用户名: 密码: 验证码:
食物中能够进入淋巴液的蛋白尿蛋白质组影响因素及肾癌标志物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统的理论认为食物蛋白进入人体后,首先要在体内消化酶的作用下水解成氨基酸、二肽及三肽才能被肠道吸收和利用。近年来,越来越多的研究发现某些蛋白质能够以片段甚至完整形式穿过肠道粘膜屏障进入体内,虽然量比较小不足以起到营养学价值,但这些蛋白能却够保持其生物学活性并发挥相应的作用。
     本研究尝试采用蛋白质组学方法全面系统地鉴定食物中能够完整进入体内的蛋白质。淋巴管比血管的通透性更高,且淋巴液的流速低及成分相对简单,有利于外源性蛋白的鉴定。我们构建了一种新的大鼠肠道淋巴瘘管模型,并收集了4只大鼠食用牛奶前后的肠道淋巴液样品。然后分别采用离心超滤法(30kD cutoff)和不同溶解度法(DS)富集了淋巴液中的低分子量蛋白和多肽,经一维凝胶电泳分离和基于分子量大小的胶内酶切后,通过LC-MS/MS的方法对产生的多肽进行质谱鉴定。在数据库检索时,通过牛和大鼠种属特异性多肽来确定淋巴液中来源于牛奶的蛋白。在饮食牛奶后的大鼠淋巴液中,共鉴定到9个牛源性蛋白(FDR<1%),其中6个蛋白在两只不同的大鼠中均被鉴定到,另外有4个蛋白在采用两种不同富集方法得到的样本中都得到鉴定。这些牛源性蛋白都在不同分子量区间得到鉴定,提示它们可能以不同大小的片段或完整的形式进入淋巴液中。大部分牛源性蛋白是牛奶中的高丰度蛋白,比如p-乳球蛋白和酪蛋白。这9个蛋白中有7个是牛奶的主要过敏原。本研究中我们试图寻找这些能够进入淋巴液牛源性蛋白的共同特征,将为口服蛋白药物的开发和探寻预防食物过敏的新方法提供理论依据。
     生物标志物是和某种特定的生理或病理生理过程相联系的可监测的变化。血液是机体内环境的重要组成部分,有多种机制来维持血液成分的相对稳定,以保证机体正常的生命活动。尿液是经由泌尿系统及尿路排出体外的排泄物,完全没有稳定的必要性和机制,因此尿液能够更灵敏地反映机体的变化。与此同时,这也决定了尿液非常容易受到多种因素的影响,比如年龄、性别、药物、运动及饮食等。在尿蛋白生物标志物的研究中,为了得到疾病特异的差异蛋白,必须要排除这些非疾病因素对尿蛋白质组的影响,因此研究常见因素对尿蛋白质组的影响是非常必要的。
     药物是尿蛋白质组的影响因素之一。在进行尿生物标志物的研究中,不能干扰患者的正常治疗,因此研究药物的影响显得尤为重要。利尿剂是目前临床最常用的药物之一,特别是用于心脏及肾脏疾病的治疗。本研究以大鼠为研究对象,探讨了三种常用利尿剂(呋塞米、氢氯噻嗪和螺内酯)对尿蛋白质组的影响。通过代谢笼收集大鼠服用常规治疗剂量利尿剂前后的尿液样本,然后采用液相色谱串联质谱的方法(LC-MS/MS)分析尿蛋白质组的变化。经Progenesis LC-MS软件进行非标记定量及严格筛选(FDR<1%,P<0.05,变化倍数≥2,同时谱图数≥5)后,在呋塞米、氢氯噻嗪和螺内酯三组大鼠用药前后尿液中分别鉴定到7、5和2个具有显著差异的蛋白,且这三组中的差异蛋白各不相同。这14个蛋白中有10个已经被认为是疾病的生物标志物,而且大部分差异蛋白的人同源蛋白都是正常人尿核心蛋白质组的成员,这些蛋白标志物在将来的临床应用中以及新的生物标志物的研究中要慎重考虑利尿剂的影响。本研究结果提示在将来的尿蛋白质组生物标志物研究中,在进行数据分析时要考虑到利尿剂的影响,同时也为利尿剂对肾脏蛋白处理功能影响的机制研究提供了线索。此外,本策略同样适用于其他常见药物对尿蛋白质组影响的研究。
     随着年龄的增长,肾脏的功能会逐渐降低,肾小球滤过滤(GFR)从40岁到80岁会有20-25%的下降。老年人由于机体功能的衰退容易发生多种疾病,在进行这些疾病尿生物标志物的研究时,要排除自然衰老状态下尿蛋白质组学的变化。本研究中我们采用与利尿剂相似的策略,定量比较了9只青年大鼠(2个月龄)和9只老年大鼠(20个月龄)的尿蛋白质组的差异。两组大鼠中共鉴定到374个蛋白,其中具有显著差异的蛋白有37个,在老年组中升高的有17个,下降的有20个。其中有21个蛋白已经被报道为疾病的生物标志物。另外这37个蛋白中有28个具有人同源蛋白,其中14个是正常人尿核心蛋白质组的成员。利用人类蛋白质表达数据库(Human protein Atlas)对这些蛋白进行组织定位后发现,这28个蛋白可高表达于40个不同的组织器官中。其中高表达差异蛋白数量最多的组织是肾脏,体现了尿液能够很好地反映肾脏的功能。除此之外,消化系统(特别是小肠中)、脑部以及肺部高表达差异蛋白的数量也比较多,提示尿液也可能反映这些系统的功能变化,将来可用于寻找这些系统疾病的生物标志物。
     肾细胞癌(renal cell carcinoma, RCC)是最常见的成人肾脏肿瘤,其中85%的组织学类型为肾透明细胞癌(clear cell RCC)。早期肾癌经治疗后5年存活率可高达89%,但由于早期肾癌缺乏特异性症状、体征及实验室检查指标,30%以上的肾癌患者确诊时己经到了晚期阶段,5年存活率不足5%,因此肾癌的早期筛查和诊断尤为重要。目前肾癌诊断主要依靠B超、CT、磁共振等影像学检查,还没有可以应用于临床的特异性生物标志物。尿液与肾脏有着密不可分的关系,能够直接地反映肾脏的状态,非常适合作为寻找肾脏疾病生物标志物的样品来源。本研究中,我们通过非标记定量蛋白质组学方法分析了4例肾透明细胞癌患者手术前后尿液变化,发现具有显著差异且在所有患者中变化趋势一致的蛋白有4个。目前我们正在对其中的两个蛋白通过ELISA方法进行大规模验证。肾癌尿液生物标志物的研究将为肾癌早期筛查和诊断提供一种有效的方法。
Food proteins were considered to be absorbed into the body after being digested to amino acids, dipeptides and tripeptides. However, there are studies indicating that some proteins can pass through the intestinal epithelium under normal physiological conditions, perhaps not in sufficient quantities to be of nutritional importance, but in quantities that may be antigenically or biologically active. In the present study, rat intestinal lymph samples were collected using a modified lymph fistula rat model in fasting and cow's milk postprandial states. Low molecular weight proteins were enriched by ultrafiltration and differential solubilization, separated by1D-SDS-PAGE, digested in-gel based on molecular weight, and identified using nano-LCMS/MS. In the postprandial rat intestinal lymph, nine bovine-specific proteins (false discovery rate≤1%) were identified in different molecular weight regions. Most proteins identified in lymph were high-abundant proteins in the milk, such as β-lactoglobulin and caseins. Seven of the nine identified bovine-specific proteins are allergens in milk. This strategy can be used to search for proteins that can enter the intestinal lymph and analyze their common features. Understanding the common features of these proteins might help to develop protein drugs taken orally, so that therapeutic proteins might embody fusion domains for cross-barrier transport or translocation.
     Biomarker is the measurable change associated with a physiological or pathophysiological process. Unlike blood which has mechanisms to keep the internal environment homeostatic, urine is more likely to reflect changes of the body. As a result, urine is likely to be a better biomarker source than blood. However, since the urinary proteome is affected by many factors, including age, gender, medications, exercises, etc. Careful evaluation of those effects is necessary if urinary proteomics is used for biomarker discovery. Here, we evaluated the effects of three commonly-used diuretics (furosemide, F; hydrochlorothiazide, H; and spirolactone, S) on the urinary proteome in rats. Urine samples were collected before and after intragastric administration of diuretics at therapeutic doses and the proteomes were analyzed using label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS). Based on the criteria of P≤ 0.05, a fold change≥2, a spectral count≥5and false positive rate (FDR)<1%,14proteins (seven for F, five for H, and two for S) were identified by Progenesis LC-MS. The human orthologs of most of these14proteins are stable in the healthy human urinary proteome, and ten of them are reported as disease biomarkers. Thus, our results suggest that the effects of diuretics deserve more attention in future urinary protein biomarker studies. Moreover, the distinct effects of diuretics on the urinary proteome may provide clues to the mechanisms of diuretics.
     The kidney shows a quantifiable decrease in function with age. The glomerular filtration rate declines with20-25%from40to80years of age. Furthermore, the capacity of the kidney to concentrate urine reduces progressively with age. Urine samples from9young rats (2months) and9old rats (20months) were analyzed by label-free quantitative proteomics.37proteins were significantly changed between the two groups,17proteins were up-regulated in old group, and20proteins were down-regulated. Most of these proteins were found in the human core urinary proteome. Compared these proteins with human protein atlas database, they are highly or strongly expressed in40different tissues. Among these tissues, kidney has the most highly or strongly expressed proteins, which may due to its natural relationship with urine. The number of highly or strongly expressed proteins in brain, lung and intestines is relatively high, implying that urinary proteins may reflect the status of these organs.
     Renal cell carcinoma (RCC) is the most common neoplasm in adult kidney, making up3%of all adult malignancies. Histopathologically, about85%of RCC is clear-cell carcinoma. Early diagnosis of kidney-localized RCC is associated with a quite favorable prognosis with a five-year survival rate of about89%. Unfortunately, patients often present with few signs, symptoms, or laboratory abnormalities, and are frequently (-30%) diagnosed at the metastatic stage, when the prospects for cure are dismal (9%five-year survival rate).The clinical diagnosis of RCC is often confirmed by imaging studies, including ultrasonic, MRI and CT. There are currently no biomarkers available for the diagnosis of RCC. Because of the natural relationship of urine and kidney, urine is particularly suitable as a source of kidney disease biomarkers. We have identified4candidate markers by label-free quantitative proteomics from urine samples of4ccRCC patients. And then, the dis-regulated proteins are validated by ELISA in a large scale.We expect to find some usefull biomarkers of ccRCC for early diagnosis.
引文
[1]Nixon, S. E., Mawer, G E., The digestion and absorption of protein in man.2. The form in which digested protein is absorbed.Br. J. Nutr.1970,24,241-258.
    [2]Munck, B. G., Transport of neutral and cationic amino acids across the brush-border membrane of the rabbit ileum.J. Membr. Biol.1985,83,1-13.
    [3]Christensen, H. N., Distinguishing amino acid transport systems of a given cell or tissue.Methods Enzymol.1989,173,576-616.
    [4]Matthews, D. M., Mechanisms of peptide transport. Beitr. Infusionther. Klin. Ernahr.1987,17,6-53.
    [5]Newey, H., Smyth, D. H., The intestinal absorption of some dipeptides.J. Physiol.1959,145,48-56.
    [6]Addison, J. M., Burston, D., Matthews, D. M., Evidence for active transport of the dipeptide glycylsarcosine by hamster jejunum in vitro. Clin. Sci.1972,43,907-911.
    [7]Burston, D., Addison, J. M., Matthews, D. M., Uptake of dipeptides containing basic and acidic amino acids by rat small intestine in vitro.Clin. Sci.1972,43,823-837.
    [8]Gruskay, F. L., Cooke, R. E., The gastrointestinal absorption of unaltered protein in normal infants and in infants recovering from diarrhea.Pediatrics1955,16,763-769.
    [9]Korenblat, P. E., Rothberg, R. M., Minden, P., Farr, R. S., Immune responses of human adults after oral and parenteral exposure to bovine serum albumin. J. Allergy 1968,41,226-235.
    [10]Walker, W. A., Isselbacher, K. J., Uptake and transport of macromolecules by the intestine. Possible role in clinical disorders. Gastroenterology.1974,67,531-550.
    [11]Husby, S., Jensenius, J. C., Svehag, S. E., Passage of undegraded dietary antigen into the blood of healthy adults. Quantification, estimation of size distribution, and relation of uptake to levels of specific antibodies. Scand. J. Immunol.1985,22, 83-92.
    [12]Husby, S., Jensenius, J. C., Svehag, S. E., Passage of undegraded dietary antigen into the blood of healthy adults. Further characterization of the kinetics of uptake and the size distribution of the antigen. Scand. J. Immunol.1986,24,447-455.
    [13]Husby, S., Foged, N., Host, A., Svehag, S. E., Passage of dietary into the blood of children with coeliac disease. Quantification and size distribution of absorbed antigens. Gut.1987,28,1062-1072.
    [14]Roberton, D. M., Paganelli, R., Dinwiddie, R., Levinsky, R. J., Milk antigen absorption in the preterm and term neonate. Arch. Dis. Child.1982,57,369-372.
    [15]Lovegrove, J. A., Osman, D. L., Morgan, J. B., Hampton, S. M., Transfer of cow's milk beta-lactoglobulin to human serum after a milk load:a pilot study. Gut1993,34, 203-207.
    [16]Kunimoto, A., Yokoro, M., Murota, K., Yamanishi, R. et al., Gastrointestinal digestion and absorption of Pen j 1, a major allergen from Kuruma prawn, Penaeus japonicus. Biosci. Biotechnol. Biochem.2011,75,1249-1258.
    [17]Toki, N., Sumi, H., Sasaki, K., Boreisha, I., Robbins, K. C., Transport of urokinase across the intestinal tract of normal human subjects with stimulation of synthesis and/or release of urokinase-type proteins.J. Clin. Invest.1985,75,1212-1222.
    [18]Castell, J. V., Friedrich, G., Kuhn, C. S., Poppe, G. E., Intestinal absorption of undegraded proteins in men:presence of bromelain in plasma after oral intake.Am. J. Physiol.1997,273, G139-G146.
    [19]Ricci-Cabello, I., Herrera, M. O., Artacho, R., Possible role of milk-derived bioactive peptides in the treatment and prevention of metabolic syndrome.Nutr. Rev.2012,70,241-255.
    [20]van Wijk, F., Knippels, L., Initiating mechanisms of food allergy:oral tolerance versus allergic sensitization. Biomed. Pharmacother.2007,61,8-20.
    [21]Smith, K. M., Davidson, J. M., Garside, P., T-cell activation occurs simultaneously in local and peripheral lymphoid tissue following oral administration of a range of doses of immunogenic or tolerogenic antigen although tolerized T cells display a defect in cell division.Immunology 2002,106,144-158.
    [22]Baluk, P., Fuxe, J., Hashizume, H., Romano, T. et al., Functionally specialized junctions between endothelial cells of lymphatic vessels. J. Exp. Med.2007,204, 2349-2362.
    [23]Scallan, J. P., Huxley, V. H., In vivo determination of collecting lymphatic vessel permeability to albumin:a role for lymphatics in exchange. J. Physiol.2010,588, 243-254.
    [24]Alison B. Kohan, Stephanie M. Yoder, Patrick Tso, Using the lymphatics to study nutrient absorption and the secretion of gastrointestinal hormones, Physiol Behav (2011), doi:10.1016/j.physbeh.2011.04.056.
    [25]Bollman, J. L., Cain, J. C., Grindlay, J. H., Techniques for the collection of lymph from the liver, small intestine, or thoracic duct of the rat. J. Lab. Clin. Med.1948,33, 1349-1352.
    [26]Tso, P., Simmonds, W. J., The absorption of lipid and lipoprotein synthesis. Lab. Res. Methods Biol. Med.1984,10,191-216.
    [27]Dupont, C., Food allergy:recent advances in pathophysiology and diagnosis. Ann. Nutr. Metab.2011,59 (Suppl 1),8-18.
    [28]Porter, C. J., Charman, W. N., Model systems for intestinal lymphatic transport studies. Pharm. Biotechnol.1996,8,85-102.
    [29]Yoder, S. M., Kindel, T. L., Tso, P., Using the lymph fistula rat model to study incretin secretion. Vitam. Horm.2010,84,221-249.
    [30]Oveland, E., Karlsen, T. V., Haslene-Hox, H., Semaeva, E. et al., Proteomic evaluation of inflammatory proteins in rat spleen interstitial fluid and lymph during LPS-induced systemic inflammation reveals increased levels of ADAMST1.J. Proteome Res.2012,11,5338-5349.
    [31]Lu, W. J., Yang, Q., Sun, W., Woods, S. C. et al., Using the lymph fistula rat model to study the potentiation of GIP secretion by the ingestion of fat and glucose. Am. J. Physiol. Gastrointest. Liver Physiol.2008,294, G1130-G1138.
    [32]Mittal, A., Middleditch, M., Ruggiero, K., Buchanan, C. M. et al., The proteome of rodent mesenteric lymph.Am. J. Physiol. Gastrointest. Liver Physiol.2008,295, G895-G903.
    [33]Edwards, G A., Porter, C. J., Caliph, S. M., Khoo, S. M., Charman, W. N., Animal models for the study of intestinal lymphatic drug transport. Adv. Drug Deliv. Rev.2001,50,45-60.
    [34]Hayashi, H., Nutting, D. F., Fujimoto, K., Cardelli, J. A. et al., Transport of lipid and apolipoproteins A-I and A-FV in intestinal lymph of the rat.J. Lipid Res.1990,31, 1613-1625.
    [35]Gasilova, N., Gassner, A. L., Girault, H. H., Analysis of major milk whey proteins by immunoaffinity capillary electrophoresis coupled with MALDI-MS. Electrophoresis 2012,33,2390-2398.
    [36]Tirumalai, R. S., Chan, K. C., Prieto, D. A., Issaq, H. J. et al., Characterization of the low molecular weight human serum proteome. Mol. Cell. Proteomics2003,2, 1096-1103.
    [37]Kawashima, Y, Fukutomi, T., Tomonaga, T., Takahashi, H.et al., High-yield peptide-extraction method for the discovery of subnanomolar biomarkers from small serum samples. J. Proteome Res.2010,9,1694-1705.
    [38]Schagger, H., von Jagow, G., Tricine-sodium dodecyl sulfatepolyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem.1987,166,368-379.
    [39]Farrell, H. M., Jr., Jimenez-Flores, R., Bleck, G. T., Brown, E.M. et al., Nomenclature of the proteins of cows' milk-sixth revision.J. Dairy Sci.2004,87, 1641-1674.
    [40]Larsen, L. B., Wedholm, A., Moller, H. S., Andren, A., Lindmark-M° ansson, H., Proteomic study of correlations between milk yield and whey protein composition. J. Anim. Feed Sci.2007,16,200-206.
    [1]Gao Y H. Urine-an untapped goldmine for biomarker discovery? Sci China Life Sci, 2013,56:1145-1146, doi:10.1007/s 11427-013-4574-1.
    [2]Schaub S, Wilkins J, Weiler T, Sangster K, Rush D, Nickerson P:Urine protein profiling with surface-enhanced laser-desorption/ionization time-of-flight mass spectrometry. Kidney Int 2004,65(1):323-332.
    [3]Theodorescu D, Wittke S, Ross MM, Walden M, Conaway M, Just I, Mischak H, Frierson HF:Discovery and validation of new protein biomarkers for urothelial cancer:a prospective analysis. Lancet Oncol 2006; 7(3):230-240.
    [4]Wei Sun, Fuxin Li, Shuzhen Wu, Xiaorong Wang, Dexian Zheng, Jue Wang, and Youhe Gao. Human urine proteome analysis with three different separation approaches. Proteomics.2005; 18:4994-5001.
    [5]Nagaraj N, Mann M. Quantitative analysis of the intra-and interindividual variability of the normal urinary proteome. J Proteome Res 2011;10:637-645.
    [6]Jia L, Liu X, Liu L, Li M, Gao Y. Urimem, a membrane that can store urinary proteins simply and economically, makes the largescale storage of clinical samples possible. Sci China Life Sci 2013.http://dx.doi.org/10.1007/s11427-013-4582-1.
    [7]Thongboonkerd V, McLeish KR, Arthur JM and Klein JB. Proteomic analysis of normal human urinary proteins isolated by acetone precipitation or ultracentrifugation. Kidney Int.2002; 62:1461-1469.
    [8]Pieper R, Gatlin CL, McGrath AM, Makusky AJ, Mondal M, Seonarain M, Field E, Schatz CR, Estock MA, Ahmed N, Anderson NG and Steiner S. Characterization of the human urinary proteome:a method for high-resolution display of urinary proteins on two-dimensional electrophoresis gels with a yield of nearly 1400 distinct protein spots. Proteomics.2004; 4:1159-1174.
    [9]Adachi J, Kumar C, Zhang Y, Olsen JV and Mann M. The human urinary proteome contains more than 1500 proteins, including a large proportion of membrane proteins. Genome Biol.2006; 7:R80.
    [10]Farrah T, Deutsch EW, Omenn GS, Sun Z, Watts JD, Yamamoto T, Shteynberg D, Harris MM, Moritz RL. State of the Human Proteome in 2013 as Viewed through PeptideAtlas:Comparing the Kidney, Urine, and Plasma Proteomes for the Biology-and Disease-Driven Human Proteome Project. J Proteome Res.2014; 13(1):60-75.
    [11]Payne SR, Serth J, Schostak M, Kamradt J, Strauss A,Thelen P, Model F, Day JK, Liebenberg V, Morotti A, Yamamura S, Lograsso J, Sledziewski A,Semjonow A. DNA methylation biomarkers of prostate cancer:confirmation of candidates and evidence urine is the most sensitive body fluid for non-invasive detection. Prostate. 2009; 69(12):1257-1269.
    [12]Wu T, Du Y, Han J, Singh S, Xie C, Guo Y, Zhou XJ, Ahn C, Saxena R, Mohan C. Urinary angiostatin--a novel putative marker of renal pathology chronicity in lupus nephritis. Mol Cell Proteomics.2013; 12(5):1170-1179.
    [13]Huang JT, Chaudhuri R, Albarbarawi O, Barton A, Grierson C, Rauchhaus P, Weir CJ, Messow M, Stevens N, McSharry C, Feuerstein G, Mukhopadhyay S,Brady J, Palmer CN, Miller D, Thomson NC. Clinical validity of plasma and urinary desmosine as biomarkers for chronic obstructive pulmonary disease. Thorax.2012; 67(6):502-508.
    [14]Chen Shao, Menglin Li, Xundou Li, Lilong Wei, Lisi Zhu, Fan Yang, Lulu Jia, Yi Mu, Jiangning Wang, Zhengguang Guo, Dan Zhang, Jianrui Yin, Zhigang Wang, Wei Sun, Zhengguo Zhang, and Youhe Gao. A tool for biomarker discovery in the urinary proteome:a manually-curated human and animal urine protein biomarker database Mol Cell Proteomics 201110:M111.0120975.
    [15]Petra Ztirbig, Stephane Decramer, Mohammed Dakna, Justyna Jantos, David M.Good, Joshua J. Coon, Flavio Bandin, Harald Mischak, Jean-Loup Bascands, and Joost P Schanstra. A low molecular weight urinary proteome profile of human kidneyaging. Proteomics.2009; 9(8):2108-2117.
    [16]M. Bakun, G. Senatorski& T. Rubel, A. Lukasik, P. Zielenkiewicz, M. Dadlez, L. Paczek. Urine proteomes of healthy aging humans reveal extracellular matrix (ECM) alterations and immune system dysfunction. AGE.2014; 36:299-311.
    [17]Mullen W, Gonzalez J, Siwy J, Franke J, Sattar N, Mullan A, Roberts S, Delles C, Mischak H,Albalat A. A pilot study on the effect of short-term consumption of a polyphenol rich drink on biomarkers of coronary arterydisease defined by urinary proteomics. J Agric Food Chem.2011; 59(24):12850-12857.
    [18]Thongboonkerd V, Klein JB, Pierce WM, Jevans AW, Arthur JM. Sodium loading Changes urinary protein excretion:a proteomic analysis. Am J Physiol Renal Physiol.200; 284(6):F1155-1163.
    [19]Xundou Li, Mindi Zhao, Menglin Li, Lulu Jia, Youhe Gao. Effects of Three Commonly-used Diuretics on the Urinary Proteome. Genomics Proteomics Bioinformatics.2014; http://dx.doi.org/10.1016/j.gpb.2013.12.002.
    [20]. Airoldi L, Magagnotti C, Iannuzzi AR, Marelli C, Bagnati R, Pastorelli R, Colombi A, Santaguida S, Chiabrando C, Schiarea S, Fanelli R. Effects of cigarette smoking on the human urinary proteome. Biochem Biophys Res Commun.2009; 381(3):397-402.
    [21]Li Menglin, Zhao Mindi, Gao Youhe. Changes of proteins induced by anticoagulants can be more sensitively detected in urine than in plasma. Sci China Life Sci,2013; http://www.paper.edu.cn/releasepaper/content/201311-291.
    [22]Reddy P, Mooradian AD. Diuretics:an update on the pharmacology and clinical uses. Am J Ther.2009; 16:74-85
    [23]Wile D. Diuretics:a review. Ann Clin Biochem.2012; 49:419-431.
    [24]Wisniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nat Methods.2009; 6:359-362.
    [25]Stoop MP, Singh V, Stingl C, Martin R, Khademi M, Olsson T, et al. Effects of natalizumab treatment on the cerebrospinal fluid proteome of multiple sclerosis patients. J Proteome Res.2013; 12:1101-1107.
    [26]Wang Y, Chen Y, Zhang Y, Wu S, Ma S, Hu S, et al. Differential ConA-enriched urinary proteome in rat experimental glomerular diseases. Biochem Biophys Res Commun 2008; 371:385-390.
    [27]Ozer JS, Dieterle F, Troth S, Perentes E, Cordier A, Verdes P, et al. A panel of urinary biomarkers to monitor reversibility of renal injury and a serum marker with improved potential to assess renal function. Nat Biotechnol 2010; 28:486-494.
    [28]Hoffmann D, Fuchs TC, Henzler T, Matheis KA, Herget T, Dekant W, et al. Evaluation of a urinary kidney biomarker panel in rat models of acute and subchronic nephrotoxicity. Toxicology.2010; 277:49-58.
    [29]Rouse RL, Zhang J, Stewart SR, Rosenzweig BA, Espandiari P, Sadrieh NK. Comparative profile of commercially available urinary biomarkers in preclinical drug-induced kidney injury and recovery in rats. Kidney Int 2011; 79:1186-1197.
    [30]Fuchs TC, Frick K, Emde B, Czasch S, von Landenberg F, Hewitt P. Evaluation of novel acute urinary rat kidney toxicity biomarker for subacute toxicity studies in preclinical trials. Toxicol Pathol.2012; 40:1031-1048.
    [31]Kentsis A, Lin YY, Kurek K, Calicchio M, Wang YY, Monigatti F, et al. Discovery and validation of urine markers of acute pediatric appendicitis using high-accuracy mass spectrometry. Ann Emerg Med.2010; 55:62-70.
    [32]Malard V, Gaillard JC, Berenguer F, Sage N, Quemeneur E. Urine proteomic profiling of uranium nephrotoxicity. Biochim Biophys Acta.2009; 1794:882-891.
    [33]Li H, Li C, Wu H, Zhang T, Wang J, Wang S, et al. Identification of Apo-Al as a biomarker for early diagnosis of bladder transitional cell carcinoma. Proteome Sci 2011; 9:21.
    [34]Zager RA, Vijayan A, Johnson AC. Proximal tubule Haptoglobin gene activation is an integral component of the acute kidney injury "stress response". Am J Physiol Renal Physiol.2012; 303:F139-148.
    [35]Riaz S, Alam SS, Srai SK, Skinner V, Riaz A, Akhtar MW. Proteomic identification of human urinary biomarkers in diabetes mellitus type 2. Diabetes Technol Ther 2010; 12:979-988.
    [36]Jiang H, Guan G, Zhang R, Liu G, Cheng J, Hou X, et al. Identification of urinary soluble E-cadherin as a novel biomarker for diabetic nephropathy. Diabetes Metab Res Rev.2009; 25:232-241.
    [37]Bhensdadia NM, Hunt KJ, Lopes-Virella MF, Michael Tucker J, Mataria MR, Alge JL, et al. Urine haptoglobin levels predict early renal functional decline in patients with type 2 diabetes. Kidney Int.2013; 83:1136-1143.
    [38]Cutillas PR, Chalkley RJ, Hansen KC, Cramer R, Norden AG, Waterfield MD, et al. The urinary proteome in Fanconi syndrome implies specificity in the reabsorption of proteins by renal proximal tubule cells. Am J Physiol Renal Physiol.2004; 287:F353-364.
    [39]Lemberger SI, Dorsch R, Hauck SM, Amann B, Hirmer S, Hartmann K, et al. Decrease of Trefoil factor 2 in cats with feline idiopathic cystitis. BJU Int 2011; 107:670-677.
    [40]Koonin EV. Orthologs, paralogs, and evolutionary genomics. Annu Rev Genet 2005; 39:309-338.
    [41]Remm M, Storm CE, Sonnhammer EL. Automatic clustering of orthologs and in-paralogs from pairwise species comparisons. J Mol Biol 2001; 314:1041-1052.
    [42]Shaye DD, Greenwald I. OrthoList:a compendium of C. elegans genes with human orthologs. PLoS One.2011; 6:e20085.
    [43]Ostlund G, Schmitt T, Forslund K, Kostler T, Messina DN, et al. InParanoid 7:new algorithms and tools for eukaryotic orthology analysis. Nucleic Acids Res.2010; 38: D196-203.
    [44]Chen F, Mackey AJ, Stoeckert CJ, Jr., Roos DS. OrthoMCL-DB:querying a comprehensive multi-species collection of ortholog groups. Nucleic Acids Res. 2006; 34:D363-368.
    [45]Acland A, Agarwala R, Barrett T, Beck J, et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res.2014; 41:D8-D20.
    [46]Vilella AJ, Severin J, Ureta-Vidal A, Heng L, Durbin R, et al. EnsemblCompara GeneTrees:Complete, duplication-aware phylogenetic trees in vertebrates. Genome Res.2009; 19:327-335.
    [47]Sun W, Chen Y, Li F, Zhang L, Yang R, Zhang Z, et al. Dynamic urinary proteomic analysis reveals stable proteins to be potential biomarkers. Proteomics Clin Appl 2009; 3:370-382.
    [48]vB Hjelmborg J, Iachine I, Skytthe A, Vaupel JW, McGue M, Koskenvuo M, Kaprio J, Pedersen NL, Christensen K. Genetic influence on human lifespan and longevity. Hum Genet.2006; 119(3):312-321.
    [49]Martin JE, SheafF MT. The pathology of ageing:concepts and mechanisms. J Pathol. 2007;211(2):111-113.
    [50]Martin JE, SheaffMT. Renal ageing. J Pathol.2007; 211:198-205.
    [51]Hoang K, Tan JC, Derby G, Blouch KL, Masek M, Ma I, Lemley KV, Myers BD. Determinants of glomerular hypofiltration in aging humans. Kidney Int.2003; 64:1417-1424.
    [52]Michel DM, Kelly CJ. Acute interstitial nephritis. J Am Soc Nephrol.1998; 9(3):506-515.
    [53]Rich MW, Crecelius CA. Incidence, risk factors, and clinical course of acute renal insufficiency after cardiac catheterization in patients 70 years of age or older. A prospective study. Arch Intern Med.1990; 150(6):1237-1242.
    [54]Petra Ziirbig, Stephane Decramer, et al. A low molecular weight urinary proteome profile of human kidney aging. Proteomics.2009; 9(8):2108-2117.
    [55]M. Bakun G. Senatorski T. Rubel A. Lukasik P. Zielenkiewicz M. Dadlez L. Paczek. Urine proteomes of healthy aging humans reveal extracellular matrix (ECM) alterations and immune system dysfunction. AGE.2014; 36:299-311.
    [1]McLaughlin, J. K.; Lipworth, L.; Tarone, R. E. Epidemiologic aspects of renal cell carcinoma. Semin. Oncol.2006,33(5),527-533.
    [2]Nepple KG, Yang L, Grubb RL, et al. Population based analysis of the increasing incidence of kidney cancer in the United States:evaluation of age specific trends from 1975 to 2006.J Urol.2012;187:32-38.
    [3]Siegel R, Naishadham D, Jemal A. Cancer statistics,2012.CA Cancer J Clin.2012; 62:10-29.
    [4]《肾细胞癌诊断治疗指南》编写组.肾细胞癌诊断治疗指南(2008年第1版)[J].中华泌尿外科杂志,2009,30(1):63-69.
    [5]Ebele JN, Sauter G, Epstein JI, et al. Pathology and genetics of tumors of the urinary system and male genital organs [M]. Lyon:IARC.2004:12-43.
    [6]Macleod LC, Hotaling JM, Wright JL, Davenport MT, Gore JL, Harper J, White E. Risk Factors for Renal Cell Carcinoma in the VITAL Study. J Urol.2013, 190(5):1657-1661.
    [7]Ryan P Theis, Suzanne M Dolwick Grieb, Deborah Burr, Tariq Siddiqui and Nabih R Asal2. Smoking, environmental tobacco smoke, and risk of renal cell cancer:a population-based case-control study. BMC Cancer 2008,8:387. doi:10.1186/1471-2407-8-387
    [8]Lin Li, Kamyar Kalantar-Zadeh. Obesity That Makes Kidney Cancer More Likely but Helps Fight It More Strongly. J Natl Cancer Inst.2013,18; 105 (24):1848-1849.
    [9]Weiss, R. H.; Lin, P. Y. Kidney cancer:identification of novel targets for therapy. Kidney Int.2006,69(2),224-232.
    [10]Poste G Bring on the biomarkers. Nature,2011,469:156-157.
    [11]Perroud B, Ishimaru T, Borowsky, A. D, Weiss R. H. Grade-dependent proteomics characterization of kidney cancer. Mol Cell Proteomics 2009,8(5),971-985.
    [12]Junker H, Venz S, Zimmermann U, Thiele A, Scharf C, et al. (2011) Stage-Related Alterations in Renal Cell Carcinoma-Comprehensive Quantitative Analysis by 2D-DIGE and Protein Network Analysis. PLoS ONE 6(7):e21867. doi:10.1371/journal.pone.0021867.
    [13]Masui, O, White, N. M, Desouza, L. V, Krakovska, O, Matta, A, Metias, S, Khalil, B, Romaschin, A. D, Honey, R. J, Stewart, R, Pace, K, Bjarnason, G. A, Siu, K.W, Yousef, G. M. Quantitative proteomic analysis in metastatic renal cell carcinoma reveals a unique set of proteins with potential prognostic significance. Mol Cell Proteomics 2013,1(12),132-144.
    [14]Vasudev, N. S, Ferguson, R. E, Cairns, D. A, Stanley, A. J, Selby, P. J, Banks, R. E. Serum biomarker discovery in renal cancer using 2-DE and prefractionation by immunodepletion and isoelectric focusing; increasing coverage or more of the same? Proteomics 2008,8,5074-5085
    [15]Johann, D. J., Jr, Wei, B. R, Prieto, D. A, Chan, K. C, Ye, X, Valera, V. A, Simpson, R. M, Rudnick, P. A, Xiao, Z, Issaq, H. J, Linehan, W. M, Stein, S. E, Veenstra, T. D, Blonder, J. Combined blood/tissue analysis for cancer biomarker discovery: application to renal cell carcinoma. Anal Chem.2010 March 1; 82(5):1584-1588.
    [16]Teng, P. N,Hood, B. L, Sun, M, Dhir, R, Conrads, T. P. Differential proteomic analysis of renal cell carcinoma tissue interstitial fluid. J. Proteome Res.2011,10, 1333-1342.
    [17]Decramer S, Gonzalez de Peredo A, Breuil B, Mischak H, Monsarrat B, Bascands JL, Schanstra JP:Urine in clinical proteomics. Mol Cell Proteomics 2008, 7(10):1850-1862.
    [18]Schaub S, Wilkins J, Weiler T, Sangster K, Rush D, Nickerson P:Urine protein profiling with surface-enhanced laser-desorption/ionization time-of-flight mass spectrometry. Kidney Int 2004,65(1):323-332.
    [19]Theodorescu D, Wittke S, Ross MM, Walden M, Conaway M, Just 1, Mischak H, Frierson HF:Discovery and validation of new protein biomarkers for urothelial cancer:a prospective analysis. Lancet Oncol 2006,7(3):230-240.
    [20]Jia L, Liu X, Liu L, Li M, Gao Y. Urimem, a membrane that can store urinary proteins simply and economically, makes the largescale storage of clinical samples possible. Sci China Life Sci 2013.http://dx.doi.org/10.1007/s 11427-013-4582-1.
    [21]Thongboonkerd V. Proteomics in Nephrology:Current status and future directions. Am J Nephrol,2004,24(3):360.
    [22]Chen Shao, Menglin Li, Xundou Li, Lilong Wei, Lisi Zhu, Fan Yang, Lulu Jia, Yi Mu, Jiangning Wang, Zhengguang Guo, Dan Zhang, Jianrui Yin, Zhigang Wang, Wei Sun, Zhengguo Zhang, and Youhe Gao. A tool for biomarker discovery in the urinary proteome:a manually-curated human and animal urine protein biomarker database Mol Cell Proteomics 2011 10:M111.0120975.
    [23]Bosso, N, Chinello, C, Picozzi, S. C, Gianazza, E, Mainini, V, Galbusera, C, Raimondo, F, Perego, R, Casellato, S, Rocco, F, Ferrero, S, Bosari, S, Mocarelli, P, Kienle, M. G, Magni, F. Human urine biomarkers of renal cell carcinoma evaluated by ClinPro. Proteomics Clin. Appl.2008; 2,1036-1046.
    [24]Vasudev, N. S, Sim, S, Cairns, D. A, Ferguson, R. E, Craven, R. A, Stanley, A, Cartledge, J, Thompson, D, Selby, P. J, Banks, R. E. Pre-operative urinary cathepsin D is associated with survival in patients with renal cell carcinoma. Br J Cancer. 2009; 7,1175-1182.
    [25]Jeremiah J. Morrissey, Jonathan Mobley, Joseph Song, Joel Vetter, Jingqin Luo,Sam Bhayani, R. Sherburne Figenshau, and Evan D. Kharasch. Urinary Concentrations of Aquaporin-1 and Perilipin-2 in Patients With Renal Cell Carcinoma Correlate With Tumor Size and Stage but Not Grade. Urology.2014; 83(l):256.e9-14.
    [26]Kirchhoff C, Habben I, Ivell R,et al.A major human epididymis-specific cDNA encodes a protein with sequence homology to extracellular proteinase inhibitors. Biol Reprod.1991; 45:350-357.
    [27]Kirchhoff C. Molecular characterization of epididymalproteins. Rev Reprod.1998; 3:86-95.
    [28]Mary T Galgano, Garret M Hampton and Henry F Frierson Jr. Comprehensive analysis of HE4 expression in normal and malignant human tissues. Modern Pathology.2006; 19,847-853
    [29]Ronny Drapkin, Hans Henning von Horsten,Yafang Lin,Samuel C. Mok,Christopher P. Crum, William R. Welch, Human Epididymis Protein 4 (HE4) Is a Secreted Glycoprotein that Is Overexpressed by Serous and Endometrioid Ovarian Carcinomas. Cancer Res 2005; 65(6):2162-9.
    [30]Lynne Bingle, Simon S Cross, Alec S High, William A Wallace, Doris Rass, Guanglu Yuan, Ingegerd Hellstrom, Michael A Campos and Colin D Bingle. WFDC2 (HE4):A potential role in the innate immunity of the oral cavity and respiratory tract and the development of adenocarcinomas of the lung. Respiratory Research 2006; 7:61 doi:10.1186/1465-9921-7-61.
    [31]E Bignotti, M Ragnoli, L Zanotti, S Calza, M Falchetti, S Lonardi, S Bergamelli, E Bandiera, RA Tassi, C Romani, P Todeschini, FE Odicino, F Facchetti, S Pecorelli and A Ravaggi. Diagnostic and prognostic impact of serum HE4 detection in endometrial carcinoma patients. British Journal of Cancer.2011; 104,1418-1425.
    [32]Keita Tokuishi, Shin-ichi Yamashita, Kazuyuki Ohbo, Katsunobu Kawahara. Splice variant HE4-V3 expression is associated with favorable prognosis in pulmonary adenocarcinoma. Tumour Biol.2012;33(1):103-9. doi:10.1007/s 13277-011-0252-8.
    [33]Kamei M, Yamashita S, Tokuishi K, Hashioto T, Moroga T, Suehiro S, Ono K, Miyawaki M, Takeno S, Yamamoto S, Kawahara K. HE4 Expression Can Be Associated with Lymph Node Metastases and Disease-free Survival in Breast Cancer. Anticancer Res.2010; 30(11):4779-83.
    [34]Kalogera E, Scholler N, Powless C, Weaver A, Drapkin R, Li J, Jiang SW, Podratz K, Urban N, Dowdy SC. Correlation of serum HE4 with tumor size and myometrial invasion in endometrial cancer. Gynecol Oncol.2012; 124(2):270-5. doi: 10.1016/j.ygyno.2011.10.025.
    [35]Kong KY,Park JY, Kim DY, Kim JH, Kim YM, Kim KR, Kim YT,Nam JH. Prognostic significance of stromal microinvasion in the intestinal type of ovarian mucinous adenocarcinoma. Annals of Surgical Oncology.2011; 18(12):3462-3468.
    [36]Huhtinen K, Suvitie P, Hiissa J, Junnila J, Huvila J, Kujari H, Setala M, Harkki P, Jalkanen J, Fraser J, Makinen J, Auranen A, Poutanen M, Perheentupa A. Serum HE4 concentration differentiates malignant ovarian tumours from ovarian endometriotic cysts. Br J Cancer. Apr 21,2009; 100(8):1315-1319.
    [37]Molina R, Escudero JM, Auge JM, Filella X, Foj L, Torne A, Lejarcegui J, Pahisa J. HE4 a novel tumour marker for ovarian cancer:comparison with CA 125 and ROMA algorithm in patients with gynaecological diseases. Tumour Biol.2011; 32(6):1087-1095.
    [38]Xi Z, LinLin M, Ye T. Human epididymis protein 4 is a biomarker for transitional cell carcinoma in the urinary system. J Clin Lab Anal.2009; 23(6):357-361
    [39]Hellstrom I, Heagerty PJ, Swisher EM, Liu P,Jaffar J,Agnew K, Hellstrom KE. Detection of the HE4 protein in urine as a biomarker for ovarian neoplasms. Cancer Lett.2010; 296(1):43-48.
    [40]Shih W, Yamada S. N-cadherin as a key regulator of collective cell migration in a 3D environment. Cell Adh Mig,2012; 6(6):1-5.
    [41]Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer.2002; 2(6):442-454.
    [42]Mariotti A, Perotti A, Sessa C, Riiegg C. N-cadherin as a therapeutic target in cancer. Expert Opin Investig Drugs.2007; 16(4):451-465.
    [43]Phuong Thao Nguyen, Yasusei Kudo, Maki Yoshida, Nobuyuki Kamata, Ikuko Ogawaand Takashi Takata. N-cadherin expression is involved in malignant behavior of head and neck cancer in relation to epithelial-mesenchymal transition. Histol Histopathol.2011; 26,147-156.
    [44]Vandyke K, Chow AW, Williams SA, To LB, Zannettino AC. Circulating N-cadherin levels are a negative prognostic indicator in patients with multiple myeloma. Br J Haematol.2013;161(4):499-507.
    [45]Niimi R, Matsumine A, lino T, Nakazora S, Nakamura T, Uchida A, Sudo A. Soluble Neural-cadherin as a novel biomarker for malignant bone and soft tissue tumors. BMC Cancer.2013;13(1):309.
    [46]Shui HA, Huang TH, Ka SM, Chen PH, Lin YF, Chen A. Urinary proteome and potential biomarkers associated with serial pathogenesis
    [1]Gao Y H. Urine-an untapped goldmine for biomarker discovery? Sci China Life Sci, 2013,56:1145-1146, doi:10.1007/s 11427-013-4574-1.
    [2]Strong, K. J., Osicka, T. M.& Comper, W. D. Urinary-peptide excretion by patients with and volunteers without diabetes. J. Lab. Clin. Med.2005; 145,239-246.
    [3]Schaub S, Wilkins J, Weiler T, Sangster K, Rush D, Nickerson P:Urine protein profiling with surface-enhanced laser-desorption/ionization time-of-flight mass spectrometry. Kidney Int 2004,65(1):323-332.
    [4]Theodorescu D, et al. Discovery and validation of new protein biomarkers for urothelial cancer:a prospective analysis. Lancet Oncol 2006; 7(3):230-240.
    [5]Jia L, Liu X, Liu L, Li M, Gao Y. Urimem, a membrane that can store urinary proteins simply and economically, makes the largescale storage of clinical samples possible. Sci China Life Sci 2013.http://dx.doi.org/10.1007/s11427-013-4582-1.
    [6]Saraon, P., Jarvi, K.& Diamandis, E. P. Molecular alterations during progression of prostate cancer to androgen independence. Clin. Chem.2011; 57,1366-1375.
    [7]Oosterwijk, E. et al.Basic research in kidney cancer. Eur. Urol.2011;60,622-633.
    [8]Castillo-Martin, M. et al. Molecular pathways of urothelial development and bladder tumorigenesis. Urol. Oncol.2010; 28,401-408.
    [9]Norden, A. G, Rodriguez-Cutillas, P.& Unwin, R. J. Clinical urinary peptidomics: learning to walk before we can run. Clin. Chem.2007; 53,375-376.
    [10]Nagaraj, N.& Mann, M. Quantitative analysis of the intra-and inter-individual variability of the normal urinary proteome. J. Proteome Res.2011; 10,637-645.
    [11]Mischak, H. et al. Comprehensive human urine standards for comparability and standardization in clinical proteome analysis. Proteomics Clin.2010; 4,464-478.
    [12]Weissinger, E. M. et al. Proteomic patterns established with capillary electrophoresis
    and mass spectrometry for diagnostic purposes. Kidney Int.2004; 65,2426-2434.
    [13]Ferguson, M. A.& Waikar, S. S. Established and emerging markers of kidney function. Clin. Chem.2012; 58,680-689.
    [14]Jackson, D. H.& Banks, R. E. Banking of clinical samples for proteomic biomarker studies:a consideration of logistical issues with a focus on pre-analytical variation. Proteomics Clin. Appl.2010; 4,250-270.
    [15]Molina, L. et al. Analysis of the variability of human normal urine by 2D-GE reveals a "public" and a "private" proteome. J. Proteomics.2011; 75,70-80.
    [16]Jantos-Siwy, J. et al. Quantitative urinary proteome analysis for biomarker evaluation in chronic kidney disease. J. Proteome Res.2009; 8,268-281.
    [17]Kentsis, A., Monigatti, F., Dorff, K., Campagne, F. et al. Urine proteomics for profiling of human disease using high accuracy mass spectrometry.Proteomics Clin. Appl.2009; 3,1052-1061.
    [18]Spahr, C. S., Davis, M. T., McGinley, M. D., Robinson, J. H. et al. Towards defining the urinary proteome using liquid chromatography-tandem mass spectrometry. I. Profiling an unfractionated tryptic digest. Proteomics 2001; 1,93-107.
    [19]Pang, J. X., Ginanni, N., Dongre, A. R., Hefta, S. A. Opitek,G. J., Biomarker discovery in urine by proteomics. J. Proteome Res.2002; 1,161-169.
    [20]Pieper, R., Gatlin, C. L., McGrath, A. M., Makusky, A. J. et al. Characterization of the human urinary proteome:a method for high-resolution display of urinary proteins on two-dimensional electrophoresis gels with a yield of nearly 1400 distinct protein spots. Proteomics.2004; 4,1159-1174.
    [21]Oh, J., Pyo, J. H., Jo, E. H., Hwang, S. I. et al. Establishment of a near-standard two-dimensional human urine proteomic map. Proteomics.2004; 4,3485-3497.
    [22]Thongboonkerd, V., McLeish, K. R., Arthur, J. M., Klein, J.B. Proteomic analysis of normal human urinary proteins isolated by acetone precipitation or ultracentrifugation. Kidney Int.2002; 62,1461-1469.
    [23]Zerefos, P. G, Vougas, K., Dimitraki, P., Kossida, S. et al. Characterization of the human urine proteome by preparative electrophoresis in combination with 2-DE. Proteomics.2006; 6,4346-4355.
    [24]Smith, G., Barratt, D., Rowlinson, R., Nickson, J., Tonge, R. Development of a high-throughput method for preparing human urine for two-dimensional electrophoresis. Proteomics.2005; 5,2315-2318.
    [25]Castagna, A., Cecconi, D., Sennels, L., Rappsilber, J. et al. Exploring the hidden human urinary proteome via ligand library beads. J. Proteome Res.2005; 4,1917-1930.
    [26]Adachi, J., Kumar, C., Zhang, Y., Olsen, J. V., Mann, M. The human urinary proteome contains more than 1500 proteins including a large proportion of membranes proteins. Genome Biol.2006; 7, R80.1-R80.16.
    [27]Z. urbig, P., Mischak, H,, Peptidomics approach to proteomics. in:Soloviev, M., Shaw, C., Andren, P. E. Peptidomics:Methods and Applications.Wiley, Hoboken, NJ 2008, pp.155-175.
    [28]Coon, J. J., Z. urbig, P., Dakna, M., Dominiczak, A. F. et al. CE-MS analysis of the human urinary proteome for biomarker discovery and disease diagnostics. Proteomics Clin. Appl.2008; 2,964-973.
    [29]Pan, B. T. et al. Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J. Cell. Biol.1985; 101,942-948.
    [30]Pisitkun, T., Shen, R. F.& Knepper, M. A. Identification and proteomic profiling of exosomes in human urine. Proc. Natl Acad.Sci.2004; 101,13368-13373.
    [31]Gonzalez-Begne, M. et al. Proteomic analysis of human parotid gland exosomes by multidimensional protein identification technology (MudPIT). J. Proteome Res. 2009;8,1304-1314.
    [32]Vlassov, A. V. et al. Exosomes:current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim. Biophys. Acta.2012; 1820,940-948.
    [33]Wang, Z. et al. Proteomic analysis of urine exosomes by multidimensional protein identification technology (MudPIT). Proteomics.2012; 12,329-338.
    [34]Tran, J. C. et al. Mapping intact protein isoforms in discovery mode using top-down proteomics. Nature.2011; 480,254-258.
    [35]Bakry, R. et al. Protein profiling for cancer biomarker discovery using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and infrared imaging:a review. Anal. Chim. Acta.2011; 690,26-34.
    [36]Ferlay, J. et al. Estimates of worldwide burden of cancer in 2008:GLOBOCAN 2008. Int. J. Cancer.2010; 27,2893-2917.
    [37]Jemal, A. et al. Cancer statistics,2008. CA Cancer J. Clin.2008; 58,71-96.
    [38]Catto, J. W. Health care spending, social policy, public health, and life expectancy: what cancer outcomes can tell us beyond treatment efficacy. Eur. Urol.2011; 60,16-18.
    [39]Lilja, H., Ulmert, D.& Vickers, A. J. Prostatespecific antigen and prostate cancer: prediction, detection and monitoring. Nat. Rev. Cancer.2008; 8,268-278.
    [40]Brawer, M. K. et al. Screening for prostatic carcinoma with prostate specific antigen. J. Urol.1992; 147,841-845.
    [41]Krumholtz, J. S. et al. Prostate-specific antigen cutoff of 2.6 ng/mL for prostate cancer screening is associated with favorable pathologic tumor features. Urology. 2002; 60,469-473.
    [42]Lin, K. et al. Benefits and harms of prostatespecific antigen screening for prostate cancer:an evidence update for the, U. S. Preventive Services Task Force. Ann. Intern. Med.2008; 149,192-199.
    [43]Loberg, R. D. et al. Pathogenesis and treatment of prostate cancer bone metastases: targeting the lethal phenotype. J. Clin. Oncol.2005; 23,8232-8241.
    [44]Horwich, A. Prostate cancer management. Ann. Oncol.2004; 15 (Suppl.4), iv307-iv312.
    [45]Merrimen, J. L., Jones, G & Srigley, J. R. Is high grade prostatic intraepithelial neoplasia still a risk factor for adenocarcinoma in the era of extended biopsy sampling? Pathology.2010; 42,325-329.
    [46]Ploussard, G.& de la Taille, A. Urine biomarkers in prostate cancer. Nat. Rev. Urol. 2010; 7,101-109.
    [47]True, L. D. et al. CD90/THY1 is overexpressed in prostate cancer-associated fibroblasts and could serve as a cancer biomarker. Mod. Pathol.2010; 23, 1346-1356.
    [48]Cheng, H. L. et al. Urinary CD 14 as a potential biomarker for benign prostatic hyperplasia-discovery by combining MALDI-TOF-based biostatistics and ESI-MS/MS-based stable isotope labeling. Proteomics Clin.2011; 5,121-132.
    [49]Principe, S. et al. Identification of prostateenriched proteins by in-depth proteomic analyses of expressed prostatic secretions in urine. J. Proteome Res.2012; 11, 2386-2396.
    [50]Drake, R. R. et al. Clinical collection and protein properties of expressed prostatic secretions as a source for biomarkers of prostatic disease. J. Proteomics.2009; 72,907-917.
    [51]Reis, S. T. et al.MMP-9 overexpression due to TIMP-1 and RECK underexpression is associated with prognosis in prostate cancer. Int. J. Biol. Markers.2011; 26, 255-261.
    [52]Liu, A. Y., Zhang, H., Sorensen, C. M.& Diamond, D. L. Analysis of prostate cancer by proteomics using tissue specimens. J. Urol.2005; 173,73-78.
    [53]Mhawech, P., Greloz, V., Assaly, M.& Herrmann, F. Immunohistochemical expression of 14-3-3 sigma protein in human urological and gynecological tumors using a multi-tumor microarray analysis. Pathol. Int.2005; 55,77-82.
    [54]Lehmann, B. D. et al. Senescence-associated exosome release from human prostate cancer cells. Cancer Res.2008; 68,7864-7871.
    [55]Ronquist, K. G et al. Proteomic analysis of prostate cancer metastasis-derived prostasomes. Anticancer Res.2010; 30,285-290.
    [56]Theodorescu, D. et al. Pilot study of capillary electrophoresis coupled to mass spectrometry as a tool to define potential prostate cancer biomarkers in urine. Electrophoresis.2005; 26,2797-2808.
    [57]Theodorescu, D. et al. Discovery and validation of urinary biomarkers for prostate cancer. Proteomics Clin. Appl.2008; 2,556-570.
    [58]Schiffer, E. et al. Urinary proteome analysis for prostate cancer diagnosis: cost-effective application in routine clinical practice in Germany. Int. J. Urol.2012; 19,118-125.
    [59]Okamoto, A. et al. Protein profiling of postprostatic massage urine specimens by surfaceenhanced laser desorption/ionization time-of-flight mass spectrometry to discriminate between prostate cancer and benign lesions. Oncol. Rep.2009; 21, 73-79.
    [60]M'Koma, A. E. et al. Detection of pre-neoplastic and neoplastic prostate disease by MALDI profiling of urine. Biochem. Biophys.Res. Commun.2007; 353,829-834.
    [61]Schostak, M. et al. Annexin A3 in urine:a highly specific noninvasive marker for prostate cancer early detection. J. Urol.2009; 181,343-353.
    [62]Morgan, R. et al. Engrailed-2 (EN2):a tumor Specific urinary biomarker for the early diagnosis of prostate cancer. Clin. Cancer Res.2011; 17,1090-1098.
    [63]Pandha, H. et al. Urinary engrailed-2 (EN2) levels predict tumour volume in men undergoing radical prostatectomy for prostate cancer. BJU Int.2012; 110, E287-E292.
    [64]Ferlay, J. et al. Declining mortality from bladder cancer in Europe. BJU Int.2008; 101,11-19.
    [65]Kaufman, D. S., Shipley, W. U.& Feldman, A. S. Bladder cancer. Lancet.2009; 374, 239-249.
    [66]Messing, E. M. et al. Grade and stage at presentation do not predict mortality in patients with bladder cancer who survive their disease. J. Clin. Oncol.2009; 27, 2443-2449.
    [67]Yang, M. H. et al. Characterization of ADAM28 as a biomarker of bladder transitional cell carcinomas by urinary proteome analysis. Biochem. Biophys. Res. Commun.2011; 411,714-720.
    [68]Saito, M. et al. Proteome analysis of gelatinbound urinary proteins from patients with bladder cancers. Eur. Urol.2005; 48,865-871.
    [69]Yang, N. et al. Urinary glycoprotein biomarker discovery for bladder cancer detection using LC/MS-MS and label-free quantification. Clin. Cancer Res.2011; 17,3349-3359.
    [70]Tsui, K. H. et al. Bikunin loss in urine as useful marker for bladder carcinoma. J. Urol.2010; 183,339-344.
    [71]Chen, Y. T. et al. Discovery of novel bladder cancer biomarkers by comparative urine proteomics using iTRAQ technology. J. Proteome Res.2010; 9,5803-5815.
    [72]Linden, M. et al. Proteomic analysis of urinary biomarker candidates for nonmuscle invasive bladder cancer. Proteomics.2012; 12,135-144.
    [73]Tan, L. B. et al. Identification of urine PLK2 as a marker of bladder tumors by proteomic analysis. World J. Urol.2010; 28,117-122.
    [74]Zoidakis, J. et al. Profilin 1 is a potential biomarker for bladder cancer aggressiveness. Mol. Cell Proteomics.2012; 11, M1 11009449.
    [75]Lin, C. Y. et al. Searching cell-secreted proteomes for potential urinary bladder tumor markers. Proteomics.2006; 6,4381-4389.
    [76]Kawanishi, H. et al. Secreted CXCL1 is a potential mediator and marker of the tumor invasion of bladder cancer. Clin. Cancer Res.2008; 14,2579-2587.
    [77]Welton, J. L. et al.Proteomics analysis of bladder cancer exosomes. Mol. Cell Proteomics.2010; 9,1324-1338.
    [78]Vlahou, A. et al. Development of a novel proteomic approach for the detection of transitional cell carcinoma of the bladder in urine. Am. J. Pathol.2001; 158, 1491-1502.
    [79]Zhang, Y. F. et al. Tree analysis of mass spectral urine profiles discriminates transitional cell carcinoma of the bladder from noncancer patient. Clin. Biochem. 2004; 37,772-779.
    [80]Theodorescu, D. et al. Discovery and validation of new protein biomarkers for urothelial cancer:a prospective analysis. Lancet Oncol.2006; 7,230-240.
    [81]Schiffer, E. et al. Prediction of muscle-invasive bladder cancer using urinary proteomics. Clin. Cancer Res.2009; 15,4935-4943.
    [82]McLaughlin, J. K.; Lipworth, L.; Tarone, R. E. Epidemiologic aspects of renal cell carcinoma. Semin. Oncol.2006,33(5),527-533.
    [83]Nepple KG, Yang L, Grubb RL, et al. Population based analysis of the increasing incidence of kidney cancer in the United States:evaluation of age specific trends from 1975 to 2006.J Urol.2012; 187:32-38.
    [84]Siegel R, et al. Cancer statistics,2012.CA Cancer J Clin.2012; 62:10-29.
    [85]Ebele JN, Sauter G, Epstein JI, et al. Pathology and genetics of tumors of the urinary system and male genital organs [M]. Lyon:IARC.2004:12-43.
    [86]Weiss, R. H.; Lin, P. Y. Kidney cancer:identification of novel targets for therapy. Kidney Int.2006,69(2),224-232.
    [87]Minamida, S. et al.14-3-3 protein beta/alpha as a urinary biomarker for renal cell carcinoma:proteomic analysis of cyst fluid. Anal. Bioanal. Chem.2011; 401, 245-252.
    [88]Gardino, A. K.& Yaffe, M. B.14-3-3 proteins as signaling integration points for cell cycle control and apoptosis. Semin. Cell Dev. Biol.2011; 22,688-695.
    [89]Masui, O. et al. Quantitative proteomic analysis in metastatic renal cell carcinoma reveals a unique set of proteins with potential prognostic significance. Mol. Cell Proteomics.2013; 12,132-144.
    [90]Vasudev, N. S, Sim, S, Cairns, D. A, Ferguson, R. E, Craven, R. A, Stanley, A, Cartledge, J, Thompson, D, Selby, P. J, Banks, R. E. Pre-operative urinary cathepsin D is associated with survival in patients with renal cell carcinoma. Br J Cancer. 2009; 7,1175-1182.
    [91]Morrissey, J. J. et al. Sensitivity and specificity of urinary neutrophil gelatinase-associated lipocalin and kidney injury molecule-1 for the diagnosis of renal cell carcinoma. Am. J. Nephrol.2011; 34,391-398.
    [92]Kaya, K. et al. Urinary nuclear matrix protein 22 for diagnosis of renal cell carcinoma. Scand. J. Urol. Nephrol.2005; 39,25-29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700