用户名: 密码: 验证码:
PI3K/Akt/mTOR信号通路在肝细胞癌发病机制中的作用及靶向干预研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:通过特异性阻断PI3K和mTOR,观察HepG2和Hep3B细胞株PI3K/Akt/mTOR信号通路活性及生物学行为的改变,探讨相关的分子机制。方法:在培养的HepG2、Hep3B人肝癌细胞株和人正常肝细胞株QSG-7701上,以免疫印迹方法(Western blot)检测各细胞株中PI3K(p110α亚单位)、PTEN、pAkt (S473,T308)和p-mTOR(S2448)的表达情况;分别用PI3K抑制剂LY294002 (50μmol/ml)和mTOR抑制剂Rapamycin (RAPA,50 nmol/ml)孵育HepG2和Hep3B细胞,以MTT比色法检测细胞的增殖能力,以流式细胞术(Flow cytometry)检测细胞周期和凋亡情况,以Western blot法检测细胞中pAkt (S473, T308)和p-mTOR (S2448)的表达改变。
     结果.PTEN在HepG2和Hep3B细胞中基本无表达,在QSG-7701细胞株中高表达,pAkt和p-mTOR在HepG2和Hep3B细胞中的表达较QSG-7701细胞均显著升高;LY294002和RAPA均呈剂量-时间依赖的抑制HepG2和Hep3B细胞生长。饱和效应浓度的LY294002和RAPA作用24小时后,HepG2和Hep3B细胞均呈现明显的G0/G1期阻滞,处于S期的细胞比例较对照组显著减少(P<0.01);两给药组中HepG2细胞和Hep3B细胞的凋亡率与对照组比较均显著增加(P<0.01);两给药组HepG2细胞的凋亡率显著高于Hep3B细胞(P<0.01或P<0.05),并且HepG2细胞的凋亡率在RAPA给药组显著高于LY294002给药组(P<0.01),但Hep3B细胞的凋亡率在两组间无显著差异。饱和效应浓度的LY294002作用48小时后,HepG2和Hep3B细胞中pAkt (T308, S473)和p-mTOR (S2448)的表达水平较对照组均显著降低(P<0.01),饱和效应浓度的RAPA作用48小时后,HepG2和Hep3B细胞中p-mTOR (S2448)的表达水平较对照组均显著降低(P<0.01),而pAkt (T308, S473)的表达水平较对照组均显著升高(分别P<0.01)。
     结论:(1)HepG2和Hep3B细胞存在PI3K/Akt/mTOR信号通路的组成性激活;(2)LY294002和RAPA能有效阻断HepG2和Hep3B细胞PI3K/Akt/mTOR信号通路,抑制HCC细胞的生长增殖,诱导细胞周期阻滞,促进细胞凋亡,且阻断效应与HCC细胞P53的表达有关;(3)一定浓度范围内,HepG2细胞对PI3K/Akt/mTOR信号通路阻断剂的敏感性高于Hep3B细胞,RAPA对PI3K/Akt/mTOR信号通路的部分阻断效应优于LY294002。
     目的:观察阿霉素(Doxorubicin, DOX)单用或与RAPA联合用药对HepG2和Hep3B细胞生物学行为及PI3K/Akt/mTOR信号通路活性的影响,探讨mTOR抑制剂增强HCC化疗药物疗效的相关作用机制。
     方法:分别取对数生长期的HepG2和Hep3B细胞,以不同浓度的DOX单用或与RAPA (20nmol/ml)联合应用培养48h或24h,以MTT法测定药物对HepG2和Hep3B细胞的增殖抑制作用,以流式细胞技术检测二者的凋亡情况,以Western blot法检测二者P-p70S6K (T389)、P-4E-BP1 (S65)和pS6(S235/236)的表达改变。
     结果:0.156-2.5 mg/L浓度范围内,DOX能抑制HepG2和Hep3B细胞的增殖,且呈浓度依赖性;DOX在0.625-10mg/L浓度范围内,Hep3B细胞的相对存活率显著大于HepG2细胞(P<0.01);与DOX单用比较,DOX (0.156-2.5mg/L)与RAPA联用显著降低了HepG2和Hep3B细胞的存活率(P<0.01或P<0.05),DOX (0.156-10mg/L)与RAPA联用,Hep3B细胞存活率显著大于HepG2细胞(P<0.01)DOX (0.156-10mg/L)单用或与RAPA联用24h均可诱导HepG2和Hep3B细胞凋亡发生,且随DOX浓度增加,凋亡率升高;与DOX单用比较,DOX (1.25-10mg/L)与RAPA联用,HepG2细胞凋亡率较显著升高(P<0.01或P<0.05),DOX (2.5-10 mg/L)与RAPA联用,Hep3B细胞凋亡率显著升高(分别P<0.05);DOX (5.0-1 Omg/L)单用,HepG2细胞凋亡率显著大于Hep3B细胞(分别P<0.05),DOX(2.5-10mg/L)与RAPA联用,HepG2细胞凋亡率显著大于Hep3B细胞(分别P<0.01)。RAPA(20nmol/L)、DOX (2.5mg/L)以及二者联用均可导致HepG2或Hep3B细胞P-p70S6K(T389)、P-4E-BP1(S65)和pS6(S235/236)表达减少,且以DOX与RAPA联用效应最为明显。
     结论:(1)DOX可抑制HepG2和Hep3B细胞生长增殖,促进细胞凋亡,下调PI3K/Akt/mTOR信号通路的活化程度;(2)DOX与RAPA联合用药能显著抑制HepG2和Hep3B细胞的增殖,促进细胞凋亡,下调PI3K/Akt/mTOR信号通路的活化程度,并在一定浓度范围内表现出协同效应;(3)在一定浓度范围内,HepG2细胞对DOX单用或与RAPA联合用药的敏感性显著高于Hep3B细胞,可能与HCC细胞p53的表达差异有关。
     目的:分析人HCC组织中PI3K/Akt/mTOR信号通路的活化水平与p53的表达及HCC临床病理参数之间的关系,评估PI3K/Akt/mTOR信号通路在HCC诊断和预后评价中的作用。
     方法:76例HCC组织样本经临床病理分期分级后,以免疫组织化学方法检测HCC组织和癌旁组织中p53、pAkt、PTEN、p-mTOR和pS6的表达情况,分析上述指标在不同HCC病理特征条件下的阳性表达率,并与正常肝组织比较。
     结果:p53、pAkt、PTEN、p-mTOR和pS6在人HCC组织有不同程度的表达,HCC组织p53 (60.5%,46/76)、pAkt (92.1%,70/76)、p-mTOR (84.2%,64/76)和pS6(88.2%,67/76)的阳性表达比例较癌旁肝组织(分别为10.5%,8/76、63.2%,48/76、46.1%,35/76、52.6%,40/76)和正常肝组织(分别为0%、55.0%,11/20、50.0%,10/20、45.0%,9/20)显著升高(P<0.01),而PTEN (65.8%,50/76)的阳性表达比例较癌旁肝组织(89.5%,68/76)和正常肝组织(85.0%,17/20)显著减少(P<0.05);p53阳性表达HCC组织pAkt、p-mTOR和pS6的阳性表达率较p53阴性表达组织显著升高(P<0.01),而PTEN的阳性表达率较p53阴性表达组织显著降低(P<0.01)。低分化、存在血管侵袭、TNM分期高的HCC组织p53、pAkt、p-mTOR和pS6的阳性表达率较相对应的分化较好、无血管侵袭、TNM分期低的HCC组织显著升高(分别P<0.01或P<0.05);而PTEN的阳性表达率显著降低(分别P<0.01或P<0.05)
     结论:(1)人HCC组织存在PI3K/Akt/mTOR信号通路的激活;(2)人HCC组织PI3K/Akt/mTOR信号通路的活化程度与p53的表达可能有相关性;(3)人HCC组织PI3K/Akt/mTOR信号通路的活化程度与HCC的临床病理特征有关,活化程度越高的HCC其分化程度越低、血管侵袭多发、TNM分期高。
Objective:The purpose of this study is to investigate the molecular mechanisms associated with PI3K/Akt/mTOR pathway in hepatocellular carcinoma (HCC).
     Method:We firstly observed the expression of PI3K (subunit of p110α), PTEN, pAkt (S473, T308) and p-mTOR (S2448) in HepG2, Hep3B and QSG-7701 by Western Blot analysis; And then, the cell proliferation, cell cycle, apoptosis and expression of pAkt (S473, T308) and p-mTOR (S2448) were determined in HepG2 and Hep3B after incubation with rapamycin (50nmol/ml), the mTOR inhibitor and LY294002 (50 umol/ml), the PI3K inhibitor.
     Result:There was absence or low of PTEN expression in HepG2 and Hep3B, but it is highly expressed in QSG-7701; The pAkt and p-mTOR levels were significantly higher in HepG2 and Hep3B than in QSG-7701; LY294002 and RAPA inhibit the proliferation of HepG2 and Hep3B in both dose-and time-dependent manner; HepG2 and Hep3B in G0/G1 phase were both inhibited remarkably after treated by saturation concentration of LY294002 and Rapamycin for 24 hours, while the proportion of cells in S phase is largely less than the control group (P<0.01), and the apoptotic rates of HepG2 and Hep3B in both group are significantly higher than that of the control group (P<0.01), the apoptotic rate of HepG2 is obvious higher than that of Hep3B in the both group(P<0.01 or 0.05), and the apoptotic rate of HepG2 treated by saturation concentration of RAPA is obvious higher than that of the HepG2 treated by saturation concentration of LY294002 (P<0.01),but the apoptotic rates of Hep3B between the both group have no significant difference. The expressions of pAkt (T308, S473) and p-mTOR (S2448) in HepG2 and Hep3B both down-regulated significantly compared with the control group (P<0.01) after saturation concentration of LY294002 treatment for 48 hours, while the results of p-mTOR (S2448) expression in both kinds of cells which treated with RAPA for 48 hours were almost the same, but the expression of pAkt (T308, S473) was up-regulated (P<0.01).
     Conclusion:(1) there is a constitutive activation of PI3K/Akt/mTOR pathway in HCC cells of HepG2 and Hep3B; (2) LY294002 and RAPA could effectively block PI3K/Akt/mTOR pathway in HepG2 and Hep3B, inhibit the growth of HCC cells, induce cell cycle arrest and promote apoptosis, while the effect of blocking is probably related to the expression of P53 in HCC cells; (3) Within certain concentration, HepG2 is more sensitive to inhibitors of PI3K/Akt/mTOR pathway than Hep3B, while RAPA has a more effective impact in partly blocking PI3K/Akt/mTOR pathway than LY294002.
     Objective:The purpose of this study is to observe the influences of Doxorubicin (DOX) alone or DOX combined with RAPA on the biological actions and the functions of PI3K/Akt/mTOR pathway in HepG2 and Hep3B, and explore the mechanism of mTOR inhibitor which enhancing the effect of chemotherapy on HCC.
     Method:HepG2 and Hep3B in logarithmic phase were treated with DOX in different concentration alone or with different concentration of DOX combined with RAPA (20 nmol/ml) for 24 or 48 hours respectively. The growth inhibition of HepG2 and Hep3B were assessed by MTT; the apoptosis of both cells were analysed by flow cytometry; and expression changes of P-p20S6K (T389), P-4E-BP1 (S65) and pS6 (S235/236) were assayed by Western blot.
     Result:Within the concentration of 0.156 to 2.5 mg/L, the proliferation of HepG2 and Hep3B were inhibited by DOX in a dose-dependent manner; within the concentration of 0.625 to 10 mg/L the relative survival rate of Hep3B were higher than HepG2 (P<0.01), the survival rate was decreased significantly when HepG2 was treated with DOX (0.312-5mg/L) plus RAPA compared with DOX alone (P<0.01 or P<0.05), the survival rate of Hep3B was also decreased after exposure to DOX (2.5-10mg/L) plus RAPA (P<0.01 or P<0.05), and the survival rate of Hep3B was largely higher than HepG2 after the treatment with DOX (0.312-5mg/L) plus RAPA (P<0.01 or P<0.05). Treat cell HepG2 and Hep3B with DOX(0.156-10mg/L) alone or DOX combined with RAPA for 24 hours could both induce apoptosis in a dose-dependent manner, DOX (1.25-10mg/L) combined with RAPA induces an obvious increase in apoptotic HepG2 cell number compared with DOX alone (P<0.01 or P<0.05), DOX (2.5-10mg/L) combined with RAPA induces a significant increase in apoptotic Hep3B cell number compared with DOX alone (P<0.05), DOX alone causes more apoptotic cell number in cell HepG2 than cell Hep3B(P<0.05), while DOX (2.5-10mg/L) combined with RAPA induces higher apoptosis rate in cell HepG2 than cell Hep3B (P<0.01). RAPA (20nmol/ml) alone, DOX (2.5mg/L) alone and both of them could all induce the decreased expression of P-p20S6K (T389), P-4E-BP1(S65) and pS6 (S235/236) in HepG2 and Hep3B, and this effect was most obvious when DOX and RAPA combined.
     Conclusion:(1) DOX could inhibit cell proliferation, promote apoptosis, and reduce the activation of PI3K/Akt/MTOR pathway in HepG2 and Hep3B; (2) RAPA could enhance the sensitivity of HepG2 and Hep3B to DOX, which evidenced by higher inhibition of cell proliferation, apoptosis rate, and the activation of PI3K/Akt/MTOR pathway; (3) HepG2 appears more sensitive to DOX alone or DOX plus RAPA than Hep3B within certain concentration, which might relate to the differential expression of p53 in HCC cells.
     Objective:The purpose of this study is to analysis the activation level of PI3K/Akt/MTOR pathway and the expression of p53 in human HCC tissue, and also analysis the connection between them and clinical pathological parameters, and then assesses the value of PI3K/Akt/MTOR pathway in HCC diagnose and prognosis.
     Method:After classing the pathological stage and grade of HCC tissues of 76 cases, detecting the expression of p53, pAkt, PTEN, p-mTOR and pS6 in HCC tissue and adjacent tissue by immunohistochemistry, and analysis the positive expression frequency of all above indicators in different pathological condition of HCC, while also compare them with the normal hepatic tissue.
     Result:There were different levels of expression of p53, pAkt, PTEN, p-mTOR and pS6 in human HCC tissue, and the positive expression rates of p53 (60.5%,46/76), pAkt (92.1%,70/76), p-mTOR (84.2%,64/76) and pS6 (88.2%,67/76) in HCC tissue were significant higher than the expression rate in adjacent tissue (10.5%,8/76、 63.2%,48/76、46.1%,35/76、52.6%,40/76) and the rate in normal hepatic tissue (0%、55.0%,11/20、50.0%,10/20、45.0%,9/20) (P<0.01), while the positive expression rate of PTEN (65.8%,50/76) was lower than adjacent tissue (89.%,68/76) and normal hepatic tissue (85.0%,17/20) (P<0.05). The positive expression frequency of pAkt, p-mTOR and pS6 is higher in p53 positive HCC tissue than negative one, but the positive expression frequency of PTEN is greatly lower than the frequency of p53 negative tissue(P<0.01). HCC tissue with lower differentiation, vascular invasion and high stage of TNM demonstrated higher positive expression frequency of p53, pAkt, p-mTOR and pS6 compared with HCC tissue well differentiated, without vascular invasion and low stage of TNM (P<0.01 or P<0.05).
     Conclusion:(1) It does exist the activation of PI3K/Akt/MTOR pathway in human HCC; (2) The level of activation of PI3K/Akt/MTOR pathway in human HCC may be related to the expression of p53; (3) The level of activation of PI3K/Akt/mTOR pathway is related to the clinical pathological stage of HCC, the higher activation of HCC cells, appeared to be the poorer differentiation, more vascular invasion and higher stage of TNM.
引文
Abou-Alfa GK, Venook AP. The impact of new data in the treatment of advanced hepatocellular carcinoma. Curr Oncol Rep 2008; 10:199-205.
    Adhikari AS, Iwakuma T. Mutant p53 gain of oncogenic function:in vivo evidence, mechanism of action and its clinical implications. Fukuoka Igaku Zasshi 2009; 100:217-28.
    Ahmed FE. Molecular markers that predict response to colon cancer therapy. Expert Rev Mol Diagn 2005; 5:353-75.
    Akimoto M, Yoshikawa M, Ebara M, Sato T, Fukuda H, Kondo F, et al. Relationship between therapeutic efficacy of arterial infusion chemotherapy and expression of P-glycoprotein and p53 protein in advanced hepatocellular carcinoma. World J Gastroenterol 2006; 12:868-73.
    Amato RJ, Jac J, Giessinger S, Saxena S, Willis JP. A phase 2 study with a daily regimen of the oral mTOR inhibitor RAD001 (everolimus) in patients with metastatic clear cell renal cell cancer. Cancer 2009; 115:2438-46.
    Asnaghi L, Bruno P, Priulla M, Nicolin A. mTOR:a protein kinase switching between life and death. Pharmacol Res 2004; 50:545-9.
    Atkins MB, Hidalgo M, Stadler WM, Logan TF, Dutcher JP, Hudes GR, et al. Randomized phase II study of multiple dose levels of CCI-779, a novel mammalian target of rapamycin kinase inhibitor, in patients with advanced refractory renal cell carcinoma. J Clin Oncol 2004; 22:909-18.
    Balasubramanian S, Johnston RK, Moschella PC, Mani SK, Tuxworth WJ, Jr., Kuppuswamy D. mTOR in growth and protection of hypertrophying myocardium. Cardiovasc Hematol Agents Med Chem 2009; 7:52-63.
    Barraud L, Merle P, Soma E, Lefrancois L, Guerret S, Chevallier M, et al. Increase of doxorubicin sensitivity by doxorubicin-loading into nanoparticles for hepatocellular carcinoma cells in vitro and in vivo. J Hepatol 2005; 42: 736-43.
    Baylin SB, Ohm JE. Epigenetic gene silencing in cancer-a mechanism for early oncogenic pathway addiction? Nat Rev Cancer 2006; 6:107-16.
    Beevers CS, Li F, Liu L, Huang S. Curcumin inhibits the mammalian target of rapamycin-mediated signaling pathways in cancer cells. Int J Cancer 2006; 119:757-64.
    Beuvink I, Boulay A, Fumagalli S, Zilbermann F, Ruetz S, O'Reilly T, et al. The mTOR inhibitor RAD001 sensitizes tumor cells to DNA-damaged induced apoptosis through inhibition of p21 translation. Cell 2005; 120:747-59.
    Boni JP, Leister C, Bender G, Fitzpatrick V, Twine N, Stover J, et al. Population pharmacokinetics of CCI-779:correlations to safety and pharmacogenomic responses in patients with advanced renal cancer. Clin Pharmacol Ther 2005; 77:76-89.
    Carpenter CL, Duckworth BC, Auger KR, Cohen B, Schaffhausen BS, Cantley LC. Purification and characterization of phosphoinositide 3-kinase from rat liver. J Biol Chem 1990; 265:19704-11.
    Carraway H, Hidalgo M. New targets for therapy in breast cancer:mammalian target of rapamycin (mTOR) antagonists. Breast Cancer Res 2004; 6:219-24.
    Cherubini G, Petouchoff T, Grossi M, Piersanti S, Cundari E, Saggio I. E1B55K-deleted adenovirus (ONYX-015) overrides Gl/S and G2/M checkpoints and causes mitotic catastrophe and endoreduplication in p53-proficient normal cells. Cell Cycle 2006; 5:2244-52.
    Choi SJ, You HS, Chung SY. Rapamycin-induced cytotoxic signal transduction pathway. Transplant Proc 2008; 40:2737-9.
    Choo AY, Yoon SO, Kim SG, Roux PP, Blenis J. Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specific repression of mRNA translation. Proc Natl Acad Sci U S A 2008; 105:17414-9.
    Chytil A, Waltner-Law M, West R, Friedman D, Aakre M, Barker D, et al. Construction of a cyclin D1-Cdk2 fusion protein to model the biological functions of cyclin D1-Cdk2 complexes. J Biol Chem 2004; 279:47688-98.
    Crane CA, Panner A, Murray JC, Wilson SP, Xu H, Chen L, et al. PI(3) kinase is associated with a mechanism of immunoresistance in breast and prostate cancer. Oncogene 2009; 28:306-12.
    El-Serag HB, Rudolph KL. Hepatocellular carcinoma:epidemiology and molecular carcinogenesis. Gastroenterology 2007; 132:2557-76.
    Fabregat I, Roncero C, Fernandez M. Survival and apoptosis:a dysregulated balance in liver cancer. Liver Int 2007; 27:155-62.
    Farazi PA, DePinho RA. Hepatocellular carcinoma pathogenesis:from genes to environment. Nat Rev Cancer 2006; 6:674-87.
    Gaben AM, Saucier C, Bedin M, Barbu V, Mester J. Rapamycin inhibits cdk4 activation, p 21(WAF1/CIP1) expression and G1-phase progression in transformed mouse fibroblasts. Int J Cancer 2004; 108:200-6.
    Gai XD, Li GL, Huang JZ, Xue HJ, Wang D. [Reversal of multidrug resistance of human hepatocellular carcinoma cells by wild-type p53 gene and related mechanisms]. Ai Zheng 2006; 25:954-9.
    Giles FJ, Albitar M. Mammalian target of rapamycin as a therapeutic target in leukemia. Curr Mol Med 2005; 5:653-61.
    Gonzalez E, McGraw TE. The Akt kinases:isoform specificity in metabolism and cancer. Cell Cycle 2009; 8:2502-8.
    Gorshtein A, Rubinfeld H, Kendler E, Theodoropoulou M, Cerovac V, Stalla GK, et al. Mammalian target of rapamycin inhibitors rapamycin and RAD001 (everolimus) induce anti-proliferative effects in GH-secreting pituitary tumor cells in vitro. Endocr Relat Cancer 2009; 16:1017-27.
    Guertin DA, Sabatini DM. An expanding role for mTOR in cancer. Trends Mol Med 2005; 11:353-61.
    Herberger B, Berger W, Puhalla H, Schmid K, Novak S, Brandstetter A, et al. Simultaneous blockade of the epidermal growth factor receptor/mammalian target of rapamycin pathway by epidermal growth factor receptor inhibitors and rapamycin results in reduced cell growth and survival in biliary tract cancer cells. Mol Cancer Ther 2009; 8:1547-56.
    Hill KM, Kalifa S, Das JR, Bhatti T, Gay M, Williams D, et al. The role of PI 3-kinase p110beta in AKT signally, cell survival, and proliferation in human prostate cancer cells. Prostate.2010,Jan.7,[Epub ahead of print]
    Ho JS, Ma W, Mao DY, Benchimol S. p53-Dependent transcriptional repression of c-myc is required for Gl cell cycle arrest. Mol Cell Biol 2005; 25:7423-31.
    Houtgraaf JH, Versmissen J, van der Giessen WJ. A concise review of DNA damage checkpoints and repair in mammalian cells. Cardiovasc Revasc Med 2006; 7: 165-72.
    Huang J, Manning BD. The TSC1-TSC2 complex:a molecular switchboard controlling cell growth. Biochem J 2008; 412:179-90.
    Hui IC, Tung EK, Sze KM, Ching YP, Ng IO. Rapamycin and CCI-779 inhibit the mammalian target of rapamycin signalling in hepatocellular carcinoma. Liver Int 2010; 30:65-75.
    Huynh H, Ngo VC, Koong HN, Poon D, Choo SP, Thng CH, et al. Sorafenib and Rapamycin Induce Growth Suppression in Mouse Models of Hepatocellular Carcinoma. J Cell Mol Med 2009.13(8B):2673-83
    Huynh H, Teo CC, Soo KC. Bevacizumab and rapamycin inhibit tumor growth in peritoneal model of human ovarian cancer. Mol Cancer Ther 2007; 6: 2959-66.
    Ikezoe T, Nishioka C, Bandobashi K, Yang Y, Kuwayama Y, Adachi Y, et al. Longitudinal inhibition of PI3K/Akt/mTOR signaling by LY294002 and rapamycin induces growth arrest of adult T-cell leukemia cells. Leuk Res 2007; 31:673-82.
    Jaeck D, Bachellier P, Oussoultzoglou E, Weber JC, Wolf P. Surgical resection of hepatocellular carcinoma. Post-operative outcome and long-term results in Europe:an overview. Liver Transpl 2004; 10:S58-63.
    Jan CF, Chen CJ, Chen HH. Causes of increased mortality from hepatocellular carcinoma in high incidence country:Taiwan experience. J Gastroenterol Hepatol 2005; 20:521-6.
    Jeong SJ, Dasgupta A, Jung KJ, Um JH, Burke A, Park HU, et al. PI3K/AKT inhibition induces caspase-dependent apoptosis in HTLV-1-transformed cells. Virology 2008; 370:264-72.
    Jiang BH, Liu LZ. Role of mTOR in anticancer drug resistance:perspectives for improved drug treatment. Drug Resist Updat 2008; 11:63-76.
    Jiang BH, Liu LZ. P13K/PTEN signaling in angiogenesis and tumorigenesis. Adv Cancer Res 2009; 102:19-65.
    Kaushal GP, Liu L, Kaushal. V, Hong X, Melnyk O,Seth R, et al. Regulation of caspase-3 and-9 activation in oxidant stress to RTE by forkhead transcription factors, Bcl-2 proteins, and MAP kinases. Am J Physiol Renal Physiol 2004; 287:F1258-68.
    Kojima K, Shimanuki M, Shikami M, Samudio IJ, Ruvolo V, Corn P, et al. The dual PI3 kinase/mTOR inhibitor PI-103 prevents p53 induction by Mdm2 inhibition but enhances p53-mediated mitochondrial apoptosis in p53 wild-type AML. Leukemia 2008; 22:1728-36.
    Konings IR, Verweij J, Wiemer EA, Sleijfer S. The applicability of mTOR inhibition in solid tumors. Curr Cancer Drug Targets 2009; 9:439-50.
    Kopelovich L, Fay JR, Sigman CC, Crowell JA. The mammalian target of rapamycin pathway as a potential target for cancer chemoprevention. Cancer Epidemiol Biomarkers Prev 2007; 16:1330-40.
    Lau WY, Lai EC, Lau SH. The current role of neoadjuvant/adjuvant/chemoprevention therapy in partial hepatectomy for hepatocellular carcinoma:a systematic review. Hepatobiliary Pancreat Dis Int 2009; 8:124-33.
    Law BK. Rapamycin:an anti-cancer immunosuppressant? Crit Rev Oncol Hematol 2005; 56:47-60.
    Law M, Forrester E, Chytil A, Corsino P, Green G, Davis B, et al. Rapamycin disrupts cyclin/cyclin-dependent kinase/p21/proliferating cell nuclear antigen complexes and cyclin D1 reverses rapamycin action by stabilizing these complexes. Cancer Res 2006; 66:1070-80.
    Lim J, Kim JH, Paeng JY, Kim MJ, Hong SD, Lee JI, et al. Prognostic value of activated Akt expression in oral squamous cell carcinoma. J Clin Pathol 2005; 58:1199-205.
    Llobet D, Pallares J, Yeramian A, Santacana M, Eritja N, Velasco A, et al. Molecular pathology of endometrial carcinoma:practical aspects from the diagnostic and therapeutic viewpoints. J Clin Pathol 2009; 62:777-85.
    Longley DB, Harkin DP, Johnston PG.5-fluorouracil:mechanisms of action and clinical strategies. Nat Rev Cancer 2003; 3:330-8.
    Lonning PE. Genes causing inherited cancer as beacons to identify the mechanisms of chemoresistance. Trends Mol Med 2004; 10:113-8.
    Lopez-Bonet E, Vazquez-Martin A, Perez-Martinez MC, Oliveras-Ferraros C, Perez-Bueno F, Bernado L, et al. Serine 2481-autophosphorylation of mammalian target of rapamycin (mTOR) couples with chromosome condensation and segregation during mitosis:confocal microscopy characterization and immunohistochemical validation of PP-mTOR(Ser2481) as a novel high-contrast mitosis marker in breast cancer core biopsies. Int J Oncol 2010; 36:107-15.
    Loreni F, Thomas G, Amaldi F. Transcription inhibitors stimulate translation of 5'TOP mRNAs through activation of S6 kinase and the mTOR/FRAP signalling pathway. Eur J Biochem 2000; 267:6594-601.
    Mabuchi S, Altomare DA, Cheung M, Zhang L, Poulikakos PI, Hensley HH, et al. RAD001 inhibits human ovarian cancer cell proliferation, enhances cisplatin-induced apoptosis, and prolongs survival in an ovarian cancer model. Clin Cancer Res 2007; 13:4261-70.
    Mamane Y, Petroulakis E, LeBacquer O, Sonenberg N. mTOR, translation initiation and cancer; Oncogene 2006; 25:6416-22.
    Martin KA, Blenis J. Coordinate regulation of translation by the PI 3-kinase and mTOR pathways. Adv Cancer Res 2002; 86:1-39.
    Martin DE, Hall MN. The expanding TOR signaling network. Curr Opin Cell Biol 2005; 17:158-66.
    Matsumoto M, Furihata M, Ohtsuki Y. Posttranslational phosphorylation of mutant p53 protein in tumor development. Med Mol Morphol 2006; 39:79-87.
    Matsumoto N, Ohki H, Mukae S, Amano Y, Harada D, Nishimura S, et al. Anaplastic large cell lymphoma in gingiva:case report and literature review. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008; 106:e29-34.
    McDonald PC, Oloumi A, Mills J, Dobreva I, Maidan M, Gray V, et al. Rictor and integrin-linked kinase interact and regulate Akt phosphorylation and cancer cell survival. Cancer Res 2008; 68:1618-24.
    McMahon LP, Choi KM, Lin TA, Abraham RT, Lawrence JC, Jr. The rapamycin-binding domain governs substrate selectivity by the mammalian target of rapamycin. Mol Cell Biol 2002; 22:7428-38.
    Meriggi F, Di Biasi B, Abeni C, Zaniboni A. Anti-EGFR therapy in colorectal cancer: how to choose the right patient. Curr Drug Targets 2009; 10:1033-40.
    Mita MM, Mita A, Rowinsky EK. The molecular target of rapamycin (mTOR) as a therapeutic target against cancer. Cancer Biol Ther 2003; 2:S169-77.
    Mizutani Y. Recent advances in molecular targeted therapy for metastatic renal cell carcinoma. Int J Urol 2009; 16:444-8.
    Morgensztern D, McLeod HL. PI3K/Akt/mTOR pathway as a target for cancer therapy. Anticancer Drugs 2005; 16:797-803.
    Muller I, Niethammer D, Bruchelt G. Anthracycline-derived chemotherapeutics in apoptosis and free radical cytotoxicity (Review). Int J Mol Med 1998; 1: 491-4.
    Mungamuri SK, Yang X, Thor AD, Somasundaram K. Survival signaling by Notch 1: mammalian target of rapamycin (mTOR)-dependent inhibition of p53. Cancer Res 2006; 66:4715-24.
    Oz E, Erbas D, Surucu HS, Duzgun E. Prevention of doxorubicin-induced cardiotoxicity by melatonin. Mol Cell Biochem 2006; 282:31-7.
    Papa V, Tazzari PL, Chiarini F, Cappellini A, Ricci F, Billi AM, et al. Proapoptotic activity and chemosensitizing effect of the novel Akt inhibitor perifosine in acute myelogenous leukemia cells. Leukemia 2008; 22:147-60.
    Pham NA, Tsao MS, Cao P, Hedley DW. Dissociation of gemcitabine sensitivity and protein kinase B signaling in pancreatic ductal adenocarcinoma models. Pancreas 2007; 35:e16-26.
    Pineau P, Marchio A, Battiston C, Cordina E, Russo A, Terris B, et al. Chromosome instability in human hepatocellular carcinoma depends on p53 status and aflatoxin exposure. Mutat Res 2008; 653:6-13.
    Poon D, Anderson BO, Chen LT, Tanaka K, Lau WY, Van Cutsem E, et al. Management of hepatocellular carcinoma in Asia:consensus statement from the Asian Oncology Summit 2009. Lancet Oncol 2009; 10:1111-8.
    Pozo-Guisado E, Merino JM, Mulero-Navarro S, Lorenzo-Benayas MJ, Centeno F, Alvarez-Barrientos A, et al. Resveratrol-induced apoptosis in MCF-7 human breast cancer cells involves a caspase-independent mechanism with downregulation of Bcl-2 and NF-kappaB. Int J Cancer 2005; 115:74-84.
    Presneau N, Shalaby A, Idowu B, Gikas P, Cannon SR, Gout I, et al. Potential therapeutic targets for chordoma:PI3K/AKT/TSC1/TSC2/mTOR pathway. Br J Cancer 2009; 100:1406-14.
    Qiang L, Huikai L, Butt K, Wang PP, Hao X. Factors associated with disease survival after surgical resection in Chinese patients with hepatocellular carcinoma. World J Surg 2006; 30:439-45.
    Rampone B, Schiavone B, Martino A, Viviano C, Confuorto G. Current management strategy of hepatocellular carcinoma. World J Gastroenterol 2009; 15:3210-6.
    Rocha AS, Paternot S, Coulonval K, Dumont JE, Soares P, Roger PP. Cyclic AMP inhibits the proliferation of thyroid carcinoma cell lines through regulation of CDK4 phosphorylation. Mol Biol Cell 2008; 19:4814-25.
    Rodriguez-Escudero I, Roelants FM, Thorner J, Nombela C, Molina M, Cid VJ. Reconstitution of the mammalian PI3K/PTEN/Akt pathway in yeast. Biochem J 2005; 390:613-23.
    Rosettani P, Knapp S, Vismara MG, Rusconi L, Cameron AD. Structures of the human eIF4E homologous protein, h4EHP, in its m7GTP-bound and unliganded forms. J Mol Biol 2007; 368:691-705.
    Roy V, Perez EA. New therapies in the treatment of breast cancer. Semin Oncol 2006; 33:S3-8.
    Schelman WR, Morgan-Meadows S, Marnocha R, Lee F, Eickhoff J, Huang W, et al. A phase I study of Triapine in combination with doxorubicin in patients with advanced solid tumors. Cancer Chemother Pharmacol 2009; 63:1147-56.
    Sekine I, Minna JD, Nishio K, Saijo N, Tamura T. Genes regulating the sensitivity of solid tumor cell lines to cytotoxic agents:a literature review. Jpn J Clin Oncol 2007; 37:329-36.
    Selvendiran K, Tong L, Vishwanath S, Bratasz A, Trigg NJ, Kutala VK, et al. EF24 induces G2/M arrest and apoptosis in cisplatin-resistant human ovarian cancer cells by increasing PTEN expression. J Biol Chem 2007; 282:28609-18.
    Sheikh MS, Chen YQ, Smith ML, Fornace AJ, Jr. Role of p21Wafl/Cipl/Sdi1 in cell
    death and DNA repair as studied using a tetracycline-inducible system in p53-deficient cells. Oncogene 1997; 14:1875-82.
    Smith PG, Wang F, Wilkinson KN, Savage KJ, Klein U, Neuberg DS, et al. The phosphodiesterase PDE4B limits cAMP-associated PI3K/AKT-dependent apoptosis in diffuse large B-cell lymphoma. Blood 2005; 105:308-16.
    Sulis ML, Parsons R. PTEN:from pathology to biology. Trends Cell Biol 2003; 13: 478-83.
    Suzuki E, Umezawa K, Bonavida B. Rituximab inhibits the constitutively activated PI3K-Akt pathway in B-NHL cell lines:involvement in chemosensitization to drug-induced apoptosis. Oncogene 2007; 26:6184-93.
    Tam KH, Yang ZF, Lau CK, Lam CT, Pang RW, Poon RT. Inhibition of mTOR enhances chemosensitivity in hepatocellular carcinoma. Cancer Lett 2009; 273: 201-9.
    Teufel A, Staib F, Kanzler S, Weinmann A, Schulze-Bergkamen H, Galle PR. Genetics of hepatocellular carcinoma. World J Gastroenterol 2007; 13:2271-82.
    Thomas S, Shah G. Calcitonin induces apoptosis resistance in prostate cancer cell lines against cytotoxic drugs via the Akt/survivin pathway. Cancer Biol Ther 2005; 4:1226-33.
    Thorgeirsson SS, Grisham JW. Molecular pathogenesis of human hepatocellular carcinoma. Nat Genet 2002; 31:339-46.
    Tommasi S, Pinto R, Pilato B, Paradiso A. Molecular pathways and related target therapies in liver carcinoma. Curr Pharm Des 2007; 13:3279-87.
    Vero V, Racco S, Biolato M, Pompili M, Gasbarrini G, Miele L, et al. [The treatment of hepatocellular carcinoma:an update]. Minerva Med 2009; 100:173-93.
    Vivanco I, Sawyers CL. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer 2002; 2:489-501.
    Wahl H, Daudi S, Kshirsagar M, Griffith K, Tan L, Rhode J, et al. Expression of metabolically targeted biomarkers in endometrial carcinoma. Gynecol Oncol 2010; 116:21-7.
    Walker KS, Deak M, Paterson A, Hudson K, Cohen P, Alessi DR. Activation of protein kinase B beta and gamma isoforms by insulin in vivo and by 3-phosphoinositide-dependent protein kinase-1 in vitro:comparison with protein kinase B alpha. Biochem J 1998; 331 (Pt 1):299-308.
    Wang L, Rayanade RJ, Garcia D, Patel K, Pan H, Sehgal PB. Modulation of interleukin-6-induced plasma protein secretion in hepatoma cells by p53 species. J Biol Chem 1995; 270:23159-65.
    Wittekind C. [Pitfalls in the classification of liver tumors]. Pathologe 2006; 27: 289-93.
    Wong CH, Chan SK, Chan HL, Tsui SK, Feitelson M. The molecular diagnosis of hepatitis B virus-associated hepatocellular carcinoma. Crit Rev Clin Lab Sci 2006; 43:69-101.
    Wong N, Yeo W, Wong WL, Wong NL, Chan KY, Mo FK, et al. TOP2A overexpression in hepatocellular carcinoma correlates with early age onset, shorter patients survival and chemoresistance. Int J Cancer 2009; 124:644-52.
    Yao JC. Neuroendocrine tumors. Molecular targeted therapy for carcinoid and islet-cell carcinoma. Best Pract Res Clin Endocrinol Metab 2007; 21:163-72.
    Yau T, Chan P, Epstein R, Poon RT. Evolution of systemic therapy of advanced hepatocellular carcinoma. World J Gastroenterol 2008; 14:6437-41.
    Yu K, Toral-Barza L, Shi C, Zhang WG, Zask A. Response and determinants of cancer cell susceptibility to PI3K inhibitors:combined targeting of PI3K and Mekl as an effective anticancer strategy. Cancer Biol Ther 2008; 7:307-15.
    Yuan R, Kay A, Berg WJ, Lebwohl D. Targeting tumorigenesis:development and use of mTOR inhibitors in cancer therapy. J Hematol Oncol 2009; 2:45.
    Zhu XD, Zhang JB, Zhuang PY, Zhu HG, Zhang W, Xiong YQ, et al. High expression of macrophage colony-stimulating factor in peritumoral liver tissue is associated with poor survival after curative resection of hepatocellular carcinoma. J Clin Oncol 2008; 26:2707-16.
    Ai W, Bertram PG, Tsang CK, Chan TF, Zheng XF. Regulation of subtelomeric silencing during stress response. Mol Cell 2002; 10:1295-305.
    Amornphimoltham P, Patel V, Sodhi A, Nikitakis NG, Sauk JJ, Sausville EA, et al. Mammalian target of rapamycin, a molecular target in squamous cell carcinomas of the head and neck. Cancer Res 2005; 65:9953-61.
    Antion MD, Merhav M, Hoeffer CA, Reis G, Kozma SC, Thomas G, et al. Removal of S6K1 and S6K2 leads to divergent alterations in learning, memory, and synaptic plasticity. Learn Mem 2008; 15:29-38.
    Armengol G, Rojo F, Castellvi J, Iglesias C, Cuatrecasas M, Pons B, et al.4E-binding protein 1:a key molecular "funnel factor" in human cancer with clinical
    implications. Cancer Res 2007; 67:7551-5.
    Asnaghi L, Bruno P, Priulla M, Nicolin A. mTOR:a protein kinase switching between life and death. Pharmacol Res 2004; 50:545-9.
    Atkins MB, Hidalgo M, Stadler WM, Logan TF, Dutcher JP, Hudes GR, et al. Randomized phase Ⅱ study of multiple dose levels of CCI-779, a novel mammalian target of rapamycin kinase inhibitor, in patients with advanced refractory renal cell carcinoma. J Clin Oncol 2004; 22:909-18.
    Avruch J, Hara K, Lin Y, Liu M, Long X, Ortiz-Vega S, et al. Insulin and amino-acid regulation of mTOR signaling and kinase activity through the Rheb GTPase. Oncogene 2006; 25:6361-72.
    Balasubramanian S, Johnston RK, Moschella PC, Mani SK, Tuxworth WJ, Jr., Kuppuswamy D. mTOR in growth and protection of hypertrophy ing myocardium. Cardiovasc Hematol Agents Med Chem 2009; 7:52-63.
    Barthelemy C, Henderson CE, Pettmann B. Foxo3a induces motoneuron death through the Fas pathway in cooperation with JNK. BMC Neurosci 2004; 5:48.
    Beevers CS, Li F, Liu L, Huang S. Curcumin inhibits the mammalian target of rapamycin-mediated signaling pathways in cancer cells. Int J Cancer 2006; 119:757-64.
    Bolster DR, Crozier SJ, Kimball SR, Jefferson LS. AMP-activated protein kinase suppresses protein synthesis in rat skeletal muscle through down-regulated mammalian target of rapamycin (mTOR) signaling. J Biol Chem 2002; 277: 23977-80.
    Boni JP, Leister C, Bender G, Fitzpatrick V, Twine N, Stover J, et al. Population pharmacokinetics of CCI-779:correlations to safety and pharmacogenomic responses in patients with advanced renal cancer. Clin Pharmacol Ther 2005; 77:76-89.
    Bosotti R, Isacchi A, Sonnhammer EL. FAT:a novel domain in PIK-related kinases. Trends Biochem Sci 2000; 25:225-7.
    Bosserhoff AK. Novel biomarkers in malignant melanoma. Clin Chim Acta 2006; 367: 28-35.
    Brown NF, Stefanovic-Racic M, Sipula IJ, Perdomo G. The mammalian target of rapamycin regulates lipid metabolism in primary cultures of rat hepatocytes. Metabolism 2007; 56:1500-7.
    Cantley LC, Neel BG. New insights into tumor suppression:PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci U S A 1999; 96:4240-5.
    Carpenter CL, Duckworth BC, Auger KR, Cohen B, Schaffhausen BS, Cantley LC. Purification and characterization of phosphoinositide 3-kinase from rat liver. J Biol Chem 1990; 265:19704-11.
    Carraway H, Hidalgo M. New targets for therapy in breast cancer:mammalian target of rapamycin (mTOR) antagonists. Breast Cancer Res 2004; 6:219-24.
    Castedo M, Ferri KF, Blanco J, Roumier T, Larochette N, Barretina J, et al. Human immunodeficiency virus 1 envelope glycoprotein complex-induced apoptosis involves mammalian target of rapamycin/FKBP12-rapamycin-associated protein-mediated p53 phosphorylation. J Exp Med 2001; 194:1097-110.
    Chan JA, Zhang H, Roberts PS, Jozwiak S, Wieslawa G, Lewin-Kowalik J, et al. Pathogenesis of tuberous sclerosis subependymal giant cell astrocytomas: biallelic inactivation of TSC1 or TSC2 leads to mTOR-activation. J Neuropathol Exp Neurol 2004; 63:1236-42.
    Choo AY, Blenis J. Not all substrates are treated equally:implications for mTOR, rapamycin-resistance and cancer therapy. Cell Cycle 2009; 8:567-72.
    Costa AP, Clemente CF, Carvalho HF, Carvalheira JB, Nadruz W, Jr., Franchini KG. FAK Mediates the Activation of Cardiac Fibroblasts Induced by Mechanical Stress Through Regulation of the mTOR Complex. Cardiovasc Res 2009.
    Crane CA, Panner A, Murray JC, Wilson SP, Xu H, Chen L, et al. PI(3) kinase is associated with a mechanism of immunoresistance in breast and prostate cancer. Oncogene 2009; 28:306-12.
    De Benedetti A, Harris AL. eIF4E expression in tumors:its possible role in progression of malignancies. Int J Biochem Cell Biol 1999; 31:59-72.
    Edwards SR, Wandless TJ. The rapamycin-binding domain of the protein kinase mammalian target of rapamycin is a destabilizing domain. J Biol Chem 2007; 282:13395-401.
    Eto I. "Nutritional and chemopreventive anti-cancer agents up-regulate expression of p27Kipl, a cyclin-dependent kinase inhibitor, in mouse JB6 epidermal and human MCF7, MDA-MB-321 and AU565 breast cancer cells". Cancer Cell Int 2006; 6:20.
    Fenic I, Steger K, Gruber C, Arens C, Woenckhaus J. Analysis of PIK3CA and Akt/protein kinase B in head and neck squamous cell carcinoma. Oncol Rep 2007; 18:253-9.
    Fiano V, Ghimenti C, Imarisio S, Silengo L, Schiffer D. PAkt, cyclin D1 and p27/Kip.1 in glioblastomas with and without EGFR amplification and PTEN mutation. Anticancer Res 2004; 24:2643-7.
    Flynn P, Wongdagger M, Zavar M, Dean NM, Stokoe D. Inhibition of PDK-1 activity causes a reduction in cell proliferation and survival. Curr Biol 2000; 10: 1439-42.
    Gao N, Flynn DC, Zhang Z, Zhong XS, Walker V, Liu KJ, et al. G1 cell cycle progression and the expression of G1 cyclins are regulated by PI3K/AKT/mTOR/p70S6K1 signaling in human ovarian cancer cells. Am J Physiol Cell Physiol 2004a; 287:C281-91.
    Gao N, Nester RA, Sarkar MA.4-Hydroxy estradiol but not 2-hydroxy estradiol induces expression of hypoxia-inducible factor 1alpha and vascular endothelial growth factor A through phosphatidylinositol 3-kinase/Akt/FRAP pathway in OVCAR-3 and A2780-Cp70 human ovarian carcinoma cells. Toxicol Appl Pharmacol 2004b; 196:124-35.
    Gera JF, Mellinghoff IK, Shi Y, Rettig MB, Tran C, Hsu JH, et al. AKT activity determines sensitivity to mammalian target of rapamycin (mTOR) inhibitors by regulating cyclin D1 and c-myc expression. J Biol Chem 2004; 279: 2737-46.
    Gharbi SI, Zvelebil MJ, Shuttleworth SJ, Hancox T, Saghir N, Timms JF, et al. Exploring the specificity of the PI3K family inhibitor LY294002. Biochem J 2007; 404:15-21.
    Giatromanolaki A, Sivridis E, Fiska A, Koukourakis MI. Hypoxia-inducible factor-2 alpha (HIF-2 alpha) induces angiogenesis in breast carcinomas. Appl Immunohistochem Mol Morphol 2006; 14:78-82.
    Giles FJ, Albitar M. Mammalian target of rapamycin as a therapeutic target in leukemia. Curr Mol Med 2005; 5:653-61.
    Gingras AC, Raught B, Sonenberg N. Regulation of translation initiation by FRAP/mTOR. Genes Dev 2001; 15:807-26.
    Gonzalez E, McGraw TE. The Akt kinases:isoform specificity in metabolism and cancer. Cell Cycle 2009; 8:2502-8.
    Gorshtein A, Rubinfeld H, Kendler E, Theodoropoulou M, Cerovac V, Stalla GK, et al. Mammalian target of rapamycin inhibitors rapamycin and RAD001 (everolimus) induce anti-proliferative effects in GH-secreting pituitary tumor cells in vitro. Endocr Relat Cancer 2009; 16:1017-27.
    Granville CA, Memmott RM, Gills JJ, Dennis PA. Handicapping the race to develop inhibitors of the phosphoinositide 3-kinase/Akt/mammalian target of rapamycin pathway. Clin Cancer Res 2006; 12:679-89.
    Gridelli C, Rossi A, Morgillo F, Bareschino MA, Maione P, Di Maio M, et al. A randomized phase Ⅱ study of pemetrexed or RAD001 as second-line treatment of advanced non-small-cell lung cancer in elderly patients:treatment rationale and protocol dynamics. Clin Lung Cancer 2007; 8:568-71.
    Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell 2007; 12:9-22.
    Guertin DA, Stevens DM, Thoreen CC, Burds AA, Kalaany NY, Moffat J, et al. Ablation in mice of the mTORC components Raptor, Rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1.Dev Cell 2006; 11:859-71.
    Hahn-Windgassen A, Nogueira V, Chen CC, Skeen JE, Sonenberg N, Hay N. Akt activates the mammalian target of rapamycin by regulating cellular ATP level and AMPK activity. J Biol Chem 2005; 280:32081-9.
    Han S, Witt RM, Santos TM, Polizzano C, Sabatini BL, Ramesh V. Pam (Protein associated with Myc) functions as an E3 ubiquitin ligase and regulates TSC/mTOR signaling. Cell Signal 2008; 20:1084-91.
    Hara K, Maruki Y, Long X, Yoshino K, Oshiro N, Hidayat S, et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 2002; 110: 177-89.
    Hashemolhosseini S, Nagamine Y, Morley SJ, Desrivieres S, Mercep L, Ferrari S. Rapamycin inhibition of the G1 to S transition is mediated by effects on cyclin D1 mRNA and protein stability. J Biol Chem 1998; 273:14424-9.
    Hattula K, Furuhjelm J, Arffman A, Peranen J. A Rab8-specific GDP/GTP exchange factor is involved in actin remodeling and polarized membrane transport. Mol Biol Cell 2002; 13:3268-80.
    Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev 2004; 18: 1926-45.
    Herberger B, Berger W, Puhalla H, Schmid K, Novak S, Brandstetter A, et al. Simultaneous blockade of the epidermal growth factor receptor/mammalian target of rapamycin pathway by epidermal growth factor receptor inhibitors and rapamycin results in reduced cell growth and survival in biliary tract cancer cells. Mol Cancer Ther 2009; 8:1547-56.
    Hill KM, Kalifa S, Das JR, Bhatti T, Gay M, Williams D, et al. The role of PI 3-kinase p110beta in AKT signally, cell survival, and proliferation in human prostate cancer cells. Prostate.
    Homicsko K, Lukashev A, Iggo RD. RAD001 (everolimus) improves the efficacy of replicating adenoviruses that target colon cancer. Cancer Res 2005; 65: 6882-90.
    Hsieh AC, Moasser MM. Targeting HER proteins in cancer therapy and the role of the non-target HER3. Br J Cancer 2007; 97:453-7.
    Huang J, Manning BD. The TSC1-TSC2 complex:a molecular switchboard controlling cell growth. Biochem J 2008; 412:179-90.
    Huang S,.Houghton PJ. Mechanisms of resistance to rapamycins. Drug Resist Updat 2001; 4:378-91.
    Huang S, Shu L, Dilling MB, Easton J, Harwood FC, Ichijo H, et al. Sustained activation of the JNK cascade and rapamycin-induced apoptosis are suppressed by p53/p21(Cipl). Mol Cell 2003; 11:1491-501.
    Huang S, Shu L, Easton J, Harwood FC, Germain GS, Ichijo H, et al. Inhibition of mammalian target of rapamycin activates apoptosis signal-regulating kinase 1 signaling by suppressing protein phosphatase 5 activity. J Biol Chem 2004; 279:36490-6.
    Huffman TA, Mothe-Satney I, Lawrence JC, Jr. Insulin-stimulated phosphorylation of lipin mediated by the mammalian target of rapamycin. Proc Natl Acad Sci U S A 2002; 99:1047-52.
    Huynh H, Teo CC, Soo KC. Bevacizumab and rapamycin inhibit tumor growth in peritoneal model of human ovarian cancer. Mol Cancer Ther 2007; 6: 2959-66.
    Imazu H, Sakurai H. Saccharomyces cerevisiae heat shock transcription factor regulates cell wall remodeling in response to heat shock. Eukaryot Cell 2005; 4:1050-6.
    Inoki K, Li Y, Zhu T, Wu J, Guan KL. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 2002; 4:648-57.
    Ito D, Fujimoto K, Mori T, Kami K, Koizumi M, Toyoda E, et al. In vivo antitumor effect of the mTOR inhibitor CCI-779 and gemcitabine in xenograft models of human pancreatic cancer. Int J Cancer 2006; 118:2337-43.
    Iwamaru A, Kondo Y, Iwado E, Aoki H, Fujiwara K, Yokoyama T, et al. Silencing mammalian target of rapamycin signaling by small interfering RNA enhances rapamycin-induced autophagy in malignant glioma cells. Oncogene 2007; 26: 1840-51.
    Jacinto E, Loewith R, Schmidt A, Lin S, Ruegg MA, Hall A, et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 2004; 6:1122-8.
    Jamison JT, Kayali F, Rudolph J, Marshall M, Kimball SR, DeGracia DJ. Persistent redistribution of poly-adenylated mRNAs correlates with translation arrest and cell death following global brain ischemia and reperfusion. Neuroscience 2008; 154:504-20.
    Jiang BH, Liu LZ. Role of mTOR in anticancer drug resistance:perspectives for improved drug treatment. Drug Resist Updat 2008; 11:63-76.
    Jiang BH, Liu LZ. PI3K/PTEN signaling in angiogenesis and tumorigenesis. Adv Cancer Res 2009; 102:19-65.
    Johnson BE, Jackman D, Janne PA. Rationale for a phase I trial of erlotinib and the mammalian target of rapamycin inhibitor everolimus (RAD001) for patients with relapsed non small cell lung cancer. Clin Cancer Res 2007; 13:s4628-31.
    Jozwiak J, Jozwiak S, Grzela T, Lazarczyk M. Positive and negative regulation of TSC2 activity and its effects on downstream effectors of the mTOR pathway. Neuromolecular Med 2005; 7:287-96.
    Kakisis JD, Pradhan S, Cordova A, Liapis CD, Sumpio BE. The role of STAT-3 in the mediation of smooth muscle cell response to cyclic strain. Int J Biochem Cell Biol 2005; 37:1396-406.
    Kandel ES, Skeen J, Majewski N, Di Cristofano A, Pandolfi PP, Feliciano CS, et al. Activation of Akt/protein kinase B overcomes a G(2)/m cell cycle checkpoint induced by DNA damage. Mol Cell Biol 2002; 22:7831-41.
    Kaushal GP, Liu L, Kaushal V, Hong X, Melnyk O, Seth R, et al. Regulation of caspase-3 and-9 activation in oxidant stress to RTE by forkhead transcription factors, Bcl-2 proteins, and MAP kinases. Am J Physiol Renal Physiol 2004; 287:F1258-68.
    Keshwani MM, Ross DB, Ragan TJ, Harris TK. Baculovirus-mediated expression, purification, and characterization of a fully activated catalytic kinase domain construct of the 70 kDa 40S ribosomal protein S6 kinase-1 alphaⅡ isoform (S6K1alphaⅡ). Protein Expr Purif 2008; 58:32-41.
    Kim DH, Sarbassov DD, Ali SM, Latek RR, Guntur KV, Erdjument-Bromage H, et al. GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between Raptor and mTOR. Mol Cell 2003; 11:895-904.
    Kim KH, Lee SG, Park EH, Hwang S, Ahn CS, Moon DB, et al. Surgical treatments and prognoses of patients with combined hepatocellular carcinoma and cholangiocarcinoma. Ann Surg Oncol 2009; 16:623-9.
    Kimball SR. Regulation of translation initiation by amino acids in eukaryotic cells. Prog Mol Subcell Biol 2001; 26:155-84.
    Kimball SR. Regulation of global and specific mRNA translation by amino acids. J Nutr 2002; 132:883-6.
    Kitamura Y, Kosaka T, Shimohama S, Nomura Y, Taniguchi T. Possible involvement of rapamycin-sensitive pathway in Bcl-2 expression in human neuroblastoma SH-SY5Y cells. Jpn J Pharmacol 1997; 75:195-8.
    Kobayashi S, Kishimoto T, Kamata S, Otsuka M, Miyazaki M, Ishikura H. Rapamycin, a specific inhibitor of the mammalian target of rapamycin, suppresses lymphangiogenesis and lymphatic metastasis. Cancer Sci 2007; 98: 726-33.
    Kremer CL, Klein RR, Mendelson J, Browne W, Samadzedeh LK, Vanpatten K, et al. Expression of mTOR signaling pathway markers in prostate cancer progression. Prostate 2006; 66:1203-12.
    Law BK, Chytil A, Dumont N, Hamilton EG, Waltner-Law ME, Aakre ME, et al. Rapamycin potentiates transforming growth factor beta-induced growth arrest in nontransformed, oncogene-transformed, and human cancer cells. Mol Cell Biol 2002; 22:8184-98.
    Le Bras M, Rouy I, Brenner C. The modulation of inter-organelle cross-talk to control apoptosis. Med Chem 2006; 2:1-12.
    Lim J, Kim JH, Paeng JY, Kim MJ, Hong SD, Lee JI, et al. Prognostic value of activated Akt expression in oral squamous cell carcinoma. J Clin Pathol 2005; 58:1199-205.
    Lin MT, Kuo IH, Chang CC, Chu CY, Chen HY, Lin BR, et al. Involvement of hypoxia-inducing factor-1 alpha-dependent plasminogen activator inhibitor-1 up-regulation in Cyr61/CCN1-induced gastric cancer cell invasion. J Biol Chem 2008; 283:15807-15.
    Liu Y, Xi L, Liao G, Wang W, Tian X, Wang B, et al. Inhibition of PC cell-derived growth factor (PCDGF)/granulin-epithelin precursor (GEP) decreased cell proliferation and invasion through downregulation of cyclin D and CDK4 and inactivation of MMP-2. BMC Cancer 2007; 7:22.
    Louden E, Chi MM, Moley KH. Crosstalk between the AMP-activated kinase and insulin signaling pathways rescues murine blastocyst cells from insulin resistance. Reproduction 2008; 136:335-44.
    Ma WW, Adjei AA. Novel agents on the horizon for cancer therapy. CA Cancer J Clin 2009;59:111-37.
    MacDonald AS. Cancer and transplantation intersect at the mammalian target of rapamycin. Transplantation 2007; 84:682-4.
    Majumder PK, Febbo PG, Bikoff R, Berger R, Xue Q, McMahon LM, et al. mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways. Nat Med 2004; 10: 594-601.
    Manegold PC, Paringer C, Kulka U, Krimmel K, Eichhorn ME, Wilkowski R, et al. Antiangiogenic therapy with mammalian target of rapamycin inhibitor RAD001 (Everolimus) increases radiosensitivity in solid cancer. Clin Cancer Res 2008; 14:892-900.
    Martelli AM, Tazzari PL, Evangelisti C, Chiarini F, Blalock WL, Billi AM, et al. Targeting the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin module for acute myelogenous leukemia therapy:from bench to bedside. Curr Med Chem 2007; 14:2009-23.
    Matsumoto N, Ohki H, Mukae S, Amano Y, Harada D, Nishimura S, et al. Anaplastic large cell lymphoma in gingiva:case report and literature review. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008; 106:e29-34.
    McDonald PC, Oloumi A, Mills J, Dobreva I, Maidan M, Gray V, et al. Rictor and integrin-linked kinase interact and regulate Akt phosphorylation and cancer cell survival. Cancer Res 2008; 68:1618-24.
    McMahon LP, Choi KM, Lin TA, Abraham RT, Lawrence JC, Jr. The rapamycin-binding domain governs substrate selectivity by the mammalian target of rapamycin. Mol Cell Biol 2002; 22:7428-38.
    Meriggi F, Di Biasi B, Abeni C, Zaniboni A. Anti-EGFR therapy in colorectal cancer: how to choose the right patient. Curr Drug Targets 2009; 10:1033-40.
    Mita MM, Mita A, Rowinsky EK. The molecular target of rapamycin (mTOR) as a therapeutic target against cancer. Cancer Biol Ther 2003; 2:S169-77.
    Mita MM, Mita AC, Chu QS, Rowinsky EK, Fetterly GJ, Goldston M, et al. Phase Ⅰ trial of the novel mammalian target of rapamycin inhibitor deforolimus (AP23573; MK-8669) administered intravenously daily for 5 days every 2 weeks to patients with advanced malignancies. J Clin Oncol 2008; 26:361-7.
    Moschella PC, Rao VU, McDermott PJ, Kuppuswamy D. Regulation of mTOR and S6K1 activation by the nPKC isoforms, PKCepsilon and PKCdelta, in adult cardiac muscle cells. J Mol Cell Cardiol 2007; 43:754-66.
    Nien WL, Dauphinee SM, Moffat LD, Too CK. Overexpression of the mTOR alpha4 phosphoprotein activates protein phosphatase 2A and increases Statl alpha binding to PIAS1. Mol Cell Endocrinol 2007; 263:10-7.
    Nojima H, Tokunaga C, Eguchi S, Oshiro N, Hidayat S, Yoshino K, et al. The mammalian target of rapamycin (mTOR) partner, Raptor, binds the mTOR substrates p70 S6 kinase and 4E-BP1 through their TOR signaling (TOS) motif. J Biol Chem 2003; 278:15461-4.
    Norton KS, McClusky D, Sen S, Yu H, Meschonat C, Debenedetti A, et al. TLK1B is elevated with eIF4E overexpression in breast cancer. J Surg Res 2004; 116: 98-103.
    Oikonomou E, Pintzas.A. Cancer genetics of sporadic colorectal cancer:BRAF and PI3KCA mutations, their impact on signaling and novel targeted therapies. Anticancer Res 2006; 26:1077-84.
    Oshiro N, Takahashi R, Yoshino K, Tanimura K, Nakashima A, Eguchi S, et al. The proline-rich Akt substrate of 40 kDa (PRAS40) is a physiological substrate of mammalian target of rapamycin complex 1. J Biol Chem 2007; 282: 20329-39.
    Pandya KJ, Dahlberg S, Hidalgo M, Cohen RB, Lee MW, Schiller JH, et al. A randomized, phase Ⅱ trial of two dose levels of temsirolimus (CCI-779) in patients with extensive-stage small-cell lung cancer who have responding or stable disease after induction chemotherapy:a trial of the Eastern Cooperative Oncology Group (E1500). J Thorac Oncol 2007; 2:1036-41.
    Panwalkar A, Verstovsek S, Giles FJ. Mammalian target of rapamycin inhibition as therapy for hematologic malignancies. Cancer 2004; 100:657-66.
    Parekh D, Ziegler W, Yonezawa K, Hara K, Parker PJ. Mammalian TOR controls one of two kinase pathways acting upon nPKCdelta and nPKCepsilon. J Biol Chem 1999; 274:34758-64.
    Penuel E, Martin GS. Transformation by v-Src:Ras-MAPK and PI3K-mTOR mediate parallel pathways. Mol Biol Cell 1999; 10:1693-703.
    Peralba JM, DeGraffenried L, Friedrichs W, Fulcher L, Grunwald V, Weiss G, et al. Pharmacodynamic Evaluation of CCI-779, an Inhibitor of mTOR, in Cancer Patients. Clin Cancer Res 2003; 9:2887-92.
    Pham NA, Tsao MS, Cao P, Hedley DW. Dissociation of gemcitabine sensitivity and protein kinase B signaling in pancreatic ductal adenocarcinoma models. Pancreas 2007; 35:e16-26.
    Raghavendra PB, Sreenivasan Y, Manna SK. Oleandrin induces apoptosis in human, but not in murine cells:dephosphorylation of Akt, expression of FasL, and alteration of membrane fluidity. Mol Immunol 2007; 44:2292-302.
    Rajan P, Panchision DM, Newell LF, McKay RD. BMPs signal alternately through a SMAD or FRAP-STAT pathway to regulate fate choice in CNS stem cells. J Cell Biol 2003; 161:911-21.
    Rao RD, Buckner JC, Sarkaria JN. Mammalian target of rapamycin (mTOR) inhibitors as anti-cancer agents. Curr Cancer Drug Targets 2004; 4:621-35.
    Robertson BW, Chellaiah MA. Osteopontin induces beta-catenin signaling through activation of Akt in prostate cancer cells. Exp Cell Res 2010;316:1-11.
    Ruvinsky I, Meyuhas O. Ribosomal protein S6 phosphorylation:from protein synthesis to cell size. Trends Biochem Sci 2006; 31:342-8.
    Sakakibara K, Liu B, Hollenbeck S, Kent KC. Rapamycin inhibits fibronectin-induced migration of the human arterial smooth muscle line (E47) through the mammalian target of rapamycin. Am J Physiol Heart Circ Physiol 2005; 288:H2861-8.
    Schalm SS, Blenis J. Identification of a conserved motif required for mTOR signaling. Curr Biol 2002; 12:632-9.
    Schmitt FC, Reis-Filho JS. Oncogenes, granules and breast cancer:what has c-myc to do with apocrine changes? Breast 2002; 11:463-5.
    Selvendiran K, Tong L, Vishwanath S, Bratasz A, Trigg NJ, Kutala VK, et al. EF24 induces G2/M arrest and apoptosis in cisplatin-resistant human ovarian cancer cells by increasing PTEN expression. J Biol Chem 2007; 282:28609-18.
    Shah OJ, Wang Z, Hunter T. Inappropriate activation of the TSC/Rheb/mTOR/S6K cassette induces IRS 1/2 depletion, insulin resistance, and cell survival deficiencies. Curr Biol 2004; 14:1650-6.
    Shah SA, Potter MW, Ricciardi R, Perugini RA, Callery MP. FRAP-p70s6K signaling is required for pancreatic cancer cell proliferation. J Surg Res 2001; 97: 123-30.
    Simpson L, Parsons R. PTEN:life as a tumor suppressor. Exp Cell Res 2001; 264: 29-41.
    Smith PG, Wang F, Wilkinson KN, Savage KJ, Klein U, Neuberg DS, et al. The phosphodiesterase PDE4B limits cAMP-associated PI3K/AKT-dependent apoptosis in diffuse large B-cell lymphoma. Blood 2005; 105:308-16.
    Sofer A, Lei K, Johannessen CM, Ellisen LW Regulation of mTOR and cell growth in response to energy stress by REDD1. Mol Cell Biol 2005; 25:5834-45.
    Soliman GA. The mammalian target of rapamycin signaling network and gene regulation. Curr Opin Lipidol 2005; 16:317-23.
    Steelman LS, Stadelman KM, Chappell WH, Horn S, Basecke J, Cervello M, et al. Akt as a therapeutic target in cancer. Expert Opin Ther Targets 2008; 12: 1139-65.
    Stolovich M, Tang H, Hornstein E, Levy G, Cohen R, Bae SS, et al. Transduction of growth or mitogenic signals into translational activation of TOP mRNAs is fully reliant on the phosphatidylinositol 3-kinase-mediated pathway but requires neither S6K1 nor rpS6 phosphorylation. Mol Cell Biol 2002; 22: 8101-13.
    Sulis ML, Parsons R. PTEN:from pathology to biology. Trends Cell Biol 2003; 13: 478-83.
    Sun SY, Rosenberg LM, Wang X, Zhou Z, Yue P, Fu H, et al. Activation of Akt and eIF4E survival pathways by rapamycin-mediated mammalian target of rapamycin inhibition. Cancer Res 2005; 65:7052-8.
    Suzuki E, Umezawa K, Bonavida B. Rituximab inhibits the constitutively activated PI3K-Akt pathway in B-NHL cell lines:involvement in chemosensitization to drug-induced apoptosis. Oncogene 2007; 26:6184-93.
    Thomas DM, Johnson SA, Sims NA, Trivett MK, Slavin JL, Rubin BP, et al. Terminal
    osteoblast differentiation, mediated by runx2 and p27KIP1, is disrupted in osteosarcoma. J Cell Biol 2004; 167:925-34.
    Thomas G. The S6 kinase signaling pathway in the control of development and growth. Biol Res 2002; 35:305-13.
    Tommasi S, Pinto R, Pilato B, Paradiso A. Molecular pathways and related target therapies in liver carcinoma. Curr Pharm Des 2007; 13:3279-87.
    van der Poel HG. Mammalian target of rapamycin and 3-phosphatidylinositol 3-kinase pathway inhibition enhances growth inhibition of transforming growth factor-betal in prostate cancer cells. J Urol 2004; 172:1333-7.
    Vasko VV, Saji M. Molecular mechanisms involved in differentiated thyroid cancer invasion and metastasis. Curr Opin Oncol 2007; 19:11-7.
    Vivanco I, Sawyers CL. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer 2002; 2:489-501.
    Walker KS, Deak M, Paterson A, Hudson K, Cohen P, Alessi DR. Activation of protein kinase B beta and gamma isoforms by insulin in vivo and by 3-phosphoinositide-dependent protein kinase-1 in vitro:comparison with protein kinase B alpha. Biochem J 1998; 331 (Pt 1):299-308.
    Wang F, Anderson PW, Salem N, Kuang Y, Tennant BC, Lee Z. Gene expression studies of hepatitis virus-induced woodchuck hepatocellular carcinoma in correlation with human results. Int J Oncol 2007a; 30:33-44.
    Wang L, Harris TE, Lawrence JC, Jr. Regulation of proline-rich Akt substrate of 40 kDa (PRAS40) function by mammalian target of rapamycin complex 1 (mTORC1)-mediated phosphorylation. J Biol Chem 2008a; 283:15619-27.
    Wang L, Harris TE, Roth RA, Lawrence JC, Jr. PRAS40 regulates mTORC1 kinase activity by functioning as a direct inhibitor of substrate binding. J Biol Chem 2007b; 282:20036-44.
    Wang X, Yue P, Kim YA, Fu H, Khuri FR, Sun SY. Enhancing mammalian target of rapamycin (mTOR)-targeted cancer therapy by preventing mTOR/Raptor inhibition-initiated, mTOR/Rictor-independent Akt activation. Cancer Res 2008b; 68:7409-18.
    Wang Y, Zhao Q, Ma S, Yang F, Gong Y, Ke C. Sirolimus inhibits human pancreatic carcinoma cell proliferation by a mechanism linked to the targeting of mTOR/HIF-1 alpha/VEGF signaling. IUBMB Life 2007c; 59:717-21.
    Woltman AM, van der Kooij SW, Coffer PJ, Offringa R, Daha MR, van Kooten C. Rapamycin specifically interferes with GM-CSF signaling in human dendritic cells, leading to apoptosis via increased p27KIP1 expression. Blood 2003; 101: 1439-45.
    Wysocki PJ. mTOR in renal cell cancer:modulator of tumor biology and therapeutic target. Expert Rev Mol Diagn 2009; 9:231-41.
    Xu Y, Chen SY, Ross KN, Balk SP. Androgens induce prostate cancer cell proliferation through mammalian target of rapamycin activation and post-transcriptional increases in cyclin D proteins. Cancer Res 2006; 66: 7783-92.
    Yang X, Yang C, Farberman A, Rideout TC, de Lange CF, France J, et al. The mammalian target of rapamycin-signaling pathway in regulating metabolism and growth. J Anim Sci 2008; 86:E36-50.
    Yao JC. Neuroendocrine tumors. Molecular targeted therapy for carcinoid and islet-cell carcinoma. Best Pract Res Clin Endocrinol Metab 2007; 21:163-72.
    Yokogami K, Wakisaka S, Avruch J, Reeves SA. Serine phosphorylation and maximal activation of STAT3 during CNTF signaling is mediated by the rapamycin target mTOR. Curr Biol 2000; 10:47-50.
    Yonezawa K, Tokunaga C, Oshiro N, Yoshino K. Raptor, a binding partner of target of rapamycin. Biochem Biophys Res Commun 2004a; 313:437-41.
    Yonezawa K, Yoshino KI, Tokunaga C, Hara K. Kinase activities associated with mTOR. Curr Top Microbiol Immunol 2004b; 279:271-82.
    Yoon P, Giafis N, Smith J, Mears H, Katsoulidis E, Sassano A, et al. Activation of mammalian target of rapamycin and the p70 S6 kinase by arsenic trioxide in BCR-ABL-expressing cells. Mol Cancer Ther 2006; 5:2815-23.
    Yu K, Toral-Barza L, Discafani C, Zhang WG, Skotnicki J, Frost P, et al. mTOR, a novel target in breast cancer:the effect of CCI-779, an mTOR inhibitor, in preclinical models of breast cancer. Endocr Relat Cancer 2001; 8:249-58.
    Zeng X, Kinsella TJ. Mammalian target of rapamycin and S6 kinase 1 positively regulate 6-thioguanine-induced autophagy. Cancer Res 2008; 68:2384-90.
    Zhang D, Brodt P. Type 1 insulin-like growth factor regulates MT1-MMP synthesis and tumor invasion via PI 3-kinase/Akt signaling. Oncogene 2003; 22:974-82.
    Zhang H, Cicchetti G, Onda H, Koon HB, Asrican K, Bajraszewski N, et al. Loss of Tscl/Tsc2 activates mTOR and disrupts PI3K-Akt signaling through downregulation of PDGFR. J Clin Invest 2003; 112:1223-33.
    Zhang YX, Kong CZ. [The role of mitogen-activated protein kinase cascades in inhibition of proliferation in human prostate carcinoma cells by raloxifene:an in vitro experiment]. Zhonghua Yi Xue Za Zhi 2008; 88:271-5.
    Zhang Z, Song T, Jin Y, Pan J, Zhang L, Wang L, et al. Epidermal growth factor receptor regulates MT1-MMP and MMP-2 synthesis in SiHa cells via both PI3-K/AKT and MAPK/ERK pathways. Int J Gynecol Cancer 2009; 19: 998-1003.
    Zhou J, Wulfkuhle J, Zhang H, Gu P, Yang Y, Deng J, et al. Activation of the PTEN/mTOR/STAT3 pathway in breast cancer stem-like cells is required for viability and maintenance. Proc Natl Acad Sci U S A 2007; 104:16158-63.
    Zucker S, Vacirca J. Role of matrix metalloproteinases (MMPs) in colorectal cancer. Cancer Metastasis Rev 2004; 23:101-17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700