用户名: 密码: 验证码:
催化反应精馏过程的应用基础及其技术扩展
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化学工业中的反应和精馏过程一般分别在两个单独的设备中完成。如果将化学反应与精馏过程合二为一,即在一个设备中同时进行化学反应和精馏过程,便是一个新的强化过程——反应精馏,当使用非均相催化剂时通常又将其称为催化精馏。与普通的反应后再精馏分离过程相比,该强化过程具有许多出色的优点,如既突破化学平衡的限制,也能取得高的反应选择性,反应热还能即时用作精馏的热源等等,因此在许多重要的石油化工和精细化工过程的绿色化改造中应用前景广阔,特别是酯化、醚化、水合等过程。然而,尽管催化反应精馏的概念已深入人心且在诸多方面发展良好,但由于反应精馏塔内存在非常复杂的反应-分离耦合问题,使得催化反应精馏的过程设计、模拟及推广应用等方面仍困难重重。固体催化剂在塔内的装填方式一直是反应精馏过程能否高效进行的关键因素,寻找高催化活性的绿色酸性催化剂以替代硫酸等无机液体酸和酸性阳离子交换树脂等固体酸同样也是催化反应精馏过程研究的重点和需要解决的难题。由于酯化反应是工业应用广阔和研究积累较为厚实的一类反应过程,本论文拟以此为研究体系,围绕上述问题,深入研究酯化反应精馏过程中的反应-分离耦合作用,考察固体催化剂装填方式对流体力学性能以及传质特性的影响,开发基于离子液体催化的酯化反应精馏新工艺,不仅可以有效提高反应-分离集成效率,达到改造传统酯化生产工艺和节能减排的目的,本论文对酯化过程产生的成果还有望能移植和推广到其他反应过程中。
     本论文针对绿色化生产乙酸正丁酯、乙酸甲酯等催化反应精馏过程进行了两大方面的研究。首先,创新性地提出了板式精馏塔内导流槽状插片式催化剂填料这一装填新概念,测试了催化剂填料在筛板塔内的流体力学性能、传质特性和反应性能,考察了催化剂填料对催化反应和精馏分离的影响;其次,提出设计并合成了不同阳离子结构的酸性离子液体催化材料,考察了酸性离子液体在酯化反应中的催化性能和催化反应动力学,着重探讨了非腐蚀性离子液体用于催化反应精馏过程的可行性,并进一步研究了离子液体在酯化反应体系中的热力学行为,采用化工流程模拟软件ASPEN PLUS模拟了基于离子液体催化的酯化反应精馏过程,为离子液体催化反应精馏过程的工业化应用提供数据支撑和理论依据。论文的具体研究内容与结果将分两个部分概述如下:
     第一部分是新型导流槽状插片式催化剂填料装填方式的设计及性能测试研究。论文首先提出了新型导流槽状插片式催化剂填料在普通精馏塔内装填这一新概念,考察了该装填方式下的塔内流体力学性能、传质特性和催化反应性能。研究结果表明,在筛板上加入催化剂填料没有增加过多的干板压降和湿板压降,导流槽的整流作用和丝网的消泡作用较好的抑制了塔内的漏液和雾沫夹带现象。与空筛板相比,填料板的传质效率受气相和液相流量影响较小,传质效率提高到70%以上。此外,催化剂填料的催化性能测试结果显示,20%w/w装填量的催化剂填料催化乙酸半小时的转化率达到40%以上,与15%w/w散装催化剂的催化性能相当。综上所述,这些实验结果初步证实了该装填方式的可行性和创新性。新型装填方式不仅增大了筛板的操作范围,也增加了筛板的操作弹性和稳定性。
     第二部分是基于非腐蚀性离子液体催化的酯化反应精馏过程研究。论文从三个方面对此展开了研究:首先,提出设计并合成了不同阳离子结构的酸性离子液体催化材料,考察了酸性离子液体在酯化反应中的催化性能,研究发现离子液体的催化活性与离子液体的酸性及亲水性密切相关,离子液体的酸性越强或亲水性越好,其催化酯化反应的活性也越高。同时,离子液体与反应精馏相结合的实验结果还表明,离子液体特有的液液两相催化作用机制能与反应精馏分水机制有效整合,进一步促进了酯化反应朝产物方向进行,使乙酸接近定量转化,充分证实了离子液体催化剂与反应精馏相结合的成功之处及其特点。其次,论文详细考察了非腐蚀性离子液体催化乙酸正丁酯的酯化反应动力学,并建立拟均相动力学模型,回归得到离子液体催化酯化体系的动力学参数。研究结果表明,拟均相模型能较好地描述离子液体催化酯化反应动力学行为,酯化反应动力学受离子液体酸性和亲水性的协同作用影响,优选的反应温度在373.15K左右,离子液体用量为乙酸质量的25%,酸醇摩尔比在1:1~2:1之间。此外,论文测定了离子液体与酯化体系中各组分间的汽液和液液相平衡,并建立相应热力学模型,求解方程得到离子液体与各组分的热力学参数,接着采用化工流程模拟软件ASPEN PLUS,对基于离子液体催化的酯化反应精馏过程进行模拟计算,考察了反应段级数、进料板位置、进料酸醇摩尔比等因素对塔顶有机相中乙酸和丁醇含量及塔釜出料中乙酸正丁酯含量的影响。计算结果表明,反应精馏塔底部可得到纯度为99.6%以上的乙酸正丁酯产品。
In chemical industry processes, chemical reaction and distillation separation are usually carried out in two individual equipments. If the operations of reaction and distillation can be integrated in a single multi-functional process unit, this new integration concept is therefore called'reaction distillation'. When the heterogeneous catalysts are applied, the term'catalytic distillation'is often used. As advantage of this integration, chemical equilibrium limitations can be overcomed, higher selectivities can be achieved, and the heat of reaction can be used in situ for the distillation. Reactive distillation has therefore been frequently used in the petrochemical and fine chemical industries, especially in the esterification, etherification, and hydration processes. However, despite the fact that the basic idea of combing reaction and distillation is proposed for a long time and it has a good development in many aspects, the design, simulation and extensive applications of reactive distillation are still faced with many difficulties due to the rigorous coupling between reaction and distillation. The packing structure of solid catalyst in reactive distillation column is the key factor to determine the proceeding of reaction distillation process, and green catalyst of high catalytic activity is also highly conceived to replace cation-exchange resins and solid acids for the reactive distillation process. Therefore, the esterification reaction was choosed as the research object owing to its widespread popularity. It is very important to thoroughly study the coupling effect derived from reaction and separation, to investigate the influence of hardware configuration on the hydrodynamics and mass-transfer performance, and to explore a new reactive distillation esterification processes based on ionic liquids. Through these efforts, it is not only effective to enhance the integration efficiency, but also change the traditional esterification technology and match the aim of energy saving and emission reduction. In addition, these achievements can also be applied and promoted to other reaction processes.
     The present work aimed at the research of green production of n-butyl acetate and methyl acetate via the reactive distillation processes. A flow guided hardware configuration with plug-in units installed in the sieve tray column was proposed and primarily studied. Then the hydrodynamics, mass-transfer, and catalytic performance of solid catalyst packing structure were investigated, and its effect on reaction and distillation separation was also obtained. In addition, several Bransted acidic ionic liquids (BAILs) composed of different cations were designed and synthesized. The kinetics of esterification reaction catalyzed by BAILs was studied systemically, and the possibility of BAIL-based catalytic distillation processes was also discussed. And investigations were further carried out on the behavior of thermodynamics of the esterification system containing BAILs. The ASPEN PLUS software was also used to simulate the BAIL-based reactive distillation processes, to provide the basic data and the theoretical analyses for the design of those processes. Therefore, several important results have been obtained in two research sections and summarized as follows:
     The fist part of the thesis concerns the design of solid catalyst packing structure. A flow guided hardware configuration with plug-in units installed in the sieve tray column was primarily proposed. The hydrodynamics, mass-transfer, and catalytic performance of solid catalyst packing structure were therefore investigated. It was shown that the dry plate pressure drop and wet pressure drop were not increased too much with the introduction of catalytic packing structure on the sieve tray, and the weeping and entrainment of catalytic sieve tray were reduced obviously. It is reasoned that the flow guided framework can rectify the liquid flow well and wire mesh is of good eliminating foam effect. In addition, the catalyst packing structure was further tested to be of excellent mass-transfer efficiency and catalytic activity. Therefore, it is demonstrated that the flexibility and stability of the sieve tray column with the introduction of catalyst packing are improved in comparison to the normal sieve tray column. These experimental results also verify the feasibility and innovation of catalytic packing installed on the tray.
     The second part of the thesis concerns the design and simulation of B AILs-based reactive distillation processes, and this part is introduced in three aspects. First, several BAILs composed of different cations were designed and synthesized. For the esterification reaction in the presence of BAILs, it is found that the catalytic activity of BAIL is relevant to its acidity and hydrophilicity. The stronger acidity or hydrophilicity the BAIL has, the higher the catalytic activity. It is also demonstrated that a combination of reactive distillation with a BAIL as catalyst is effective to drive the reaction equilibrium further to the product side and lead up to the completion of esterification, primarily due to the nature of BAIL to enable liquid-liquid biphasic catalysis. The feasibility of a combination of reactive distillation with a BAIL as catalyst is also verified. Second, on the basis of presious study, the kinetics of esterification reaction catalyzed by BAILs was studied systemically. A pseudo-homogeneous (PH) kinetic model was utilized to correlate the experimental data. The experimental results indicated that the acidity and hydrophilicity of BAILs have a synergistic effect on the performance of esterification. It is validated from the comparison between experimental data and the PH model values that the PH model can give a good representation of the esterification kinetic behavior at a low catalyst loading. The optimization of reaction conditions were reaction temperature of373.15K, catalyst loading of25%w/w and molar ratio of the reactants of2:1. Third, investigations were further carried out on the behavior of thermodynamics of the esterification system containing BAILs. The vapor-liquid equilibrium and liquid-liquid equilibrium for the esterification system containing BAILs were measured, and the corresponding thermodynamics model was also established. Binary interaction parameters were therefore obtained by solving those equations. Then, the BAILs-based reactive distillation process was simulated by using the ASPEN PLUS software. The effects of theoretical plate number, feed location, and molar ratio of the reactants on the concentration of acetic acid in the top and the mole fraction of ester in the bottom were also explored in detail. As a result, the product of ester can be purified to over99.6%in the bottom of reactive distillation column.
引文
[1]A.A. Backhaus, Continuous process for the manufacture of esters. U.S. Patent,1400849,1921.
    [2]H. Sawistowski, P.A. Pilavakis, Distillation with chemical reaction in a packed column, Institute of chemical engineers symposium series,1979,56,49-63.
    [3]L.A. Smith, M.N. Huddleston, New MTBE design now commercial, Hydrocarbon Processing, 1982,61,121-123.
    [4]L.A. Smith, A. Laurence, Catalytic distillation process and catalyst, EP Patent,0008860,1985.
    [5]闵恩泽,吴巍,绿色化学与化工,北京:化学工业出版社,2000.
    [6]M.F. Doherty, G. Buzad, Reactive distillation by design, Chem. Eng. Res. Des.,1992,70,448-458.
    [7]R. Taylor, R. Krishna, Modelling reactive distillation, Chem. Eng. Sci.,2000,55,5183-5229.
    [8]J.G. Stichlmair, J.R. Fair, Disitillion principles and practice, New York:Weily-VCH,1998.
    [9]F.M. Michael, M.F. Doherty, Reactive distillation, Ind. Eng. Chem. Res.,2000,39,3953-3957.
    [10]C. Noeres, E.Y. Kenig, A. Gorak, Modelling of reactive separation processes reactive absorption and reactive distillation, Chem. Eng. Process.,2003,42,157-178.
    [11]N.N. Li, J.D. Navratil, J.M. Calo, C.W. Clump, Recent Development in Separation Science. Cleveland:CRC Press,1978.
    [12]杨华琮,催化精馏工艺和甲基叔丁基醚的生产,石油化工译从,1989,10,23-28.
    [13]王进善,栾祥山,杨宗人,固定床和催化精馏MTBE生产技术的开发,炼油设计,1991,21,15-22.
    [14]J. Zhang, D. Li, J. Fu, C. Cao, Process and apparatus for preparation of ethyl benzene by alkylation of benzene with dilute ethylene contained in dry gas by catalytic Distillation, U.S. Patent,0018545,2001.
    [15]E. Anderson, Ethyl tert-butyl ether shows promise as octane enhancer, Chem. Eng. News, 1988,66,11-12.
    [16]E. Tamminen, J. Aittamaa, J. Jakkula, Process for preparing alkylethers. U.S. Patent,5536886, 1996.
    [17]许锡恩,张为民,刘永才,催化精馏合成乙二醇乙醚的研究,高校化学工程学报,1990,4,374-380.
    [18]T.L. Marker, GA. Funk, P.T. Barger, Two step process for producing diisopropyl ether using catalytic distillation, U.S. Patent,5504258,1996.
    [19]J.R. Smith, A. Lawrence, Deetherification process. U.S. Patent,4551567.1985.
    [20]V.H. Agreda, L.R. Partin, Reactive distillation process for the production of methyl acetate, U.S. Patent,4435595,1984.
    [21]V.H. Agreda, L.R. Partin, W.H. Heise, High purity methyl acetate via reactive distillation, Chem. Eng. Prog.,1990,86,40-46.
    [22]廖安平,蓝平,李媚,流化催化精馏制备乙酸乙酯研究,化学工程,2000,28,19-22.
    [23]J. Hanika, J. Kolena, Q. Smejkal, Butylacetate via reactive distillation-modeling and experiment. Chem. Eng. Sci.,1999,54,5205-5209.
    [24]M. Kloker, E.Y. Kenig, A. Gorak, On the development of new column internals for reactive separations via integration of CFD and process simulation. Catal. Today,2003,79,479-485.
    [25]E.S. Sujatha, A.K. Kolah, V.C. Malshe, Inorganic supported polymeric catalysts. Reactive and Functional Polymers,1996,31,39-46.
    [26]J. Xiao, J. Liu, J. Li, Increase MeOAc conversion in PVA production by replacing the fixed bed reactor with a catalytic distillation Column, Chem. Eng. Sci.,2001,56,6553-6562.
    [27]王良恩,刘家祺,苏文瑞,醋酸甲酯催化精馏水解工艺及其设备,中国专利,ZL97101306.3,2000.
    [28]胡一德,张品芳,催化精馏法生产异丙苯工艺的评述,化工设计,1997,7,25-27.
    [29]T.F. Degnan, C.M. Smith, C.R.Venkat, Alkylation of aromatics with ethylene and propylene: recent developments in commercial processes, Appl. Catal. A:Gen.,2001,221,283-294.
    [30]J. Zhang, D. Li, J. Fu, Process and apparatus for preparation of ethylbenzene by alkylation of benzene with dilute ethylene contained in dry gas by catalytic distillation, U.S. Patent, 6504071,2003.
    [31]刘军霞,王云山,张吉瑞,催化精馏法干气制乙苯新工艺的研究,石油化工,2003,23,269-272.
    [32]K. Schmitt, New acetone chemistry in Germany, Scholvent report, A reprint from chemische Industrie Int.,1966.
    [33]G.R. Gildert, D. Hearn, H.M. Putman, Hydrogenation of unsaturated cyclic compouds, U.S. Patent,5773670,1998.
    [34]K. Rock, G.R. Gildert, T. Meguirk, Chem. Engng. New York.,1997,6,78-82.
    [35]R.P. Arganbright, Hydroisomerization process, U.S. Patent,5087780,1991.
    [36]M. Dorbon, F. Lyons, J. Chodorge, J. Cosyns, J. Viltard, B. Didillon, Process for the production of high purity isobutene combining reactive distillation with hydroisomerization, distillation and skeletal isomerization, U.S. Patent,5969203,1999.
    [37]K. Rock, G.R. Gildert, T. Meguirk, E&CN News,1998,6,20-26.
    [38]A.R. Ciric, P. Miao, Steady State Multiplicities in an Ethylene glycol reactive distillation column, Ind. Eng. Chem. Res.,1994,33,2738-2748.
    [40]A.R. Ciric, D. Gu, Synthesis of nonequilibrium reactive distillation processes by MINLP optimization, AIChE J.,1994,40,1479-1487.
    [41]R. Monroy-Loperena, J. Alvarez-Ramirez, On the Steady-state multiplicities for an ethylene glycol reactive distillation column, Ind. Eng. Chem. Res.,1999,38,451-455.
    [42]T.L. Marker, G.A. Funck, T. Barger, U. Hammershaimb, Two-stage process for producting diisopropyl ether using catalytic distillation, U.S. Patent,5504258,1996.
    [43]L.A. Smith, Catalytic distillation process, U.S. Patent,4307254,1980.
    [44]L.A. Smith, Method for operating a catalytic distillation process, U.S. Patent,5221441,1993.
    [45]J.F. Knifton, J. Sanderson, S. Ronald, E. Melvin, Use of reactive distillation in the dehydroration of tertiary butyl alcohol, U.S. Patent,5811620,1998.
    [46]J.C. Gonzalez, H. Subawalla, J.R. Fair, Preparation of tertiary amyl alcohol in a reactive distillation column.1. Reaction Kinetics, chemical equilibrium, and mass-transfer issues, Ind. Eng. Chem. Res.,1997,36,3933-3844.
    [47]J.F. Knifton, J. Sanderson, S. Ronald, E. Melvin, Process for craking tertiary butyl alcohol in a reactive distillation column, U.S. Patent,5849971,1998.
    [48]R. Neumann, Y. Sasson, Recovery of dilute acetic acid by esterification in a packed chemorectification column, Ind. Eng. Chem. Pro. Des. Dev.,1984,23,654-659.
    [49]Z. Xu, A. Afacan, K. Chuang, Removal of acetic acid from water by catalytic distillation. Part 1:Experimental studies, Can. J. Chem. Eng.,1999,77,676-681.
    [50]S. Saito, T. Michishita, S. Maeda, Separation of meta-and para-xylene mixture by distillation accompanied by chemical reactions, J. Chem. Eng. Japan,1971,34,37-43.
    [51]Gau G, Method for separating hydrocarbons especially aromatic hydrocarbons and installations therefor, U.S. Patent,3849261,1974.
    [52]F. Duprat, G. Gau, Reactive distillation of pyridine mixtures with an organic acid. I. Determination of the reactive distillation equilibrium, Can. J. Chem. Eng.,1991,69, 1320-1326.
    [53]V.G. Gaikar, G.K. Sau, Extractive distillation of p-cresol/2,6-xylenol mixtures in the presence of alkanolamines, Sep. Sci. Technol.,1996,31,1979-1988.
    [54]许锡恩,孟祥坤,催化蒸馏过程研究进展,化工进展,1998,1,7-13.
    [55]G.P. Towler, S.J. Frey, Reactive distillation and reactive separation processes. Philadelphia: Taylor and Francis,2000.
    [56]肖剑,刘家祺,催化精馏塔催化剂装填技术研究进展,化工进展,1999.
    [57]F.C. Franklin, Staged, Fluidized-bed distillation-reator and a process for using such reactor, U.S. Patent,4471154,1984.
    [58]J. Jones, M. Edward, Contact structure for use in catalytic distillation, U.S. Patent,4439350, 1984.
    [59]J.C. Gentry, M.J. Binkley, Method and apparatus for catalyst downcomer-tray operation, U.S. Patent,5277847,1994.
    [60]郝兴仁,王进善,杨宗仁,新型催化精馏塔,中国专利,ZL10426641,1990.
    [61]廖安平,蓝平,李媚,催化精馏技术在酯化反应中的应用,化工进展,2001,20,30-32.
    [62]M.N. Harandi, Fluidized catalytic process for products and hydration of olefins, U.S. Patent, 5331011,1993.
    [63]K.H. Johnson, Catalytic distillation structure, U.S. Patent,5189001,1993.
    [64]L.A. Smith, T. Bellaire, Catalytic distillation structure, U.S. Patent,4443559, U.S. Patent, 1984.
    [65]W.A. Groten, D. Booker, C.S. Crossland, Catalytic distillation structure, U.S. Patent,5730843, 1998.
    [66]L.A. Smith, Catalytic systerm for separating isobutene from C4 stream, U.S. Patent,4215011, 1980.
    [67]A.P. Higler, R. Krishna, J. Ellenberger, Counter current operation of a structured catalytically packed bed reactor:liquid phase mixing and mass transfer. Chem. Eng. Sci.,1999,54, 5145-5152.
    [68]J.M. van Baten, J. Ellenberger, R. Krishna, Radial and axial dispersion of the liquid phase in a KATAPAK-S structure:Experiments vs. CFD simulations. Chem. Eng Sci.,2001,56, 813-821.
    [69]L. Gotze, O. Bailer, P. Moritz, Reactive distillation with KATAPAK, Catal. Today,2001,69, 201-208.
    [70]Gelbein, P. Abraham, Process and structure for effecting catalytic reactions indistillation structure, EP Patent,0428265A1,1990.
    [71]K. Andrzej, J. Mieczyslaw, B. Irena, Mass transfer and hydraulics for KATAPAK-S, Chem. Eng. Process.,2004,43:457-464.
    [72]J.M. van Baten, R. Krishna, Gas and liquid phase mass transfer within KATAPAK-S structures studied using CFD simulations, Chem. Eng. Sci.,2002,57,1531-1536.
    [73]J. Flato, U. Hoffmann, Development and start-up of a fixed bed reaction column for manufacturing antiknock enhancer MTBE, Chem. Eng. Technol.,1992,15,193-201.
    [74]O.L. Oudshoorn, PhD thesis, Delft University of Technology, Delft,1999.
    [75]李绍芬,反应工程,北京:化学工业出版社,1999.
    [76]F. Ancillotti, M.M. Massi, E. Pescarollo, Ion exchange resin catalyzed addition of alcohol to olefins. J.Catal.,1977,46,49-57.
    [77]F. Ancillotti, M.M. Massi, E. Pescarollo, Mechanisms in the reaction between olefins and alcohols catalysed by ion exchange resin. J. Molec.Catal.,1978,4,37-48.
    [78]T. Popken, L. Gotze, J. Gmehling, Reaction kinetics and chemical equilibrium of homogeneously and heterogeneously catalyzed acetic acid esterification with methanol and methyl acetate hydrolysis, Ind. Eng. Chem. Res.,2000,39,2601-2611.
    [79]J. Gangadwala, S. Mankar, S. Mahajani, Esterification of acetic acid with Butanol in the presence of ion-exchange resins as catalysts, Ind. Eng. Chem. Res.,2003,42,2146-2155.
    [80]W.R. Smith, R.W. Missen, Chemical reaction equilibrium analysis:theory and algorithms, New York:Wiley,1982.
    [81]R. Gautam, W.D. Seider, Computation of phase and chemical equilibrium, AIChE J.,1979,25, 991-1015.
    [82]M. Castier, P. Rasmussen, A. Frednenslund, Calculation of simulation chemical and phase equilibrium in nonideal systems, Chem. Eng. Sci.,1989,44,237-248.
    [83]傅吉全,特殊体系的相平衡和精馏模拟计算,北京:中国石化出版社,2002.
    [84]R. Krishna, R.Taylor, A nonequilibrium stage model of multicomponent separation processes. AIChEJ,1985,31,449-465.
    [85]许锡恩,郑宇翔,李家玲,催化蒸馏合成乙二醇乙醚的过程模拟,化工学报,1993,40,269-276.
    [86]K. Sundmacher, U. Hoffmann, Macrokinetic analysis of MTBE synthesis in chemical potentials. Chem. Eng. Sci.,1994,49,3077-3089.
    [87]A. Higler, R. Krishna, R. Taylor, A non-equilibrium cell model for multicomponent (reactive) separation processes, AIChE J.,1999,45,2357-2370.
    [88]A. Higler, R. Krishna, R. Taylor, A non-equilibrium cell model for packed distillation columns:the influence of maldistribution, Ind. Eng. Chem. Res.,1999,38,3988-3999.
    [89]张瑞生,韩英,非均相催化精馏过程的模拟计算,化工学报,1989,6,693-703.
    [90]韩英,张瑞生,全回流催化精馏塔的模拟计算,华东化工学院学报,1989,15,331-338.
    [91]周德凤,李长春,刘景福,李东风,稀土固体超强酸SO22-/TiO2/La3+催化合成醋酸丁酯, 化学世界,2001,2,653-654.
    [92]古绪鹏,陈同云,万玉保,陈华学,SO42-/ZrO2-TiO2-La固体酸催化合成乙酸正丁酯,石油化工,2002,5,353-356.
    [93]I.V. Kozhevnikov, Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid-phase reactions, Chem. Rev.,1998,98,171-198.
    [94]J. Das, K.M. Parida, Heteropoly acid intercalated Zn/Al HTlc as efficient catalyst for esterification of acetic acid using n-butanol, J. Mol. Catal. A:Chem.,2007,264,248-254.
    [95]S.S. Dash, K.M. Parida, Esterification of acetic acid with n-butanol over manganese nodule leached residue, J. Mol. Catal. A:Chem.,2007,266,88-92.
    [96]S. Steinigeweg, J. Gmehling, Reaction kinetics of the homogeneously catalyzed esterification of 1-butanol with acetic acid in a wide range of initial compositions, Ind. Eng. Chem. Res., 2002,41,5483-5490.
    [97]J. Gangadwala, S. Mankar, S. Mahajani, A. Kienle, E. Stein, Esterification of acetic acid with butanol in the presence of ion-exchange resins as catalysts, Ind. Eng. Chem. Res.,2003,42, 2146-2155.
    [98]C. Xie, H. Li, L. Li, S. Yu, F. Liu, Synthesis of plasticizer ester using acid-functionalized ionic liquid as catalyst, J. Hazard. Mater.,2008,151,847-850.
    [99]H. Zhu, F. Yang, J. Tang, M. He, Bransted acidic ionic liquid 1-methyl imidazolium tetrafluoroborate:a green catalyst and recyclable medium for esterification, Green Chem., 2003,5,38-39.
    [100]Y.Q. Deng, F. Shi, J.J. Beng, K. Qiao, Ionic liquid as a green catalytic reaction medium for esterifications, J. Mol. Catal. A:Chem.2001,165,33-36.
    [101]A.C. Cole, J.L. Jensen, I. Ntai, K.L.T. Tran, K.J. Weave, D.C. Forbes, J.H. Davis, Novel Br(?)nsted acidic ionic liquids and their use as dual solvent-catalysts, J. Am. Chem. Soc., 2002,124,5962-5963.
    [102]R. Sheldon, Catalytic reactions in ionic liquids, Chem. Commun.,2001,2399-2407.
    [103]H.O.Bourbigou, L. Magna. Ionic liquids:perspectives for organic and catalytic reactions, J. Mol. Catal. A:Chem.,2002,182,419-437.
    [104]T. Welton, Room-temperature ionic liquids:solvents for synthesis and catalysis, Chem. Rev., 1999,99,2071-2083.
    [105]H.O. Bourbigou, L. Magna, D. Morvan, Ionic liquids and catalysis:Recent progress from knowledge to applications, Appl. Catal. A:Gen.,2010,373,1-56.
    [106]T. Joseph, S. Sahoo, S.B. Halligudi, Br(?)nsted acidic ionic liquids:A green, efficient and reusable catalyst system and reaction medium for Fischer esterification, J. Mol. Catal. A: Chem.,2005,234,107-110.
    [107]H. Xing, T. Wang, Z. Zhou, Y. Dai, The sulfonic acid-functionalized ionic liquids with pyridinium cations:Acidities and their acidity-catalytic activity relationships, J. Mol. Catal. A:Chem.,2007,264,53-59.
    [108]D.C., Forbes, K.J. Weaver, Br(?)nsted acidic ionic liquids:the dependence on water of the Fischer esterification of acetic acid and ethanol, J. Mol. Catal. A:Chem.,2004,214, 129-132.
    [109]P.A. Ganeshpure, G. George, J. Dasa, Br(?)nsted acidic ionic liquids derived from alkylamines as catalysts and mediums for Fischer esterification:Study of structure-activity relationship, J. Mol. Catal. A:Chem.,2008,279,182-186.
    [110]Y. Leng, J. Wang, D. Zhu, X. Ren, H.Ge, L.Shen, Heteropolyanion-based ionic liquids: reaction-induced self-separation catalysts for esterification, Angew. Chem. Int. Ed.,2009, 48,168-171.
    [111]J. Hanika, J. Kolena, Q. Smejkal, Butylacetate via reactive distillation-modelling and experiment, Chem. Eng. Sci.,1999,54,5205-52.
    [112]S. Steinigeweg, J. Gmehling, n-Butyl acetate synthesis via reactive distillation: thermodynamic aspects, reaction kinetics, pilot-plant experiments, and simulation studies, Ind. Eng. Chem. Res.,2002,41,5483-5490.
    [113]S. Wang, D.H. Wong, E. Lee, Control of a reactive distillation column in the kinetic regime for the synthesis of n-butyl acetate, Ind. Eng. Chem. Res.,2003,42,5182-5194.
    [114]J. Gangadwala, A. Kienle, E. Stein, S. Mahajani, Production of butyl acetate by catalytic distillation:process design studies, Ind. Eng. Chem. Res.,2004,43,136-143.
    [115]A. Singh, R. Hiwale, S.M. Mahajani, R.D. Gudi, Production of butyl acetate by catalytic distillation:theoretical and experimental studies, Ind. Eng. Chem. Res.,2005,44, 3042-3052.
    [1]A.A. Backhaus, Continuous process for the manufacture of esters. U.S. Patent,1400849,1921.
    [2]V.H. Agreda, L.R. Partin, Reactive distillation process for the production of methyl acetate, U.S. Patent,4435595,1984.
    [3]V.H. Agreda, L.R. Partin, W.H. Heise High purity methyl acetate via reactive distillation, Chem. Eng. Prog.,1990,86,40-46.
    [4]L.A. Smith, M.N. Huddleston, New MTBE design now commercial, Hydrocarbon Processing, 1982,61,121-123.
    [5]L.A. Smith, A. Laurence, Catalytic distillation process and catalyst, EP Patent,0008860,1985.
    [6]M.F. Doherty, G Buzad, Reactive distillation by design, Chem. Eng. Res. Des.,1992,70,448-458.
    [7]J.G. Stichlmair, J.R. Fair, Disitillion principles and practice, New York:Weily-VCH,1998.
    [8]R. Taylor, R. Krishna, Modelling reactive distillation, Chem. Eng. Sci.,2000,55,5183-5229.
    [9]刘劲松,朱思强,白鹏,杨志才,催化精馏塔装填方式的研究进展,化工机械,2001,28,299-302.
    [10]高鑫,李鑫钢,李洪,催化精馏塔中催化剂填装技术的研究述评,化工进展,2010,29,419-415.
    [11]A.P. Higler, R. Krishna, J. Ellenberger, Counter current operation of a structured catalytically packed bed reactor:liquid phase mixing and mass transfer. Chem. Eng. Sci.,1999,54, 5145-5152.
    [12]J.M. van Baten, J. Ellenberger, R. Krishna, Radial and axial dispersion of the liquid phase in a KATAPAK-S structure:Experiments vs. CFD simulations. Chem. Eng Sci.,2001,56, 813-821.
    [13]L. Gotze, O. Bailer, P. Moritz, Reactive distillation with KATAPAK, Catal. Today,2001,69, 201-208.
    [14]Gelbein, P. Abraham, Process and structure for effecting catalytic reactions indistillation structure, EP Patent,0428265A1,1990.
    [15]J.M. van Baten, J. Ellenberger, R. Krishna, Hydrodynamics of reactive distillation tray column with catalyst containing envelopes:experiments vs. CFD simulations, Catal. Today, 2001,66,233-240.
    [16]J.M. van Baten, J. Ellenberger, R. Krishna, Hydrodynamics of distillation tray column with structured catalyst containing envelopes:experiments versus CFD simulations, Chem. Eng. Technol.2001,24,1077-1081.
    [17]G.A. Hughmark, O'Connell, Point efficiencies for tray distillation, Chem. Eng. Prog.,1957, 53,157-160.
    [18]M.J. Prince, H.W. Blanch, Bubble coalescence and break-up in air-sparged bub bl ec olumns, AIChE J.,1990,36,1485-149.
    [19]Van Winkle, Discharge coefficients through perforated plates at reynolds numbers of 400 to 3000, AIChE J.,1958,4,266-268.
    [20]吴俊生,邵惠鹤编著,精馏设计、操作和控制,北京:中国石化出版社,1997.
    [21]C.A. Hunt, D.N. Hanson, C.R. Wilke, Capacity factors in the performance of erforated-plate columns, AIChE J.,1955,1,441-445.
    [1]R.C. Larock, Comprehensive Organic Transformations, New York:Wiley-VCH,1999.
    [2]J. Gangadwala, S. Mankar, S. Mahajani, A. Kienle, E. Stein, Esterification of acetic acid with butanol in the presence of ion-exchange resins as catalysts, Ind. Eng. Chem. Res.,2003,42, 2146-2155.
    [3]I.V. Kozhevnikov, Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid-phase reactions, Chem. Rev.,1998,98,171-198.
    [4]R.A. Sheldon, R.S. Downing, Heterogeneous catalytic transformations for environmentally friendly production, Appl. Catal. A:Gen.,1999,189,163-183.
    [5]C. Xie, H. Li, L. Li, S. Yu, F. Liu, Synthesis of plasticizer ester using acid-functionalized ionic liquid as catalyst,J. Hazard. Mater.,2008,151,847-850.
    [6]H. Zhu, F. Yang, J. Tang, M. He, Br(?)nsted acidic ionic liquid 1-methylimidazolium tetrafluoroborate:a green catalyst and recyclable medium for esterification, Green Chem., 2003,5,38-39.
    [7]Y.Q. Deng, F. Shi, J.J. Beng, K. Qiao, Ionic liquid as a green catalytic reaction medium for esterifications, J. Mol. Catal. A:Chem.,2001,165,33-36.
    [8]A.C. Cole, J.L. Jensen, I. Ntai, K.L.T. Tran, K.J. Weave, D.C. Forbes, J.H. Davis, Novel Br(?)nsted acidic ionic liquids and their use as dual solvent-catalysts, J. Am. Chem. Soc.,2002, 124,5962-5963.
    [9]R. Sheldon, Catalytic reactions in ionic liquids, Chem. Commun,2001,2399-2407.
    [10]H. Olivier-Bourbigou, L. Magna, Ionic liquids:perspectives for organic and catalytic reactions, J. Mol. Catal. A:Chem.,2002,182/183,419-437.
    [11]T. Welton, Room-temperature ionic liquids:solvents for synthesis and catalysis, Chem. Rev., 1999,99,2071-2083.
    [12]H.O. Bourbigou, L. Magna, D. Morvan, Ionic liquids and catalysis:Recent progress from knowledge to applications, Appl. Catal. A:Gen.,2010,373,1-56.
    [13]J. Gui, X. Cong, D. Liu, X. Zhang, Z. Hu, Z. Sun, Novel Br(?)nsted acidic ionic liquid as efficient and reusable catalyst system for esterification, Catal. Commun.,2004,5,473-477.
    [14]C. Wang, L. Guo, H. Li, Y. Wang, J. Weng, L. Wu, Preparation of simple ammonium ionic liquids and their application in the cracking of dialkoxypropanes, Green Chem.,2006,8, 603-607.
    [15]H. Mehdi, A. Bodor, D. Lantos, I.T. Horvth, D.E.D. Vos, K. Binnemans, Imidazolium ionic liquids as solvents for cerium(IV)-mediated oxidation reactions, J. Org. Chem.,2007,72, 517-524.
    [16]C. Thomazeau, H.O. Bourbigou, L. Magna, S. Luts, B. Gilbert, Determination of an acidic scale in room temperature ionic liquids, J. Am. Chem. Soc.,2003,125,5264-5265.
    [17]H. Xing, T. Wang, Z. Zhou, Y. Dai, The sulfonic acid-functionalized ionic liquids with pyridinium cations:Acidities and their acidity-catalytic activity relationships, J. Mol. Catal. A:Chem.,2007,264,53-59.
    [18]Y. Zhao, J. Long, F. Deng, X. Liu, Z. Li, C. Xia, J. Peng, Catalytic amounts of Br(?)nsted acidic ionic liquids promoted esterification:Study of acidity-activity relationship, Catal. Commun.,2009,10,732-736.
    [19]黄宝华,汪艳飞,张煜,方岩雄,周蓓蕾,吡咯烷酮酸性离子液体的合成及其对酯化反应的催化活性,催化学报,2007,28,743-748.
    [20]不锈钢5%硫酸腐蚀试验方法GB/T 4334.6-2000,北京:中国标准出版社,1996.
    [21]H. Zhou, J. Yang, L. Ye, H. Lin, Y.Yuan, Effects of acidity and immiscibility of lactam-based Br(?)nsted-acidic ionic liquids on their catalytic performance for esterification, Green Chem. 2010,12,661-665.
    [22]A. Arfan, J. P. Bazureau, Efficient combination of recyclable task specific ionic liquid and microwave dielectric heating for the synthesis of lipophilic esters, Org. Process Res. Dev., 2005,9,743-748.
    [23]R. Janowsky, M. Groebel, U. Knippenberg, Final Report FKZ 03 D 0014 B0; Huels Infracor GmbH:experSCience, Marl,1997.
    [24]S. Blagova, S. Paradaa, O. Bailerb, P. Moritzb, D. Lamc, R. Weinandd, H. Hassea, Influence of ion-exchange resin catalysts on side reactions of the esterification of n-Butanol with acetic acid, Chem. Eng Sci.,2006,61,753-765.
    [1]李绍芬,反应工程,北京:化学工业出版社,1999.
    [2]J. Das, K.M. Parida, Heteropoly acid intercalated Zn/Al HTlc as efficient catalyst for esterification of acetic acid using n-butanol, J. Mol. Catal. A:Chem.,2007,264,248-254.
    [3]S. Steinigeweg, J. Gmehling, n-Butyl acetate synthesis via reactive distillation:thermodynamic aspects, reaction kinetics, pilot-plant experiments, and simulation studies, Ind. Eng. Chem. Res.,2002,41,5483-5490.
    [4]J. Gangadwala, S. Mankar, S. Mahajani, Esterification of acetic acid with butanol in the presence of ion-exchange resins as catalysts, Ind. Eng. Chem. Res.,2003,42,2146-2155.
    [5]S.S. Dash, K.M. Parida, Esterification of acetic acid with n-butanol over manganese nodule leached residue, J. Mol. Catal. A:Chem.,2007,266,88-92.
    [6]P. Moritz, H. Hasse, Fluid dynamics in reactive distillation packing Katapak-S, Chem. Eng. Sci.,1999,54,1367-1374.
    [7]R. Taylor, R. Krishna, Modeling reactive distillation. Chem. Eng. Sci.,2000,55,5183-5229.
    [8]Y.Q. Deng, F. Shi, J.J. Beng, K. Qiao, Ionic liquid as a green catalytic reaction medium for esterifications, J. Mol. Catal. A:Chem.,2001,165,33-36.
    [9]A.C. Cole, J.L. Jensen, I. Ntai, K.L.T. Tran, K.J. Weave, D.C. Forbes, J.H. Davis, Novel Bronsted acidic ionic liquids and their use as dual solvent catalysts, J. Am. Chem. Soc.,2002, 124,5962-5963.
    [10]H. Olivier-Bourbigou, L. Magna, Ionic liquids:perspectives for organic and catalytic reactions, J. Mol. Catal. A:Chem.,2002,182,419-437.
    [11]T. Welton, Room Temperature Ionic Liquids Solvents for Synthesis and Catalysis. Chem. Rev., 1999,99,2071-2083.
    [12]H.O. Bourbigou, L. Magna, D. Morvan, Ionic liquids and catalysis:Recent progress from knowledge to applications, Appl. Catal. A:Gen.,2010,373,1-56.
    [13]H. Zhou, J. Yang, L. Ye, H. Lin, Y.Yuan, Effects of acidity and immiscibility of lactam-based Br(?)nsted-acidic ionic liquids on their catalytic performance for esterification, Green Chem., 2010,12,661-665.
    [14]R. Janowsky, M. Groebel, U. Knippenberg, Final Report FKZ 03 D 0014 B0, Huels Infracor GmbH:experSCience, Marl,1997.
    [15]S. Blagova, S. Paradaa, O. Bailerb, P. Moritzb, D. Lamc, R. Weinandd, H. Hassea, Influence of ion-exchange resin catalysts on side reactions of the esterification of n-Butanol with acetic acid, Chem. Eng Sci.,2006,61,753-765.
    [16]T. Popken, L. Gotze, J. Gmehling, Reaction kinetics and chemical equilibrium of homogeneously and heterogeneously catalyzed acetic acid esterification with methanol and methyl acetate hydrolysis, Ind. Eng. Chem. Res.,2000,39,2601-2611.
    [17]M.T. Sanz, R. Murga, S. Beltran, J.L. Cabezas, J. Coca, Autocatalyzed and ionexchange-resin-catalyzed esterification kinetics of lactic acid with methanol, Ind. Eng. Chem. Res., 2002,41,512-517.
    [18]H. Renon, J.M. Prausnitz, Local compositions in thermodynamic excess functions for liquid mixtures, AIChE J.,1968,14,135-144.
    [19]Q. Smejkal, M. Soos, Comparison of computer simulation of reactive distillation using ASPEN PLUS and HYSYS software, Chem. Eng. Process.,2002,41,413-418.
    [1]郭天民,多元气液平衡和精馏,北京:石油工业出版社,2002.
    [2]J.G. Huddleston, H.D. Willauer, R.P. Swatloski, A.E. Visser, R.D. Rogers, Room temperature ionic liquids as novel media for 'clean' liquid-liquid extraction. Chem. Commun.,1998, 1765-1766.
    [3]K.E. Gutowski, G.A. Broker, H.D. Willauer, J.G. Huddleston, R.P. Swatloski, J.D. Holbrey, R.D. Rogers, Controlling the aqueous miscibility of ionic liquids:aqueous biphasic systems of water-miscible ionic liquids and water-structuring salts for recycle, metathesis, and separations. J. Am. Chem. Soc.,2003,125,6632-6633.
    [4]A. Chapeaux, L.D. Simoni, T.S. Ronan, M.A. Stadtherr, J.F. Brennecke, Extraction of alcohols from water with 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Green Chem.,2008,10,1301-1306.
    [5]T. Welton, Room-temperature ionic liquids:solvents for synthesis and catalysis, Chem. Rev., 1999,99,2071-2083.
    [6]L.A. Jennifer, J.M. Edward, F.B. Joan, Solution thermodynamics of imidazolium-based ionic liquids and water, J. Phys. Chem. B.,2001,105,10942-10949.
    [7]C. Jork, M. Seiler, Y.A. Beste, W. Arlt, Influence of ionic liquids on the phase behavior of aqueous azeotropic systems, J. Chem. Eng. Data,2004,49,852-857.
    [8]M.C. Jacob, N.V. Sudhir, J.M. Edward, F.B. Joan, Liquid phase behavior of imidazolium-based ionic liquids with alcohols:effect of hydrogen bonding and non-polar interactions, Fluid Phase Equilib.,2005,228,303-309.
    [9]T.L. Greaves, C.J. Drummond, Protic ionic liquids:properties and applications. Chem. Rev., 2008,108,206-237.
    [10]T. Hiaki, A. Kawai, Vapor-liquid equilibria determination for a hydrofluoroether with several alcohols. Fluid Phase Equilib.,1999,158,979-989.
    [1]曹湘洪,石油化工流程模拟技术进展及应用,北京:中国石化出版社,2010.
    [2]朱开宏,化工过程流程模拟,北京:中国石化出版社,1993.
    [3]屈一新,化工过程数值模拟及软件,北京:化学工业出版社,2006.
    [4]杨友麒,化工过程模拟与优化,北京:化学工业出版社,2006.
    [5]K.Y. Hsu, Y.C. Hsiao, I.L. Chien, Design and control of dimethyl carbonate-methanol separation via extractive distillation in the dimethyl carbonate reactive-distillation process, Ind. Eng. Chem. Res.,2010,49,735-749.
    [6]H.Y. Lee, H.P. Huang, I.L. Chien, Control of reactive distillation process for production of ethyl acetate, J. Process Contr.,2007,17,363-377.
    [7]J. Hanika, J. Kolena, Q. Smejka, Butylacetate via reactive distillation modelling and experiment, Chem. Eng. Sci.,1999,54,5205-5209.
    [8]J. Gangadwala, A. Kienle, E. Stein, S. Mahajani, Production of butyl acetate by catalytic distillation:process design studies, Ind. Eng. Chem. Res.,2004,43,136-143.
    [9]L. Jimenez, J. Costa-Lopez, The production of butyl acetate and methanol via reactive and extractive distillation. II. process modeling, dynamic simulation, and control strategy, Ind. Eng. Chem. Res.,2002,41,6735-6744.
    [10]W.L. Luyben, K. Pszalgowski, M. Schaefer, C. Siddons, Design and control of conventional and reactive distillation processes for the production of butyl acetate, Ind. Eng. Chem. Res., 2004,43,8014-8025.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700