用户名: 密码: 验证码:
高速列车运行于无砟轨道引起的地面振动数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,中国铁路实现了跨越式的发展,高速铁路也初具规模,由此引发的环境振动势必影响到铁路沿线居民的正常生活。因此有必要开展高速铁路引起的地面振动的研究,掌握其振动特性和传播规律。本文以软土地区高速铁路无砟轨道为例展开研究。在总结了轨道交通引起的环境振动问题研究方法、基本研究内容以及国内外高速铁路引起的环境振动问题的基础上,本文利用车辆轨道耦合理论建立了列车-轨道垂向耦合模型,采用有限元方法利用ANSYS有限元软件建立了路堤-地基二维有限元模型和轨道-路堤-地基三维有限元模型,结合上述模型分别从二维和三维角度进行了研究。
     首先,利用简化的路堤-地基二维有限元模型,研究了0-90Hz范围内简谐载荷作用下的均匀弹性半空间土体和分层土体地面振动衰减规律。结果表明:简谐载荷作用下的均匀弹性半空间土体的竖向地面振动呈波动衰减,频率越高衰减越快,在距离线路一定的范围内地面振动的中高频部分不容忽视;对于分层土体,地面振动随距离衰减的波动更加剧烈,而且存在较为明显的反弹现象。
     接着,在谐响应分析的基础上,利用列车-轨道垂向耦合模型获取沿线路纵向各个位置的路基表面上作用力作用于二维有限元模型中,研究高速列车运行于无砟轨道线路时引起的竖向地面振动加速度的时域、频域特征以及传播规律。利用平面应变问题等效思想,得到作用在有限元模型路基表面的等效载荷,并发现其中高频成分较为突出。仿真结果表明:虽然时域特征与实际差距较大,但是主频在中频范围内,而且与轴距引起的特征频率较为接近;竖向地面振动加速度幅值在近轨道处非常明显,20m以后已很小且衰减缓慢;计权竖向地面振动加速度级的衰减在30m之前较为迅速,30m以后衰减较慢。
     最后,利用列车-轨道垂向耦合模型获取沿线路纵向钢轨扣件载荷,输入到三维有限元模型中,进行高速铁路引起的地面振动规律研究。通过竖向地面振动位移时程曲线发现,至少50m范围内竖向地面振动能够明显反映列车的经过。沿垂直线路方向的振动位移能够较为明显反映土体特性和桩基加固对地面振动的影响。振动速度和加速度是振动位移的一阶、二阶偏导,其中轴距引起频率所在范围20-50Hz的振动特征更加明显。竖向地面振动加速度幅值和计权竖向地面振动加速度级沿垂直线路方向的衰减趋势与二维模型较为接近,但受三维模型尺寸的限制整体偏大,而二维模型结果跟实测更为接近。受轨道不平顺的影响,竖向地面振动位移、速度和加速度沿平行线路方向的变化并不均匀,竖向地面振动加速度幅值和计权竖向地面振动加速度级总体上存在较小差距,在一定程度上可以采用二维模型预测列车以350km/h及以上速度运行于无砟轨道线路引起的地面振动加速度,并用于对人体影响的评价。
Chinese railway realizes a tremendous development nowadays with high-speed railway taking shape, and environmental problem induced by high-speed railway will without doubt affect the normal life of residents nearby. Therefore, it is necessary to carry out research about ground vibration caused by high-speed railway and grasp vibration characteristics and propagation regularity. This paper discusses about ground vibration of non-ballasted high-speed railway in soft soil region. After three parts of summary which is about research method in rail-transit-induced environmental problems, basic problems and environmental problems caused by high-speed railway, a vertical train-track coupled model is established according to vehicle-track coupled dynamics, and two FEM models, containing a2D embankment-foundation FEM model and a3D track-embankment-foundation FEM model, are also established by means of FEM method in ANSYS software. By combining these models above, the investigation is carried out in both2D and3D aspect.
     First of all, by using the simplified2D embankment-foundation FEM model, ground vibration attenuations of homogeneous elastic half space and layered ground with the harmonic load between0and90Hz are discussed. Results show that vertical ground vibration of homogeneous elastic half space reveals a fluctuating decay under the harmonic load, and the higher the frequency is, the faster the attenuation is. Within a certain distance from the track centerline, ground vibration induced by mid and high frequencies should not be neglected. For layered ground, the fluctuation of the decaying of ground vibration is more severe, and there occurs obvious rebound.
     On the basis of harmonic response analysis, forces on the surface of subgrade along the track are obtained from the vertical train-track coupled model, and applied onto the2D FEM model to investigate time-domain characteristics, frequency-domain characteristics and propagation behavior of vertical ground vibration acceleration, when the high-speed train is running on non-ballasted track in soft region. The forces are converted to an equivalent force loading on subgrade surface of the2D model according to the plain-strain equivalent methodology, and the equivalent force contains mid-frequencies and high-frequencies. Simulation results show, despite of the differences in time-domain characteristics, the domain frequency is in the mid-frequencies, close to wheelbase-induced characteristic frequency. The time-domain peak values of vertical ground vibration are apparent near the railway, and then become very small with slow attenuation after20m away. Frequency-weighted vertical acceleration level of ground vibration presents a dramatic decrease within30meters, and then gets slower after that.
     At last, rail fastener loads along the track are achieved using the vertical train-track coupled model, and are applied onto the3D FEM model to investigate the regulation of vertical ground vibration when the high-speed train is running on non-ballasted track. It shows vertical ground vibration displacement can reflect the passage of train at least within50m from track centerline. Vibration displacement along transverse direction can reflect soil characteristics and the effect of pile foundation reinforcement clearly. Vibration velocity and acceleration are respectively the first derivative and second derivative of vibration displacement, thus vibration characteristics is more obvious in the frequency band which contains the wheelbase-induced frequency. Compared with the2D case, both time-domain peaks of vertical vibration acceleration and frequency-weighted vertical acceleration level of ground vibration have the consistent tendency but larger values because of the limitation of model size. Due to the track irregularity, variation of vertical ground vibration displacement, velocity and acceleration along longitudinal direction of the trackline is not homogeneous, but for time-domain peaks of vertical vibration acceleration and frequency-weighted vertical acceleration level of ground vibration, there is a little difference in general. The2D FEM model can somewhat forecast vertical ground vibration acceleration with train passages at speed of350km/h on non-ballasted track, and it also can be used for evaluating human perception.
引文
[1]王金凤,贺玉龙.高速铁路运营引发的环境振动研究综述[J].工业安全与环保,2012,38(1):43-45.
    [2]刘腾,雷晓燕,刘庆杰.高速铁路沿线地面环境振动特性的实测与分析[J].华东交通大学学报,2011,28(4):19-22.
    [3]夏禾,曹艳梅.轨道交通引起的环境振动问题[J].铁道科学与工程学报,2004,1(1):44-51.
    [4]C. Madshus, B. Bessason, L. Harvik. Prediction model for low frequency vibration from high speed railways on soft ground[J]. Journal of Sound and Vibration,1996,193(1):195-203.
    [5]蔡翔宇.基于交通荷载随机特性的环境振动评价方法研究[D].硕士学位论文,浙江:浙江大学,2007.
    [6]L. Hall. Simulations and analyses of train-induced ground vibrations in finite element models[J]. Soil Dynamics and Earthquake Engineering,2003,23(5):403-413.
    [7]X. sheng, C.J.C. Jones, D.J. Thompson. A comparison of a theoretical model for quasi-statically and dynamically induced environmental vibration from trains with measurements[J]. Journal and Sound Vibration,2003,267(3):612-635.
    [8]H.H. Hung and Y.B. Yang. A review of researches on ground-borne vibrations with emphasis on those induced by trains[J]. Proceeding of National Science Council,2001,25(1):1-16.
    [9]孙树民.土-结构相互作用研究进展[J].中国海洋平台,2001,16(5-6):3 1-37.
    [10]谢伟平,王国波.移动荷载作用下轨道系统的动力特性分析[J].郑州大学学报(工学版),2003,24(1):24-27.
    [11]谢伟平,童亮.小波分析及其在轨道系统中的应用[J].武汉科技大学学报(自然科学版),2004,27(4):372-376.
    [12]黄菊花,何成宏,杨国泰,刘卫东.地基中振动波传播的有限元分析[J].振动与冲击,1999,18(1):38-43.
    [13]张玉娥,牛润明.引入无限元的地铁区间隧道地震反应分析[J].石家庄铁道学院学报,2001,14(3):71-74.
    [14]谢伟平,张良涛.移动荷载下基于RBF神经网络的地基土参数识别[J].武汉理工大学学报,2005,27(12):53-56.7-59.
    [15]刘兴业.土、结构相互作用问题的边界元、有限元耦合法[J].振动工程学报,1994,7(1):45-52.
    [16]章东强,谢伟平,于艳丽.交通荷载引起的环境振动实测与分析[J].武汉理工大学学报,2004,26(9):57-59.
    [17]王逢朝,夏禾,吴萱.列车振动对环境及建筑物的影响分析[J].北方交通大学学报,1999,23(4): 13-17.
    [18]韩雪华,蒋伟康.车辆行驶对高层建筑微振动影响的试验研究[J].噪声与振动控制,2002,(1):9-12.
    [19]Y. Yuan, W.N. Liu, W.F. Liu, W.B. Wang, L.X. Ma. In-situ measurement and propagation analysis of ground vibration induced by metro traffic[A]. Advances in Environmental Vibration[C],2011: 159-165.
    [20]GY. Gao, G.Q. Chen, Q.S. Chen, J.Q. Zhai. Field measurement and numerical analysis of ground vibration caused by metro[A]. Advances in Environmental Vibration[C],2011:128-133.
    [21]Y.M. Chen, X.C. Bian, H.G Jiang, H.P. Song, Z.Z. Wang. Vertical track irregularity caused by subgrade settlement and its design criteria for high-speed railway[A]. Advances in Environmental Vibration[C],2011:601-612.
    [22]徐忠根,任珉,杨泽群,周福霖,刘浪静.广州市地铁一号线振动传播对环境影响的测定与分析[J].环境技术,2002,(4):12-14.
    [23]D.V. Jones, H.D. Le, A.T. Peplow, M. Petyt. Ground vibration in the vicinity of a moving harmonic rectangular load on a half-space[J]. European Journal of Mechanics,1998,17(1):153-166.
    [24]D.V. Jones. Ground vibration due to a rectangular harmonic load[J]. Journal and Sound Vibration,1998, 212(1):61-74.
    [25]谢伟平,王国波,于艳丽.移动荷载引起的土变形计算[J].岩土工程学报,2004,26(3):318-322.
    [26]M. Katou, T. Matsuoka, O. Yoshioka, Y. Sanadac, T. Miyoshi. Numerical simulation study of ground vibrations using forces from wheels of a running high-speed train[J]. Journal and Sound Vibration, 2008,318(4-5):830-849.
    [27]C.J.C Jones and J.R. Block. Prediction of ground vibration from freight trains[J]. Journal and Sound Vibration,1996,193(1):205-213.
    [28]H. Lan, T. Ekevi, P. Kettil, C. Y. Chingc, N.E. Wiberg. Vehicle-track-underground modeling of rail induced wave propagation[J]. Computers and Structures,2007,85(15-16):1215-1229.
    [29]翟婉明.车辆-轨道垂向耦合动力学[D].四川成都:西南交通大学,1991.
    [30]翟婉明.车辆-轨道垂向系统的统一模型及其耦合动力学原理[J].铁道学报,1992,14(3):10-21.
    [31]翟婉明,孙翔,詹斐生.机车车辆与轨道垂向相互作用的计算机仿真研究[J].中国铁道科学,1993,14(1):42-50.
    [32]和振兴.板式无砟轨道交通引起的环境振动研究[D].博士学位论文,西南交通大学,2008.
    [33]和振兴,翟婉明,杨吉忠,赵怀耘.铁路交通地面振动的列车-轨道-地基耦合数值方法研究[J].振动工程学报,2008,21(5):488-492.
    [34]G. Kourouss, O. Verlinden, and C. Conti. Ground propagation of vibrations from railway vehicles using a finite/infinite-element model of the soil[J]. Journal of Rail and Rapid transit,2009,223(4): 405-413.
    [35]杨光辉,张鸿儒,夏禾.列车运行引起的桥下地面振动衰减特性[J].北方交通大学学报,1999,23(5):59-62.
    [36]孙麒云,张鹤年.城市轨道交通引起的地面振动实测与分析[J].铁道标准设计,2011,(7):98-101.
    [37]高广运,李志毅,冯世进,孙雨明.秦-沈铁路列车运行引起的地面振动实测与分析[J].岩土力学,2007,28(9):1817-1827.
    [38]高广运,何俊锋,杨成斌,赵元一.2.5维有限元分析饱和地基列车运行引起的地面振动[J].岩土工程学报,2011,33(2):234-241.
    [39]G. Lombaert, G. Degrande, B. Vanhauwere, B. Vandeborght, S. Francois. The control of ground-borne vibrations from railway traffic by means of continuous floating slabs[J]. Journal of Sound and Vibration,2006,297(3-5):946-961.
    [40]C.K. Hui, C.F. Ng. The effects of floating slab bending resonances on the vibration isolation of rail viaduct[J]. Applied Acoustics,2009,70(6):830-844.
    [41]韦凯,周顺华,翟婉明,肖军华,周萌.地铁与建筑物合建中不同固有频率钢弹簧浮置板轨道的适用性分析[J].土木工程学报,2011,44(11):134-142.
    [42]李俊岭.地铁钢弹簧浮置板轨道对环境振动的影响分析[D].硕士学位论文,成都,西南交通大学2011.
    [43]黄应州,高亮.防振沟对铁路引发振动的阻隔作用[J].铁道建筑,2005,(10):76-77.
    [44]侯德军,雷晓燕,罗信伟.铁路隔振沟减振的数值分析[J].铁道科学与工程学报,2006,3(2):48-52.
    [45]韦红亮,吕绍棣.铁路环境振动单排桩隔振数值分析[J].华东交通大学学报,2008,25(2):10-15.
    [46]李宁,高广运,郑建国.水平激振下波阻板主动隔振试验与数值计算[J].地下空间与工程学报,2010,6(1):90-95.
    [47]H. Takemiya. Wave propagation/impediment in a stratum and wave impeding block (WIB) measured for SSI response reduction[J]. Soil Dynamics and Earthquake Engineering,1994,13(1):49-61.
    [48]H. Takemiya. Field vibration mitigation by honeycomb WIB for pile foundations of a high-speed train viaduct[J]. Soil Dynamics and Earthquake Engineering,2004,24(1):69-87.
    [49]V.V. Krylov. Generation of ground vibrations by superfast trains[J]. Applied Acoustics,1995,44(2): 149-164.
    [50]C. Madshus and A.M. Kaynia. High-speed railway lines on soft ground: dynamic behaviour at critical train speed[J]. Journal and Sound Vibration,2000,231(3):689-701.
    [51]S.H. Ju and H.T. Lin. Analysis of train-induced vibrations and vibration reduction schemes above and below critical Rayleigh speeds by finite element method[J]. Soil Dynamics and Earthquake Egineering, 2004,24(12):993-1002.
    [52]尹浩,李耀增,辜小安等.高速铁路环境振动特性研究[J].噪声与振动,2010,37(1):32-36.
    [53]W.M. Zhai, Z.X. He, X.L. Song. Prediction of high-speed train induced ground vibration based on train-track-ground system model[J]. Earthquake Engineering and Engineering Vibration,2010,9(4): 545-554.
    [54]边学成.高速列车荷载作用下高架桥和地基振动分析[J].振动工程学报,2006,19(4):438-444.
    [55]G. Degrande, L. Schillemans, Free field vibrations during the passage of a Thalys high-speed train at variable speed[J]. Journal of Sound and Vibration,2001,247(1):131-144.
    [56]G Lombaert, G Degrande. Ground-borne vibration due to static and dynamic axle loads of InterCity and high-speed trains[J]. Journal of Sound and Vibration,2009,319(3-5):1036-1066.
    [57]H. Takemiya. Simulation of track-ground vibrations due to a high-speed train: the case of X-2000 at Ledsgard [J]. Journal and Sound Vibration.2003,261(3):503-526.
    [58]H. Takemiya. Analyses of wave field from high-speed train on viaduct at shallow/deep soft grounds[J]. Journal of Sound and Vibration,2008,310(3):631-649.
    [59]J. O'Brien, D.C. Rizos. A 3D BEM-FEM methodology for simulation of high speed train induced vibrations[J]. Soil Dynamics and Earthquake Engineering,2005,25(4):289-301.
    [60]X. Sheng, C.J.C. Jones, D.J. Thompson. A theoretical study on the influence of the track on train-induced ground vibration[J]. Journal of Sound and Vibration,2004,272(3-5):909-936.
    [61]T. Watanabe, M. Sogabe, H. Yokoyama, T. Yonezawa, S. Kiyota. Ground vibration on high-speed railway tunnel[A]. T. Maeda et al. Noise and Vibration Mitigation for Rail Trans. Sys[C], Nagahama, Japan,2010:299-306.
    [62]International Standard Organization (ISO). Evaluation of human exposure to whole-body vibration, part 2:continuous and shock-induced vibrations in buildings (1 to 80 Hz)[S]. Mechanical vibration and shock Standard,1989.
    [63]G Degrande, M. Schevenels, P. Chatterjee, W. Van de Velde, P. Holscher, V. Hopman, A. Wang, N. Dadkah. Vibrations due to a test train at variable speeds in a deep bored tunnel embedded in London clay[J]. Journal of Sound and Vibration,2006,293(3-5):626-644.
    [64]C.M. Kuo, C.H. Huang, Y.Y. Chen. Vibration characteristics of floating slab track[J]. Journal of Sound and Vibration,2008,317(3-5):1017-1034.
    [65]S. Gupta, G Degrande, G Lombaert. Experimental validation of a numerical model for subway induced vibrations[J]. Journal of Sound and Vibration,2009,321(3-5):786-812.
    [66]P. Galvin, S. Francois, M. Schevenels, E. Bongini, G. Degrande, G Lombaert. A 2.5D coupled FE-BE model for the prediction of railway induced vibrations[J]. Soil Dynamics and Earthquake Engineering, 2010,30(12):1500-1512.
    [67]雷晓燕,圣小珍.铁路交通噪声与振动[M].北京,科学出版社,2004.
    [68]GB 10071-88城市区域环境振动测量方法[s].北京:中国标准出版社,1988.
    [69]GB 10070-88城市区域环境振动标准[S].北京:中国标准出版社,1988.
    [70]王济,胡晓MATLAB在振动信号处理中的应用.中国水利水电出版社,知识产权出版社,2007:134-137.
    [71]徐芝伦.弹性力学(第一版上册)[M].人民教育出版社,1979.
    [72]屈维德主编.机械振动手册北京[M].机械工业出版社,1992.
    [73]X. Sheng. Ground vibration generated by a harmonic load acting on a railway track[J]. Journal of Sound and Vibration,1999,225(1):3-28.
    [74]N. Chouw, R. Le, G. Schmid. Propagation of vibration in a soil layer over bedrock[J]. Engineering analysis with boundary element,1991,8(3):125-131.
    [75]N. Chouw, R. Le, G Schmid. An approach to reduce foundation vibrations and soil waves using dynamic transmitting behavior of a soil layer[J]. Bauingenieur,1991,66:215-221.
    [76]翟婉明.车辆-轨道耦合动力学(第三版)[M].北京,科学出版社,2007.
    [77]W.M. Zhai. Two simple fast integration methods for large-scale dynamic problems in engineering. International Journal for Numerical Methods in Engineering,1996,39(24):4199-4214.
    [78]刘晶波,王振宁,杜修力,杜义欣.波动问题中的三维时域粘弹性人工边界[J].工程力学,2005,22(6):46-51.
    [79]廖振鹏.工程波动理论导论[M].第二版.北京:科学出版社,2002.
    [80]刘晶波,吕彦东.结构-地基动力相互作用问题分析的一种直接方法[J].土木工程学报,1998,31(3):55-64.
    [81]谷音,刘晶波,杜义欣.三维一致粘弹性人工边界及等效粘弹性边界单元[J].工程力学,2007,24(12):31-37.
    [82]谷音,刘晶波,杜义欣.一致粘弹性人工边界及粘弹性边界单元[J].岩土工程学报,2006,28(9):31-37.
    [83]雷文军,魏德敏.无限域地基有限元分析的简化粘弹性边界[J].地震工程与工程振动,2005,25(3):110-114.
    [84]贾润德.地铁引起的地面振动及隔振措施[D].博士学位论文,北京,北京交通大学,2008:54-56.
    [85]宗福开,波传播问题中有限元分析的频散特性及离散化准则[J].爆炸与冲击,1984,4(1):16-23.
    [86]廖振鹏,刘晶波.离散网格中的弹性波动(I)[J].地震工程与工程振动,1986,6(2):1-16.
    [87]杨永斌.高速列车所引致之土壤振动分析[R].台湾:台湾大学,1995.
    [88]刘晶波,廖振鹏.有限元离散模型中的出平面波动.力学学报,1992;207-214.
    [89]高速铁路设计规范[S].北京:中国铁道出版社,2010.
    [90]陈建国,夏禾,陈树礼等.运行列车引起的周围地面振动规律研究[J].工程力学,2010,27(1):98-103.
    [91]闫维明,聂晗,任珉,冯军和,张祎.地铁交通引起的环境振动的实测与分析[J].地震工程与工程振动,2006,26(4):187-191.
    [92]H. Xia. Study of vibration effects of underground trains up-on surrounding environments[A]. Proceeding Advances in Structural Engineering[C].1995.116-122.
    [93]潘昌实,李德武,谢正光.北京地铁列车振动对环境影响的探讨[J].振动与冲击,1995,14(4):29-34.
    [94]夏禾.交通环境振动工程[M].北京,科学出版社,2010.
    [95]邓永锋,刘松玉.搅拌桩复合地基简化数值计算等效土体参数确定方法[A].地基处理理论与技术进展[C],2008:285-288.
    [96]申跃奎.地铁激励下振动的传播规律及建筑物隔振减振研究[D].博士学位论文,同济大学,2007.
    [97]韩海燕.软土路基上高速列车引起地面振动的数值模拟分析[D].硕士学位论文,西南交通大学,2009.
    [98]翟婉明,韩海燕.高速列车运行于软土地基线路引起的地面振动研究[J].中国科学(技术科学),2012,(10):1148-1156.
    [99]李守继,楼梦麟.地铁引起环境振动的振源加速度[J].同济大学学报(自然科学版),2008,36(11):1496-1500.
    [100]耿传智.地铁振动衰减特性研究[J].同济大学学报(自然科学版),2009,37(3):344-368.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700