与地理信息科学,2004,20(1):16-19.
    [94]张卫强.博士论文.黄土半干旱地起主要树种光合生理与耗水特性研究[M].2006.
    [95]张光灿,刘霞,贺康宁,王百田.金矮生苹果叶片气体交换参数对土壤水分的响应[J].植物生态学报,2004,28(1)66-72.
    [96]张锦春.灌溉植被梭梭、互叶醉鱼草光合蒸腾特性及影响因素研究[J].西北植物学报,2005,25(1):0070-0076.
    [97]张其书.气候生产潜力的阶乘数学模式[J].自然资源.1982(2):56-60.
    [98]张明炷,石秀兰.不同土水势对油菜的影响及适宜灌水势值研究[J].农田水利,1992,5:8-11.
    [99]张秋英,李发东,高克昌,等.水分胁迫对冬小麦光合特性及产量的影响[J].西北植物学报,2005,25(6):1184-1190.
    [100]张富仓,张一平,张君常.温度对土壤水分保持影响的研究[J].土壤学报,1997,34(2):160-169.
    [101]张一平,白锦鳞.温度对土壤水势影响的研究[J].土壤学报,1990,27(4):454-458.
    [102]张木清,陈如凯,等.作物抗旱分子生理与遗传改良[M].北京:科学出版社,2005.
    [103]张喜英.冬小麦、夏玉米叶水势、蒸腾和液态水流阻力的田间试验研究[J].地理学报.1997,52(6):543-550.
    [104]张岁岐,山仑.植物水分利用效率及其研究进展[J].干旱地区农业研究,2002,20(4):1~5.
    [105]张正斌,山仑,徐旗.控制小麦种、属旗叶水分利用效率的染色体背景分析[J].遗传学报,2000,27(3):240-246.
    [106]张宪政.作物生理研究法[M].北京:农业出版社,1992.
    [107]张志良,瞿伟菁.植物生理学实验指导[M].北京:高等教育出版社,2003.
    [108]赵一之.鄂尔多斯高原维管植物[M].呼和浩特:内蒙古大学出版社,2006.
    [109]赵立新,荆家海,王韶唐.陕西渭北旱塬土壤—植物—大气连续体中水分运转规律的研究V.田间冬小麦土壤—叶片途径水运转阻力研究[J].西北植物学报,1996,16(6):26-35.
    [110]赵萍.宁夏毛乌素沙地SPAC系统水分运移特征的研究[D].北京:北京林业大学,2004:25-39.
    [111]郑有飞,万长建,颜景义,等.小麦的水分利用效率及其最优化问题[J].中国农业气象,1997,18(4):13~28.
    [112]周泽福,刘致远,张光灿.黄土丘陵区金矮生苹果园土壤水分有效性及生产力分级[J].林业科学研究,2005,18(1):10-15.
    [113]朱首军,丁艳芳 薛泰谦.土壤-植物-大气(SPAC)系统和农林复合系统水分运动研究综述[J].土保持研究.2000,7(4):49~53.
    [114]Alan K.K.Gas exchange dynamics in C_3 and C_4 grasses consequences of differences in stomatal conductance[J].Ecology,1993,(74):113-123.
    [115]Alves PA,Pereira LS.Aerodynamic and surface resistances of complete cover crops:How good is the "bif beaf" ?.Tranc ASAE,1998,41(2):345-351.
    [116]Anderson JE.Transpiration and photosynthesis in salt cedar,Hydrology and Water Resources in Arizona and Southwest,1997,7:125-131.
    [117]Atkinson CJ,Policarpo,Webster M,etal.Drought tolerance of clonal Malus determ -ined from measurements of stomatal conductance and leaf water potential[J].Tree Physiol,2000,20:557-563.
    [118]Bhaskar JC.Global pattern of potential evaporation calculated from the Penman-Monteith equation using satellite and assimilated data.Remote Sens Environ,1997,61:64-81.
    [119]Boast C W.Robertson TM.A micro-lysimeter method for determining evaporate on bare soil description and laboratory evaluation.Soil Sci.Soc.Am.J,1982,46:689-696.
    [120]Bunce J A,Sicher R C.Water stress and dry-to-day variation in apparent photosynthetic acclimation of field-grown soybeans to elevated carbon dioxide concentration.Photosynthetica,2001,39(1):95-101.
    [121][26]Busch DE,Smith SD.Effects of fire on water and salinity relations of riparian woody taxa.Oecologia,1993.94:186-194.
    [122]Busch DE,Smith SD,Mechanisms associated with decline woody species in riparian ecosystems of the southern US.Ecol Monogr,1995,65:347-370.
    [123]Cutchan M,Schackel HKA.Stem-water potential as a sensitive in dicator of water stress in prune trees(Prunus domestica L.)[J].J.Am.Soc.Hort.Sci,1992,117:607-611.
    [124]Davies WJ,Zhang J.Rootsignals and the regulation of growth and development of plants in drying soil[J].Ann.Rev.Plant Physiol.Plant Mol.Biol,1991,42:55-76.
    [125]Denmead OT.Plant physiologican methods for studying evapotranspiration;problems of telling the forest from the trees.Agric Water Manag,1984,8:167-189.
    [126]Dhindsa RS,Plumb-Dhindse P,Jhorpe TA.Leaf Senescence:Corretaled with increased levels of membrance permeability and lipid peroxidation,and decreased levels of superoxide desmutase and Catalase[J].J.Exp.Bot.1981,32:93-101.
    [127]Dolman AJ..A multiple-source landsurface energy balance modle for use in general circulation models.Agric For Meteorol,1993,65:21-45.
    [128]Ehleringer J R,Klassen S,Clayton C,etal.Carbonisotope discrimination and transpiration efficiency in common bean[J].Crop.Sci.,1991,31(6):1611 -1615.
    [129]Emil C,Anders L.Gas exchange and sap flow measurements of Salix viminalis trees in a short-rotation forest[J].Trees,1995,9:295-301.
    [130]Esmaiel M.1992.Night-time evapotranspiration vs.daytime and 24h evapotran- spiration.J Hydrol,138:119-129.
    [131] Farquhar G D, Ehleringer J R, Hubick K T. Carbon isotope discrimination and photosynthesis [J].Annu. Rev. Plant Phys., 1989, 40:503-537.
    [132] Fuqin L, Lyons TJ. Estimation of regional evapotranspiration though remote sensing[J]. appl Meteorol, 1999.38:1644-1654.
    [133] Gardner, W.R., Nieman, RH. Lower limit of water availability to plants. Science 1964, 143:1460-1462.
    [134] Gifford R M. Interaction of carbon dioxide with growth-limiting environmental factors invegetation productivity: implications for the global carbon cycle [J]. Advances in Bioclimatology, 1992, 1:24-58.
    [135] Ghannoum O, Caemmerer Svon, Barlow E W R. The effects of CO_2 enrichment and irradiance on the growth, morphology and gas exchange of a C_3 and a C4 grass [J]. Australian Journal of Plant Physiology, 1997, 24:227-237.
    [136] Grainier, A., et al. Comparison of xylem sap flow and water vapour flux at the stand level and derivation of canopy conductance for Scots pine[J]. Theoretical and Applied Climatology, 1996, 53(1/3)115-122.
    
    [137] Griffiths H, Parry M A J. Plant responses to water stress [J]. Ann. Bot. 2002, 89: 801-802.
    [138] Handly LL, EviatarN, John A R, et al. Chromosome 4 controls potential of water use efficiency (513) in barley [J].JExp Bot, 1994, 280:1661-1663.
    [139] Hergert G W. Cropping systems for soil and water conservation in the great plains. In: Proceedings of International Conference on Dryland Farming [J].Amarillo/Bushland, Texas USA, 1988.
    [140] JoshuaL A, Ann S E. Physiological variation among Populus fremotii populations: short and long-term relationships between δ~(13) andwateravailability [J].TreePhysiol., 2001, 21: 1149-1155.
    [141] Kelliher FM, Whitehead D, Mcaneney KJ et al. Partitioning evapotranspiration into tree and understorey components in two young Pinus radiate D.DON stands. Agric For Meteorol, 1990, 50:211-227.
    [142] Kellomaki S, Wang Kai-Yun. Effects of long-term CO_2 and temperature elevation on crown nitrogen distribution and daily photosynthetic performance of Scotspine [J]. Forest Ecology and Management, 1997, 99:309-326.
    [143] Kirkham M B, He H, Bolger T P, et al. Leaf photosynthesis and water use of big blue stem under elevated carbon dioxide [J].Crop.Sci., 1991, 31(6):1589-1594.
    [144] Lawlor D W. Limitation to photosynthesis in water-stressed leaves: stomata vs metabolism and the role of ATP [J]. Ann. Bot. 2002, 89: 871-885.
    [145] Ladefoged K. Transpiration of forest trees in closed stand.Physiologia Plantarum, 1963, 16:378-414.
    [146] Lindroth A Iritz Z. Surface energy budget dynamics of short-rotation willow forest. Theor Appl Climatol, 1993,47:175-185.
    [147]Li Y G, Jiang S L, Niu M Z, Liu M Z. Peng Y, Yu S L, and Gao L M. Gas exchang and water use efficiency of three native tree species in Hunshandak Sandland of China [J]. PHOTOS YNTHETICA, 2003, 41(2):227-232.
    [148] Luis SP, Alain P, Richard GA et al. Evapotranspiration:Concepts and future trenhds. J Irrig Drain Engin, 1999, 125(2): 45-51.
    [149] Masle J, Farquhar G D. Effects of soil strength on the relation of water use efficiency and growth to carbon isotope discrimination in wheat seedlings [J]. Plant Physiol, 1988, 83:32-38.
    [150] Mc Cord J M, Fridovich I. Superoxide dismutase: An enzymic function for erythrocupein (Homocupxein)[J].J.Biol.Chem, 1969, 244: 6049-6055.
    [151] Meijninger WML, de Bruin HAR.The sensible heat fluxes over irrigated areas in western Turkey determined with a large aperture scintillometer.J Hydrol, 2000,229:42-49.
    [152]Mian M A R, Bailey M A, Ashley D D, et al. Molecular markers associated with water use efficiency and leaf ash in soybean [J]. Crop Sci, 1996, 36:1252-1257.
    [153] Mladen T. Single-layer evapotranspiration model with wariable canopy resistance. J Irrig Drain Engin, 1999,125(5):235-245.
    [154] Mohammad, F.S. Calibration and use of evapotranspiration equations under arid climatic conditions[J]. International Agriculture Engineering Journal, 1998, 7(3-4): 185-200.
    [155] Schimel D, Ives D. CO_2 and carbon cycle. Cambridge: Cambridge University Press [J], 1996: 65-131.
    [156] Munro DS. Stomatal conductances and surface conductance modeling in a mixed wetland forest. Agric For Meteorol, 1989, 48:235-249.
    [157] Naor A, Klein I, Doron I.Stem water potential and apple fruit size[J].J Amer Soe Hort Sci, 1995, 120:557-582.
    [158] Ni B R, Stephen G P. Response of gas exchange to water stress in seedlings of woody angiosperms [J]. Tree Physiol, 1991, 8(1): 1-9.
    
    [159] Paul J K, John S B. Water relations of plants and soils [M]. SanDiego: 1995, Academy Press
    [160] Pearcy R W, Ehleringer J. Comparative eco-physiology of C_3 and C_4 plants [J]. Plant, Cell Environ. 1984, (7):1-13.
    [161] Perez PJ, Castellvi F, Ibanez M et al. Assessment of reliability of Bowen ratio method for partitioning fluxes. Agric For Meteorol, 1999, 97:141-150.
    [162] Rao N R C, Wright G C. Stability of the relationship between specific leaf area and carbon isotope discrimination across environment in peanut [J]. Crop Sci, 1994, 34: 98-103.
    [163] Roberts, J. The use of tree-cutting techniques in the study of the water relations of pinus sylvestris[J].L.J.Exp.Bot., 1977, 28:751-767.
    [164] Selles G, Berger A. Physiological indicators of plant water status as criteria for irrigation scheduling[J].Acta Hort, 1990, 278:87-100.
    [165] Seppo K and Wang K Y. Photosynthetic responses to needle water potentials in Scots pine after a four-year exposure to elevated CO_2 and temperature [J]. Tree Physiol, 1996, 16(9): 765-772.
    [166] Shackel KA.Ahunadi H.Plant water status as an index of irrigation need in deciduous fruit trees[J].Hort Tecnology, 1997, 7:23-29.
    [167] Stirling C M, Heddell-Cowie M. Jones M L, etal. Effects of elevated CO_2 and temperature on growth and allometry of five native fast-growing annual species. New Phytologist [J], 1998, 140: 343-354.
    [168] Saylan L, Bernhofer C. Using the Penman-Monteith approach to extrapolate soybean evapotranspiration.Theor Appl Climatol, 1993, 46:241-246.
    [169]Sperry, J.S., Pockman, W.T. Limitation of transpiration by hydraulic conductance and xylem cavitation in Betula occidentals[J]. Plant Cell Environ, 1993, 16:279-287.
    [170] Swanson, R.H. Significant historical developments in thermal methods for measuring sap flow in trees[J]. Agric. For. Meteorol, 1994, 72:113-132.
    [171] Smith, et al. Measurement of sap flow in stems[J]. J. Exp. Bot., 1996, 47:1833-1844.
    [172] Tardieu F, Davies W J.Stomatal response to abscisic acid is a function of current plant water status[J].PlantPhysiol, 1992, 98:540-545.
    [173] Sobrado M A, Turner N C, Comparison of the water relations characteristics of Heilianthus annuns and Helianthns petiolaris when subjected to water deficits, Oecologia, 1983, 58:309.
    [174] Tardieu F, Davies WJ.Integration of hydraulic and chemical signaling in the control of stomatal conductance and water status of draughted plants[J]. Plant Cell Environ, 1993, 16:341-349.
    [175] Tear I D. Crop-Water Relations [J]. A Wiley-Interscience Publication, 1982.
    [176] Tezara W., Mitchell V.J., Driscoll S.D. and Lawlor D.W. Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP [J]. Nature , 1999, 401:914-917.
    [177] Tjoelker M G, Reich P B, Oleksyn J. Changes in leaf nitrogen and carbohydrates underlie temperature and CO_2 acclimation of dark respirationin five boreal tree species [J]. Plant, Cell & Environment, 1999, 22:767-778.
    [178] Umeo Takahama. Stimulation of light-induced lipid peroxidation by salts isolated chloroplasts in the presence of carbonylcyanide m-chlorophenylhydrazone[J]. Plant and Cell Physiol, 1980, 21(8): 1667-1673.
    [179] UNESCO. Plant-water relationships in arid and semi-arid conditions[J].Arid zone research, 1960.
    [180] Undersander D J. Management of sorghum under limited irrigation [J]. AgronJ., 1986, 78:28-32.
    [181] Usami T, Lee J, Oikawa T. Interactive effects of increased temperature and CO_2 on the growth ofquercus myrsinaefolia saplings [J]. Plant, Cell and Environment, 2001, 24:1007-1019.
    [182] Vertessy, R.A., Hatton, T.J., Reece, P., et al. Estimating stand water use of large mountain ash trees and validation of the sap flow measurement technique[J]. Tree physiology, 1997, 17:747-756.
    [183] Walker G K.Measurement of evaporation from soil beneath crop canopies.Canadian J.of Soil Sci, 1983, 63:137-141.
    [184] Walter H, Box EO. The desert of Central Asia. In: West NE ed. Ecosystems of the World 5: Temperate Deserts and Sem: Desert. Elsevier, Amsterdam. 1983, 193-236.
    [185] Zackary Johnson, Richard T. The low-light reduction in the quantum yield of photosynthesis: potential errors and biases when calculating the maximum quantum yield [J]. Photosynthesis Research, 2003, 75:85-95.
    [186] Zackary Johnson, Richard T. The low-light reduction in the quantum yield of photosynthesis: potential errors and biases when calculating the maximum quantum yield [J]. Photosynthesis Research, 2003, 75:85-95.
    [187] Zhang Z J, Shi L, Zhang J Z, et al. Photosynthesis and growth responses of Parthenocissus quinquefolia Planch to soil water availability. Photosynthetica, 2004, 42 (1): 87-92.
    [188] Kozlowski T T, Pallar d y SG. Physiology of woody plants [M]. US: Academic Press, 1996, 270-286.
    [189] Zhang J W, Feng Z, Cregg B M, et al. Carbon isotopic composition, gas exchange, and growth of three populations of ponderosa pine differing in drought tolerance [J].TreePhysiol, 1997,17(7): 461-466.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700