用户名: 密码: 验证码:
PLGA/poloxamer纳米微粒包裹MBD1-siRNA质粒治疗胰腺癌的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的研究载MBD1-siRNA质粒的PLGA/poloxamer纳米微粒在体内、外治疗胰腺癌效果。
     方法(1)设计并合成针对MBD1基因的siRNA,通过乳剂溶解挥发法制备包裹MBD1 siRNA质粒的PLGA/poloxamer纳米微粒,研究不同制作条件对纳米微粒形成和物理表征的影响,并通过激光粒度仪和透射电子显微镜对其进行物理表征测定;通过荧光分光光度法测量纳米微粒对含MBD1siRNA质粒DNA的包裹效率和载药量,并进一步测定纳米微粒缓释性、结构稳定性、保护性测定以及生物毒性。(2)在合成包裹MBD1siRNA质粒的纳米微粒的基础上,进一步研究载MBD1siRNA质粒的纳米微粒在体外的转染效率及其对胰腺癌细胞生长和基因表达的干扰作用。通过流式细胞仪检测MBD1 siRNA质粒的PLGA/poloxamer纳米微粒体外的转染效率,通过荧光染色法进一步证实纳米微粒在细胞内的分布,MTT法检测MBD1 siRNA质粒的PLGA/poloxamer纳米微粒不同浓度和不同时间对胰腺癌细胞生长的抑制作用,RT-PCR法检测基因转染后胰腺癌细胞内MBD1mRNA表达的变化,Western blot法检测基因转染后胰腺癌细胞内MBD1蛋白表达的变化,流式细胞仪、TUNEL、Hoechst法检测基因转染后细胞凋亡的改变,流式细胞仪法检测基因转染后细胞周期的改变。(3)在合成包裹MBD1siRNA质粒的纳米微粒的基础上,进一步研究载MBD1siRNA质粒的纳米微粒在体内的转染、抗肿瘤效果及其对基因表达的干扰作用。建立胰腺癌裸鼠腋下荷瘤模型,腹腔注射给药,观察肿瘤体积的改变,通过荧光染色法和透射电镜证实纳米微粒在肿瘤组织内的分布,RT-PCR法检测基因转染后胰腺癌细胞内MBD1mRNA表达的变化,Western blot法检测基因转染后胰腺癌细胞内MBD1蛋白表达的变化,流式细胞仪、TUNEL法检测基因转染后细胞凋亡的改变,流式细胞仪法检测基因转染后细胞周期的改变,HE染色观察肿瘤超微结构的改变。
     结果(1)PLGA/poloxamer纳米微粒呈圆形,粒径约为200nm。不同的包裹内容物对纳米微粒的粒径无明显影响,载质粒DNA的纳米微粒较载水的纳米微粒的zeta电位略有增加。当PLGA/poloxamer比例为1:1、PLGA分子量为8000Da和涡旋时间为60秒时形成的纳米微粒粒径最小,Zeta电位负值较低,P.I.较小,粒径分布较为集中。PLGA/poloxamer纳米微粒对质粒DNA的包裹效率约为31%,载药量约为1.55μg/mg。从纳米微粒释放的质粒DNA的结构在制备过程中未受到损害。PLGA/poloxamer纳米微粒具有缓释性、保护性和低或无生物毒性等特点。(2)纳米微粒在体外的转染效率约为28%,并且在转染后第一至第七天都能保持相似的转染效率。溴化乙锭标记的MBD1siRNA纳米微粒被细胞吞噬,并且部分纳米微粒已进入细胞核。抗增殖实验中,随着载MBD1siRNA PLGA/poloxamer纳米微粒浓度的增高,细胞的活力逐渐下降;另外,浓度为2.0mg/ml的载MBD1siRNA PLGA/poloxamer纳米微粒在不同时间的抗增殖效应相似。MBD1 mRNA基因和蛋白的表达量都逐渐减少。TUNEL法、流式细胞仪和Hoechst染色法检测发现,MBD1siRNA纳米微粒给药组的BxPC-3细胞中存在明显的凋亡细胞,单纯质粒组凋亡比例为4.79%,而MBD1siRNA纳米微粒组凋亡比例为24.19%。流式细胞仪检测发现,MBD1siRNA表达后,胰腺癌BxPC-3细胞的细胞周期发生明显变化。(3)MBD1siRNA纳米微粒组动物肿瘤体积明显小于空白对照组和单纯质粒组。透射电镜下纳米微粒分别存在于肿瘤细胞间隙间和肿瘤细胞浆及细胞核内。荧光显微镜下观察到纳米微粒分布于动物肿瘤组织中。RT-PCR检测MBD1siRNA纳米微粒组MBD1mRNA基因的表达量逐渐减少,Western blot检测MBD1siRNA纳米微粒组MBD1蛋白的表达量逐渐减少。流式细胞仪检测空白对照组细胞凋亡比例为10.87%,S期占总细胞周期的8.01%,而载MBD1 siRNA纳米微粒给药组细胞凋亡比例为21.53%,S期占总细胞周期的15.74%。TUNEL法可见MBD1siRNA纳米微粒组存在更多的凋亡细胞。病理切片检查发现,载siRNA纳米微粒给药组动物肿瘤组织中存在明显的坏死细胞。结论(1)PLGA/poloxamer纳米微粒是胰腺癌基因治疗的理想载体,具有缓释性、无毒性等优点;(2)MBD1是胰腺癌的理想治疗靶点之一;(3)载MBD1siRNA的PLGA/poloxamer在体内外都能发挥抗胰腺癌BxPC-3细胞的效应,能促进肿瘤细胞凋亡和周期的改变。
Objective To investigate the anti-tumor effect of MBD1-siRNA plasmid loading PLGA/poloxamer nanoparticles to pancreatic cancer in vitro and in vivo.
     Methods (1)The siRNA sequence of MBD1 gene was designed and synthesized and inserted it into plasmid. Nanoparticles were prepared by a modified solvent diffusion technique. Nanoparticle characterization was investigated at different synthesis condition through dynamic light scattering and transmission electron microscopes. Plasmid DNA encapsulating and loading efficiencies were determined by spectrofluorometry. Stability of release of MBD1 siRNA plasmid DNA, DNaseⅠdigestion and cytotoxicity were also examined.
     (2) The transfection efficiency, gene expression level and anti-tumor effect of MBD1-siRNA plasmid loading PLGA/poloxamer in vitro were tested. Flow cytometry was used to test the transfection efficiency of MBD1-siRNA plasmid loading PLGA/poloxamer. Distribution of nanoparticles in the pancreatic cancer cells was examined by fluorescence microscopy. MTT tests were used to test the anti-tumor effect of MBD1-siRNA plasmid loading PLGA/poloxamer nanoparticles at different concentrations and times. RT-PCR was used to examine the change of MBD1 mRNA level after transfection. Western blot was carried to test the change of MBD1 protein level after transfection. Flow cytometry, TUNEL, and Hoechst staining were carried to test the apoptosis of tumor cells. Flow cytometry was carried to examine the cell cycle changes of tumor cells.
     (3) The transfection efficiency, gene expression level and antitumor effect of MBD1-siRNA plasmid loading PLGA/poloxamer in vivo were tested. Tumor animal models were established by subcutaneous injection at subaxillary. MBD1-siRNA plasmid loading PLGA/poloxamer nanoparticles were delivered by intraperitoneal injection. Tumor volume was calculated through the whole process after injection of nanoparticles. Distribution of nanoparticles in the pancreatic cancer cells was examined by transmission electron micrography and fluorescence microscopy. RT-PCR was used to examine the change of MBD1 mRNA level after transfection. Western blot was carried to test the change of MBD1 protein level after transfection. Flow cytometry and TUNEL were carried to test the apoptosis of tumor cells. Flow cytometry was carried to examine the cell cycle changes of tumor cells. The change of tumor microstructure was tested through pathological examination.
     Results (1) No significant differences in particle size were observed between MBD1-siRNA plasmid loading PLGA/poloxamer (210.1±24.3 nm) and water loading PLGA/poloxamer (187.1±21.9 nm), suggesting that pDNA encapsulation did not affect particle size. Transmission electron micrography showed that the nanoparticles were spherical and were of almost equal size. No difference in the averageδpotential was found between MBD1-siRNA plasmid loading PLGA/poloxamer and water loading PLGA/poloxamer. MBD1-siRNA plasmid loading PLGA/poloxamer exhibited a similar biphasic plasmid DNA release pattern, characterized by a first initial rapid release (>30% of pDNA within the first day) followed by a slower, continuous release (90% released in 11 days). No DNA fragments were detected from the plasmid DNA released from MBD1-siRNA plasmid loading PLGA/poloxamer. MBD1-siRNA plasmid loading PLGA/poloxamer nanoparticles showed the protective effect against DNaseⅠ. PLGA/poloxamer nanoparticles did not exert toxic effects on the cells.
     (2)Though the intensity of transfection was low, the number of cells transfected was high and was maintained in a very similar manner throughout the duration of the experiment, which may be explained by the controlled release of MBD1-siRNA plasmid loading PLGA/poloxamer nanoparticles. Relative cell viability levels decreased as the concentration of MBD1-siRNA plasmid loading PLGA/poloxamer nanoparticles increased from 1 mg/ml to 5 mg/ml. From days 3 to 7, the relative viability of BxPC-3 cells was among 20% and 35% compared to that of controls at a MBD1-siRNA plasmid loading PLGA/poloxamer nanoparticles concentration of 2mg/ml, which also points to the controlled release of MBD1-siRNA plasmid loading PLGA/poloxamer. In MBD1-siRNA plasmid loading PLGA/poloxamer nanoparticles treated BxPC-3 cells, MBD1 gene expression decreased gradually from day 2 and MBD1 protein expression also decreased from day 2 and completely disappeared at day 5. Apoptotic cells were observed by immunostaining for the presence of DNA fragments and the apoptosis rate was 24.19% in the MBD1-siRNA plasmid loading PLGA/poloxamer nanoparticles transfected cells, which was higher than that of the blank control cells (4.79%).The percentage of S-phase in the MBD1-siRNA plasmid loading PLGA/poloxamer nanoparticles transfected cells (33.68%) was higher than that of the blank control cells (8.03%).
     (3) The distribution of PLGA/poloxamer nanoparticles in tumors was confirmed by transmission electron micrography and fluorescence microscopy. In MBD1-siRNA plasmid loading PLGA/poloxamer nanoparticles treated group, MBD1 gene expression decreased gradually from day 2 and MBD1 protein expression also decreased from day 2 and completely disappeared at day 5, which also points to the controlled release of MBD1-siRNA plasmid loading PLGA/poloxamer. Apoptotic cells were observed by immunostaining for the presence of DNA fragments and the apoptosis rate was 21.53% in the MBD1-siRNA plasmid loading PLGA/poloxamer nanoparticles treated group, which was higher than that of the blank control cells. The percentage of S-phase in the MBDl-siRNA plasmid loading PLGA/poloxamer nanoparticles transfected cells (15.74%) was higher than that of the blank control cells (8.01%). Death cells were found in the MBD1-siRNA plasmid loading PLGA/poloxamer nanoparticles treated group through pathological examination. The volume of tumors of the MBD1-siRNA plasmid loading PLGA/poloxamer nanoparticles treated group was smaller than naked plasmid treated group and water loading PLGA/poloxamer nanoparticles treated group.
     Conclusions MBD1 is an ideal target for treatment of pancreatic cancer. PLGA/poloxamer nanoparticles have controlled release quality. MBD1 siRNA plasmid can be successfully transfected into tumor cells and the MBD1 nanoparticle compound can inhibit cell growth and induce apoptosis. The MBD1 nanoparticle is a promising candidate for gene therapy of pancreatic cancer.
引文
1.罗国培,傅德良.胰腺癌早期诊断的蛋白组学研究进展[J].复旦学报(医学版)2007:(3):627-634.
    2. Burris HA,3rd, Moore MJ, Andersen J, et al. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer:a randomized trial[J]. J Clin Oncol 1997;15(6):2403-2413.
    3. Yang F, Hu J, Yang D, et al. Pilot study of targeting magnetic carbon nanotubes to lymph nodes[J]. Nanomedicine (Lond) 2009;4(3):317-330.
    4. Parkin DM, Bray F, Ferlay J, et al. Estimating the world cancer burden: Globocan 2000[J]. Int J Cancer 2001;94(2):153-156.
    5. Van Trappen PO, Pepper MS. Lymphatic dissemination of tumour cells and the formation of micrometastases[J]. Lancet Oncol 2002;3(1):44-52.
    6.李新建,郑莹,沈玉珍,等.上海市胰腺癌的流行现状和趋势研究[J].外科理论与实践2002:7(5):342-345.
    7. Berberat PO, Friess H, Kleeff J, et al. Prevention and treatment of complications in pancreatic cancer surgery[J]. Dig Surg 1999; 16 (4):327-336.
    8.王强,傅德良.胰腺癌根治性手术治疗进展[J].国际外科学杂志2009:36(9):605-608.
    9. Janes RH, Niederhuber JE, Chmiel JS, et al. National patterns of care for pancreatic cancer. Results of a survey by the Commission on Cancer [J]. Ann Surg 1996;223 (3):261-272.
    10. Khosravi Shahi P, Diaz Munoz de la Espada VM. Pancreatic adenocarcinoma:therapeutical update [J]. An Med Interna 2005;22(8):390-394.
    11. Li D, Xie K, Wolff R, et al. Pancreatic cancer [J]. Lancet 2004:363(9414):1049-1057.
    12. Jones PA, Martienssen R. A blueprint for a Human Epigenome Project: the AACR Human Epigenome Workshop[J]. Cancer Res 2005:65(24):11241-11246.
    13. Rodenhiser D, Mann M. Epigenetics and human disease:translating basic biology into clinical applications[J]. CMAJ 2006;174(3):341-348.
    14. Bird A. DNA methylation patterns and epigenetic memory[J]. Genes Dev 2002;16(1):6-21.
    15. Esteller M. Cancer epigenetics:DNA methylation and chromatin alterations in human cancer[J]. Adv Exp Med Biol 2003;532(2):39-49.
    16. Jones PA. DNA methylation and cancer[J]. Oncogene 2002:21(35):5358-5360.
    17. Jones PA, Takai D. The role of DNA methylation in mammalian epigenetics [J]. Science 2001; 293 (5532):1068-1070.
    18. Widschwendter M, Jones PA. The potential prognostic, predictive, and therapeutic values of DNA methylation in cancer. Clin. Cancer Res. 2002;8(1):17-21.
    19. Ushijima T. Detection and interpretation of altered methylation patterns in cancer cells[J]. Nat Rev Cancer 2005;5(3):223-231.
    20. Lengauer C, Kinzler KW, Vogelstein B. DNA methylation and genetic instability in colorectal cancer cells[J]. Proc Natl Acad Sci U S A 1997;94 (6):2545-2550.
    21. Jair KW, Bachman KE, Suzuki H, et al. De novo CpG island methylation in human cancer cells[J]. Cancer Res 2006;66(2):682-692.
    22. Das PM, Singal R. DNA methylation and cancer [J]. J Clin Oncol 2004:22(22):4632-4642.
    23. Ballestar E, Paz MF, Valle L, et al. Methyl-CpG binding proteins identify novel sites of epigenetic inactivation in human cancer [J]. EMBO J 2003;22(23):6335-6345.
    24. Nan X, Ng HH, Johnson CA, et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex[J]. Nature 1998;393(6683):386-389.
    25. Fujita N, Takebayashi S, Okumura K, et al. Methylation-mediated transcriptional silencing in euchromatin by methyl-CpG binding protein MBD1 isoforms[J]. Mol Cell Biol 1999;19(9):6415-6426.
    26. Hendrich B, Abbott C, McQueen H, et al. Genomic structure and chromosomal mapping of the murine and human Mbdl, Mbd2, Mbd3, and Mbd4 genes[J]. Mamm Genome 1999;10(9):906-912.
    27. Ohki I, Shimotake N, Fujita N, et al. Solution structure of the methyl-CpG-binding domain of the methylation-dependent transcriptional repressor MBD1[J]. EMBO J 1999;18(23):6653-6661.
    28. Gonzalez-Zulueta M, Bender CM, Yang AS, et al. Methylation of the 5' CpG island of the pl6/CDKN2 tumor suppressor gene in normal and transformed human tissues correlates with gene silencing[J]. Cancer Res 1995:55(20):4531-4535.
    29. Ohki I, Shimotake N, Fujita N, et al. Solution structure of the methyl-CpG binding domain of human MBD1 in complex with methylated DNA[J]. Cell 2001;105(4):487-497.
    30. Jorgensen HF, Ben-Porath I, Bird AP. Mbdl is recruited to both methylated and nonmethylated CpGs via distinct DNA binding domains[J]. Mol Cell Biol 2004;24(8):3387-3395.
    31. Jones PL, Veenstra GJ, Wade PA, et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription[J]. Nat Genet 1998:19(2):187-191.
    32. Cross SH, Meehan RR, Nan X, et al. A component of the transcriptional repressor MeCPl shares a motif with DNA methyltransferase and HRX proteins[J]. Nat Genet 1997;16(3):256-259.
    33. Ichimura T, Watanabe S, Sakamoto Y, et al. Transcriptional repression and heterochromatin formation by MBD1 and MCAF/AM family proteins [J]. J Biol Chem 2005;280 (14):13928-13935.
    34. Lyst MJ, Nan X, Stancheva I. Regulation of MBD1-mediated transcriptional repression by SUMO and PIAS proteins[J]. EMBO J 2006;25(22):5317-5328.
    35. Sarraf SA, Stancheva I. Methyl-CpG binding protein MBD1 couples histone H3 methylation at lysine 9 by SETDB1 to DNA replication and chromatin assembly[J]. Mol Cell 2004;15(4):595-605.
    36. Nakao M, Matsui S, Yamamoto S, et al. Regulation of transcription and chromatin by methyl-CpG binding protein MBD1[J]. Brain Dev 2001;23 Suppl 1:S174-176.
    37. Fujita N, Watanabe S, Ichimura T, et al. Methyl-CpG binding domain 1 (MBD1) interacts with the Suv39hl-HP1 heterochromatic complex for DNA methylation-based transcriptional repression[J].J Biol Chem 2003:278(26):24132-24138.
    38. Bader S, Walker M, McQueen HA, et al. MBD1, MBD2 and CGBP genes at chromosome 18q21 are infrequently mutated in human colon and lung cancers[J]. Oncogene 2003;22(22):3506-3510.
    39. Patra SK, Patra A, Zhao H, et al. Methyl-CpG-DNA binding proteins in human prostate cancer:expression of CXXC sequence containing MBD1 and repression of MBD2 and MeCP2[J]. Biochem Biophys Res Commun 2003:302(4):759-766.
    40. Yaqinuddin A, Abbas F, Naqvi SZ, et al. Silencing of MBD1 and MeCP2 in prostate-cancer-derived PC3 cells produces differential gene expression profiles and cellular phenotypes[J]. Biosci Rep 2008:28(6):319-326.
    41. Li X, Barkho BZ, Luo Y, et al. Epigenetic regulation of the stem cell mitogen Fgf-2 by Mbdl in adult neural stem/progenitor cells[J]. J Biol Chem 2008:283(41):27644-27652.
    42. Xu J, Liu C, Yu XJ, et al. [Activation of multiple tumor suppressor genes by MBD1 siRNA in pancreatic cancer cell line BxPC-3][J]. Zhonghua Yi Xue Za Zhi 2008:88(28):1948-1951.
    43. Liu C, Chen Y, Yu X, et al. Proteomic analysis of differential proteins in pancreatic carcinomas:Effects of MBD1 knock-down by stable RNA interference[J]. BMC Cancer 2008:8:121.
    44. Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans[J]. Nature 1998:391(6669):806-811.
    45. Napoli C, Lemieux C, Jorgensen R. Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in trans[J]. Plant Cell 1990;2(4):279-289.
    46. Guo S, Kemphues KJ. par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed[J]. Cell 1995;81(4):611-620.
    47. Qian J, Steigerwald K, Combs KA, et al. Caspase cleavage of the APC tumor suppressor and release of an amino-terminal domain is required for the transcription-independent function of APC in apoptosis[J]. Oncogene 2007:26(33):4872-4876.
    48. Hannon GJ. RNA interference[J]. Nature 2002;418(6894):244-251.
    49. Takei Y, Kadomatsu K, Yuzawa Y, et al. A small interfering RNA targeting vascular endothelial growth factor as cancer therapeutics[J]. Cancer Res 2004;64 (10):3365-3370.
    50. Schiffelers RM, Ansari A, Xu J, et al. Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle[J]. Nucleic Acids Res 2004;32(19):e149.
    51. Pai SI, Lin YY, Macaes B, et al. Prospects of RNA interference therapy for cancer[J]. Gene Ther 2006;13(6):464-477.
    52. Aoki Y, Cioca DP, Oidaira H, et al. RNA interference may be more potent than antisense RNA in human cancer cell lines[J]. Clin Exp Pharmacol Physiol 2003;30(1-2):96-102.
    53. Pushparaj PN, Aarthi JJ, Manikandan J, et al. siRNA, miRNA, and shRNA: in vivo applications[J]. J Dent Res 2008;87(11):992-1003.
    54. Kamath RS, Fraser AG, Dong Y, et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi[J]. Nature 2003:421(6920):231-237.
    55. Waterhouse PM, Helliwell CA. Exploring plant genomes by RNA-induced gene silencing[J]. Nat Rev Genet 2003;4(1):29-38.
    56. Scholzova E, Malik R, Sevcik J, et al. RNA regulation and cancer development[J]. Cancer Lett 2007;246(1-2):12-23.
    57. Chen Y, Stamatoyannopoulos G, Song CZ. Down-regulation of CXCR4 by inducible small interfering RNA inhibits breast cancer cell invasion in vitro[J]. Cancer Res 2003;63(16):4801-4804.
    58. Zhang W, Chen Y, Wei H, et al. Antiapoptotic activity of autocrine interleukin-22 and therapeutic effects of interleukin-22-small interfering RNA on human lung cancer xenografts[J]. Clin Cancer Res 2008:14(20):6432-6439.
    59. Niidome T, Huang L. Gene therapy progress and prospects:nonviral vectors[J]. Gene Ther 2002;9(24):1647-1652.
    60. Mansouri S, Cuie Y, Winnik F, et al. Characterization of folate-chitosan-DNA nanoparticles for gene therapy[J]. Biomaterials 2006:27(9):2060-2065.
    61. Dobson J. Gene therapy progress and prospects:magnetic nanoparticle-based gene delivery[J]. Gene Ther 2006;13(4):283-287.
    62. St George JA. Gene therapy progress and prospects:adenoviral vectors[J]. Gene Ther 2003;10(14):1135-1141.
    63. Herweijer H, Wolff JA. Progress and prospects:naked DNA gene transfer and therapy[J]. Gene Ther 2003;10(6):453-458.
    64. Hawley RG, Lieu FH, Fong AZ, et al. Versatile retroviral vectors for potential use in gene therapy[J]. Gene Ther 1994;1(2):136-138.
    65. Anderson WF. Human gene therapy[J]. Science 1992;256(5058):808-813.
    66. Hug P, Sleight RG. Liposomes for the transformation of eukaryotic cells[J]. Biochim Biophys Acta 1991;1097(1):1-17.
    67. Mulligan RC. The basic science of gene therapy[J]. Science 1993:260(5110):926-932.
    68. Legendre JY, Szoka FC. Delivery of plasmid DNA into mammalian cell lines using pH-sensitive liposomes:comparison with cationic liposomes[J]. Pharm Res 1992;9(10):1235-1242.
    69. Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy[J]. Adv Drug Deliv Rev 2004;56(11):1649-1659.
    70. Dang JM, Leong KW. Natural polymers for gene delivery and tissue engineering[J]. Adv Drug Deliv Rev 2006;58(4):487-499.
    71. Al-Ghananeem AM, Malkawi AH, Muammer YM, et al. Intratumoral delivery of Paclitaxel in solid tumor from biodegradable hyaluronan nanoparticle formulations [J]. AAPS PharmSciTech 2009;10(2):410-417.
    72. Dailey LA, Jekel N, Fink L, et al. Investigation of the proinflammatory potential of biodegradable nanoparticle drug delivery systems in the lung[J]. Toxicol Appl Pharmacol 2006;215(1):100-108.
    73. Dailey LA, Schmehl T, Gessler T, et al. Nebulization of biodegradable nanoparticles:impact of nebulizer technology and nanoparticle characteristics on aerosol features[J]. J Control Release 2003;86(1):131-144.
    74. Diwan M, Elamanchili P, Lane H, et al. Biodegradable nanoparticle mediated antigen delivery to human cord blood derived dendritic cells for induction of primary T cell responses [J].J Drug Target 2003;11(8-10):495-507.
    75. Jack KS, Velayudhan S, Luckman P, et al. The fabrication and characterization of biodegradable HA/PHBV nanoparticle-polymer composite scaffolds[J]. Acta Biomater 2009;5 (7):2657-2667.
    76. Kallinteri P, Higgins S, Hutcheon GA, et al. Novel functionalized biodegradable polymers for nanoparticle drug delivery systems[J]. Biomacromolecules 2005;6 (4):1885-1894.
    77. Liu B, Jiang S, Zhang W, et al. Novel biodegradable HSAM nanoparticle for drug delivery[J]. Oncol Rep 2006;15(4):957-961.
    78. Ochoa J, Irache JM, Tamayo I, et al. Protective immunity of biodegradable nanoparticle-based vaccine against an experimental challenge with Salmonella Enteritidis in mice[J]. Vaccine 2007:25(22):4410-4419.
    79. Pridgen EM, Langer R, Farokhzad OC. Biodegradable, polymeric nanoparticle delivery systems for cancer therapy [J]. Nanomedicine (Lond) 2007:2(5):669-680.
    80. Wang Z, Roberge C, Wan Y, et al. A biodegradable electrical bioconductor made of polypyrrole nanoparticle/poly(D, L-lactide) composite:A preliminary in vitro biostability study[J]. J Biomed Mater Res A 2003:66(4):738-746.
    81. Yadav S, van Vlerken LE, Little SR, et al. Evaluations of combination MDR-1 gene silencing and paclitaxel administration in biodegradable polymeric nanoparticle formulations to overcome multidrug resistance in cancer cells[J]. Cancer Chemother Pharmacol 2009;63(4):711-722.
    82. Fattal E, Vauthier C, Aynie I, et al. Biodegradable polyalkylcyanoacrylate nanoparticles for the delivery of oligonucleotides[J].J Control Release 1998:53(1-3):137-143.
    83.金忱,罗国培,陈卫,等.聚乳酸羟基乙酸一泊洛沙姆纳米微粒作为siRNA载体的可行性[J].中华实验外科杂志2009;26(3):315-317.
    84.黄开红,朱兆华,刘建化,等.聚乳酸载药纳米微粒制备及其释药效能[J].癌症2005:24(8):1023-1026.
    85. Zhang N, Chittasupho C, Duangrat C, et al. PLGA nanoparticle--peptide conjugate effectively targets intercellular cell-adhesion molecule-1 [J]. Bioconjug Chem 2008;19(1):145-152.
    86. Sahana DK, Mittal G, Bhardwaj V, et al. PLGA nanoparticles for oral delivery of hydrophobic drugs:influence of organic solvent on nanoparticle formation and release behavior in vitro and in vivo using estradiol as a model drug[J]. J Pharm Sci 2008;97(4):1530-1542.
    87. Plard JP BD. Comparison of the safety profiles of PLA50 and Me. PEG-PLA50 nanoparticles after single dose intravenous administration to rat. [J]. Colloides Surf B Biointerf 1999;16(2):173-183.
    88. Avgoustakis K, Beletsi A, Panagi Z, et al. PLGA-mPEG nanoparticles of cisplatin:in vitro nanoparticle degradation, in vitro drug release and in vivo drug residence in blood properties[J]. J Control Release 2002:79(1-3):123-135.
    89. Destache CJ, Belgum T, Christensen K, et al. Combination antiretroviral drugs in PLGA nanoparticle for HIV-1[J]. BMC Infect Dis 2009;9:198.
    90. Prabha S, Labhasetwar V. Critical determinants in PLGA/PLA nanoparticle-mediated gene expression[J]. Pharm Res 2004;21(2):354-364.
    91. Vargas A, Lange N, Arvinte T, et al. Toward the understanding of the photodynamic activity of m-THPP encapsulated in PLGA nanoparticles: correlation between nanoparticle properties and in vivo activity[J]. J Drug Target 2009;17(8):599-609.
    92. Yang R, Shim WS, Cui FD, et al. Enhanced electrostatic interaction between chitosan-modified PLGA nanoparticle and tumor[J]. Int J Pharm 2009:371(1-2):142-147.
    93. Luo G, Jin C, Long J, et al. RNA interference of MBD1 in BxPC-3 human pancreatic cancer cells delivered by PLGA-poloxamer nanoparticles [J]. Cancer Biol Ther 2009;8(7):594-598.
    94. Luo G, Yu X, Jin C, et al. LyP-1-conjugated nanoparticles for targeting drug delivery to lymphatic metastatic tumors[J]. Int J Pharm 2009:385(1-2):150-156.
    95. Csaba N, Sanchez A, Alonso MJ. PLGA:poloxamer and PLGA:poloxamine blend nanostructures as carriers for nasal gene delivery[J]. J Control Release 2006;113 (2):164-172.
    96. Csaba N, Caamano P, Sanchez A, et al. PLGA:poloxamer and PLGA:poloxamine blend nanoparticles:new carriers for gene delivery[J]. Biomacromolecules 2005;6(1):271-278.
    97. Akhtar S, Benter IF. Nonviral delivery of synthetic siRNAs in vivo[J]. J Clin Invest 2007;117(12):3623-3632.
    98. Panyam J, Zhou WZ, Prabha S, et al. Rapid endo-lysosomal escape of poly(DL-lactide-co-glycolide) nanoparticles:implications for drug and gene delivery[J]. FASEB J 2002;16(10):1217-1226.
    99. Gref R, Minamitake Y, Peracchia MT, et al. Biodegradable long-circulating polymeric nanospheres[J]. Science 1994;263(5153):1600-1603.
    100. Takeuchi H, Yamamoto H, Kawashima Y. Mucoadhesive nanoparticulate systems for peptide drug delivery[J]. Adv Drug Deliv Rev 2001; 47(1):39-54.
    101. Li L, Schwendeman SP. Mapping neutral microclimate pH in PLGA microspheres[J]. J Control Release 2005;101(1-3):163-173.
    102. Shive MS, Anderson JM. Biodegradation and biocompatibility of PLA and PLGA microspheres[J]. Adv Drug Deliv Rev 1997;28(1):5-24.
    103. Baumeister P, Luo S, Skarnes WC, et al. Endoplasmic reticulum stress induction of the Grp78/BiP promoter:activating mechanisms mediated by YY1 and its interactive chromatin modifiers [J]. Mol Cell Biol 2005;25(11):4529-4540.
    104. Petersen H, Kunath K, Martin AL, et al. Star-shaped poly (ethylene glycol)-block-polyethylenimine copolymers enhance DNA condensation of low molecular weight polyethylenimines[J]. Biomacromolecules 2002;3(5):926-936.
    105. Ahn CH, Chae SY, Bae YH, et al. Biodegradable poly(ethylenimine) for plasmid DNA delivery[J]. J Control Release 2002;80(1-3):273-282.
    106. Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis[J]. Adv Drug Deliv Rev 2002;54(5):631-651.
    107. Lin MM, Kim HH, Kim H, et al. Surface activation and targeting strategies of superparamagnetic iron oxide nanoparticles in cancer-oriented diagnosis and therapy[J]. Nanomedicine (Lond) 5(1):109-133.
    108. Liu Y, Miyoshi H, Nakamura M. Nanomedicine for drug delivery and imaging:a promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles[J]. Int J Cancer 2007:120(12):2527-2537.
    109. 陈莉,赵保中.聚羟基乙酸及其共聚物研究进展[J].化工新型材料 2002:30(3):11-15.
    110. Han S, Mahato RI, Sung YK, et al. Development of biomaterials for gene therapy[J]. Mol Ther 2000;2(4):302-317.
    111. Labhasetwar V. Nanotechnology for drug and gene therapy:the importance of understanding molecular mechanisms of delivery[J]. Curr Opin Biotechnol 2005;16(6):674-680.
    112. Ravi Kumar MN, Bakowsky U, Lehr CM. Preparation and characterization of cationic PLGA nanospheres as DNA carriers[J]. Biomaterials 2004;25(10):1771-1777.
    113. Denis-Mize KS, Dupuis M, MacKichan ML, et al. Plasmid DNA adsorbed onto cationic microparticles mediates target gene expression and antigen presentation by dendritic cells[J]. Gene Ther 2000;7(24):2105-2112.
    114. Jia L, Kovacs JR, Zheng Y, et al. Attenuated alloreactivity of dendritic cells engineered with surface-modified microspheres carrying a plasmid encoding interleukin-10[J]. Biomaterials 2006:27(9):2076-2082.
    115. Bejjani RA, BenEzra D, Cohen H, et al. Nanoparticles for gene delivery to retinal pigment epithelial cells[J]. Mol Vis 2005:11:124-132.
    116. Prabha S, Labhasetwar V. Nanoparticle-mediated wild-type p53 gene delivery results in sustained antiproliferative activity in breast cancer cells[J]. Mol Pharm 2004:1(3):211-219.
    117. McGinity JW,O'Donnell PB. Preparation of microspheres by the solvent evaporation technique[J]. Adv Drug Deliv Rev 1997:28(1):25-42.
    118. 沈兴海,高宏成.纳米微粒的微乳液制备法[J].化学通报1995:11:6-9.
    119. Dalwadi G, Sunderland B. An ion pairing approach to increase the loading of hydrophilic and lipophilic drugs into PEGylated PLGA nanoparticles[J]. Eur J Pharm Biopharm 2009;71 (2):231-242.
    120. Danhier F, Lecouturier N, Vroman B, et al. Paclitaxel-loaded PEGylated PLGA-based nanoparticles:in vitro and in vivo evaluation[J]. J Control Release 2009;133(1):11-17.
    121. Garinot M, Fievez V, Pourcelle V, et al. PEGylated PLGA-based nanoparticles targeting M cells for oral vaccination[J]. J Control Release 2007;120(3):195-204.
    122. Li Y, Pei Y, Zhang X, et al. PEGylated PLGA nanoparticles as protein carriers:synthesis, preparation and biodistribution in rats[J]. J Control Release 2001:71(2):203-211.
    123. Park J, Fong PM, Lu J, et al. PEGylated PLGA nanoparticles for the improved delivery of doxorubicin[J]. Nanomedicine 2009;5(4):410-418.
    124. Zheng CH, Gao JQ, Zhang YP, et al. A protein delivery system: biodegradable alginate-chitosan-poly(lactic-co-glycolic acid) composite microspheres[J]. Biochem Biophys Res Commun 2004:323(4):1321-1327.
    125. Liu L, Won YJ, Cooke PH, et al. Pectin/poly(lactide-co-glycolide) composite matrices for biomedical applications[J]. Biomaterials 2004:25(16):3201-3210.
    126. Mi FL, Lin YM, Wu YB, et al. Chitin/PLGA blend microspheres as a biodegradable drug-delivery system:phase-separation, degradation and release behavior[J]. Biomaterials 2002;23(15):3257-3267.
    127. Mi FL, Shyu SS, Lin YM, et al. Chitin/PLGA blend microspheres as a biodegradable drug delivery system:a new delivery system for protein [J]. Biomaterials 2003;24 (27):5023-5036.
    128. Wang L, Chaw CS, Yang YY, et al. Preparation, characterization, and in vitro evaluation of physostigmine-loaded poly(ortho ester) and poly(ortho ester)/poly(D, L-lactide-co-glycolide) blend microspheres fabricated by spray drying[J]. Biomaterials 2004;25(16):3275-3282.
    129. Zheng CH, Gao JQ, Liang WQ, et al. Effects of additives and processing parameters on the initial burst release of protein from poly(lactic-co-glycolic acid) microspheres[J]. PDA J Pharm Sci Technol 2006:60(1):54-59.
    130. Sanchez A, Tobio M, Gonzalez L, et al. Biodegradable micro-and nanoparticles as long-term delivery vehicles for interferon-alpha[J]. Eur J Pharm Sci 2003;18(3-4):221-229.
    131. Tobio M, Nolley J, Guo Y, et al. A novel system based on a poloxamer/PLGA blend as a tetanus toxoid delivery vehicle [J]. Pharm Res 1999:16(5):682-688.
    132. Varde NK, Pack DW. Influence of particle size and antacid on release and stability of plasmid DNA from uniform PLGA microspheres [J]. J Control Release 2007;124(3):172-180.
    133. Yan F, Zhang C, Zheng Y, et al. The effect of poloxamer 188 on nanoparticle morphology, size, cancer cell uptake, and cytotoxicity[J]. Nanomedicine 6(1):170-178.
    134. Zhang Y, Tang L, Sun L, et al. A novel paclitaxel-loaded poly(epsilon-caprolactone)/Poloxamer 188 blend nanoparticle overcoming multidrug resistance for cancer treatment[J]. Acta Biomater 2009.
    135. Moghimi SM, Hunter AC. Poloxamers and poloxamines in nanoparticle engineering and experimental medicine[J]. Trends Biotechnol 2000;18(10):412-420.
    136. Lemieux P, Guerin N, Paradis G, et al. A combination of poloxamers increases gene expression of plasmid DNA in skeletal muscle [J]. Gene Ther 2000;7(11):986-991.
    137. Morikawa K, Okada F, Hosokawa M, et al. Enhancement of therapeutic effects of recombinant interleukin 2 on a transplantable rat fibrosarcoma by the use of a sustained release vehicle, pluronic gel[J]. Cancer Res 1987:47(1):37-41.
    138. G. Storm SOB, T. Daemen, D. D. Lasic. Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system[J]. Adv Drug Deliv Rev 1995:16:31-48.
    139. Cole SP, Bhardwaj G, Gerlach JH, et al. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line[J]. Science 1992:258(5088):1650-1654.
    140. Moghimi SM, Muir IS, Illum L, et al. Coating particles with a block co-polymer (poloxamine-908) suppresses opsonization but permits the activity of dysopsonins in the serum[J]. Biochim Biophys Acta 1993:1179(2):157-165.
    141. J-T Li CKJ-TL, K. Caldwell. Plasma protein interactions with PluronicTM-treated colloids [J]. Colloids and Surfaces B:Biointerfaces 1996:7(1):9-22.
    142. Redhead HM, Davis SS, Illum L. Drug delivery in poly(lactide-co-glycolide) nanoparticles surface modified with poloxamer 407 and poloxamine 908:in vitro characterisation and in vivo evaluation[J]. J Control Release 2001;70(3):353-363.
    143. Desai MP, Labhasetwar V, Walter E, et al. The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent[J]. Pharm Res 1997;14(11):1568-1573.
    144. Zauner W, Farrow NA, Haines AM. In vitro uptake of polystyrene microspheres:effect of particle size, cell line and cell density[J]. J Control Release 2001;71(1):39-51.
    145. Prabha S, Zhou WZ, Panyam J, et al. Size-dependency of nanoparticle-mediated gene transfection:studies with fractionated nanoparticles[J]. Int J Pharm 2002;244(1-2):105-115.
    146. Sahoo SK, Panyam J, Prabha S, et al. Residual polyvinyl alcohol associated with poly (D, L-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake[J]. J Control Release 2002;82(1):105-114.
    147. Pepin X, Attali L, Domrault C, et al. On the use of ion-pair chromatography to elucidate doxorubicin release mechanism from polyalkylcyanoacrylate nanoparticles at the cellular level[J]. J Chromatogr B Biomed Sci Appl 1997:702(1-2):181-191.
    148. zur Muhlen A, Schwarz C, Mehnert W. Solid lipid nanoparticles (SLN) for controlled drug delivery--drug release and release mechanism[J]. Eur J Pharm Biopharm 1998;45(2):149-155.
    149. Jain RA. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices[J]. Biomaterials 2000:21(23):2475-2490.
    150. Messaritaki A, Black SJ, van der Walle CF, et al. NMR and confocal microscopy studies of the mechanisms of burst drug release from PLGA microspheres[J]. J Control Release 2005:108(2-3):271-281.
    151. Cohen H, Levy RJ, Gao J, et al. Sustained delivery and expression of DNA encapsulated in polymeric nanoparticles[J]. Gene Ther 2000:7(22):1896-1905.
    152. Ahmed AR, Dashevsky A, Bodmeier R. Reduction in burst release of PLGA microparticles by incorporation into cubic phase-forming systems [J]. Eur J Pharm Biopharm 2008;70(3):765-769.
    153. Mao S, Xu J, Cai C, et al. Effect of WOW process parameters on morphology and burst release of FITC-dextran loaded PLGA microspheres [J]. Int J Pharm 2007;334(1-2):137-148.
    154. Klose D, Siepmann F, Elkharraz K, et al. How porosity and size affect the drug release mechanisms from PLGA-based microparticles [J]. Int J Pharm 2006;314(2):198-206.
    155. Bouissou C, Rouse JJ, Price R, et al. The influence of surfactant on PLGA microsphere glass transition and water sorption:remodeling the surface morphology to attenuate the burst release[J]. Pharm Res 2006:23(6):1295-1305.
    156. Geze A, Venier-Julienne MC, Mathieu D, et al. Development of 5-iodo-2'-deoxyuridine milling process to reduce initial burst release from PLGA microparticles[J]. Int J Pharm 1999;178(2):257-268.
    157. Fonseca C, Simoes S, Gaspar R. Paclitaxel-loaded PLGA nanoparticles:preparation, physicochemical characterization and in vitro anti-tumoral activity[J]. J Control Release 2002;83(2):273-286.
    158. Liu R, Huang SS, Wan YH, et al. Preparation of insulin-loaded PLA/PLGA microcapsules by a novel membrane emulsif ication method and its release in vitro[J]. Colloids Surf B Biointerfaces 2006;51 (1):30-38.
    159. Collins FS, McKusick VA. Implications of the Human Genome Project for medical science[J]. JAMA 2001;285(5):540-544.
    160. Karunanayake EH. Human genome project:implications for medical science[J]. Ceylon Med J 1999;44(4):151-155.
    161. Li S, Huang L. Nonviral gene therapy:promises and challenges [J]. Gene Ther 2000;7 (1):31-34.
    162. Gao X, Huang L. Cationic liposome-mediated gene transfer [J]. Gene Ther 1995;2 (10):710-722.
    163. Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease [J]. Science 2000:288(5466):669-672.
    164. Hood JD, Bednarski M, Frausto R, et al. Tumor regression by targeted gene delivery to the neovasculature[J]. Science 2002:296(5577):2404-2407.
    165. Crystal RG. Transfer of genes to humans:early lessons and obstacles to success [J]. Science 1995:270(5235):404-410.
    166. Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue [J]. Adv Drug Deliv Rev 2003;55(3):329-347.
    167. Cotten M, Wagner E. Non-viral approaches to gene therapy [J]. Curr Opin Biotechnol 1993;4(6):705-710.
    168. Ledley FD. Nonviral gene therapy:the promise of genes as pharmaceutical products[J]. Hum Gene Ther 1995;6(9):1129-1144.
    169. 晏霆,朱满洲.基因治疗与基因载体[J].安徽医药2002;6(4):72-73.
    170. Zou Y, Zong G, Ling YH, et al. Development of cationic liposome formulations for intratracheal gene therapy of early lung cancer[J]. Cancer Gene Ther 2000;7(5):683-696.
    171. Miller AD. Cationic liposome systems in gene therapy[J]. IDrugs 1998; 1(5):574-583.
    172. Miller AD. The problem with cationic liposome/micelle-based non-viral vector systems for gene therapy [J]. Curr Med Chem 2003:10(14):1195-1211.
    173. Floch V, Loisel S, Guenin E, et al. Cation substitution in cationic phosphonolipids:a new concept to improve transfection activity and decrease cellular toxicity[J]. J Med Chem 2000;43(24):4617-4628.
    174. Balasubramaniam RP, Bennett MJ, Aberle AM, et al. Structural and functional analysis of cationic transfection lipids:the hydrophobic domain[J]. Gene Ther 1996;3(2):163-172.
    175. Farhood H, Bottega R, Epand RM, et al. Effect of cationic cholesterol derivatives on gene transfer and protein kinase C activity [J]. Biochim Biophys Acta 1992;1111(2):239-246.
    176. Xu J, Jin C, Hao S, et al. Pancreatic cancer:gene therapy approaches and gene delivery systems[J]. Expert Opin Biol Ther 2009:10(1):73-88.
    177. 常津,刘海峰,许晓秋,等.一种新型纳米基因载体的制备及体外实验[J].中国生物医学工程学报2006:21(6):515-517.
    178. Nakada Y, Fattal E, Foulquier M, et al. Pharmacokinetics and biodistribution of oligonucleotide adsorbed onto poly(isobutylcyanoacrylate) nanoparticles after intravenous administration in mice[J]. Pharm Res 1996;13(1):38-43.
    179. Lima KM, Santos SA, Lima VM, et al. Single dose of a vaccine based on DNA encoding mycobacterial hsp65 protein plus TDM-loaded PLGA microspheres protects mice against a virulent strain of Mycobacterium tuberculosis[J]. Gene Ther 2003;10(8):678-685.
    180. Davda J, Labhasetwar V. Characterization of nanoparticle uptake by endothelial cells[J]. Int J Pharm 2002;233(1-2):51-59.
    181. Ahuja N, Li Q, Mohan AL, et al. Aging and DNA methylation in colorectal mucosa and cancer [J]. Cancer Res 1998; 58 (23):5489-5494.
    182. Davis CD, Uthus E0. DNA methylation, cancer susceptibility, and nutrient interactions[J]. Exp Biol Med (Maywood) 2004;229(10):988-995.
    183. Momparler RL, Bovenzi V. DNA methylation and cancer[J]. J Cell Physiol 2000;183(2):145-154.
    184. Momparler RL, Eliopoulos N, Ayoub J. Evaluation of an inhibitor of DNA methylation,5-aza-2'-deoxycytidine, for the treatment of lung cancer and the future role of gene therapy [J]. Adv Exp Med Biol 2000;465:433-446.
    185. Baylin SB. Mechanisms underlying epigenetically mediated gene silencing in cancer[J]. Semin Cancer Biol 2002;12(5):331-337.
    186. Tao L, Wang W, Li L, et al. DNA hypomethylation induced by drinking water disinfection by-products in mouse and rat kidney[J]. Toxicol Sci 2005:87(2):344-352.
    187. Laird PW, Jaenisch R. DNA methylation and cancer [J]. Hum Mol Genet 1994;3 (1):1487-1495.
    188. Paz MF, Fraga MF, Avila S, et al. A systematic profile of DNA methylation in human cancer cell lines[J]. Cancer Res 2003:63(5):1114-1121.
    189. Robertson KD. DNA methylation, methyl transf erases, and cancer [J]. Oncogene 2001;20(24):3139-3155.
    190. Bender CM, Gonzalgo ML, Gonzales FA, et al. Roles of cell division and gene transcription in the methylation of CpG islands [J]. Mol Cell Biol 1999:19(10):6690-6698.
    191. Ueki T, Toyota M, Sohn T, et al. Hypermethylation of multiple genes in pancreatic adenocarcinoma[J]. Cancer Res 2000;60(7):1835-1839.
    192. Sato N, Fukushima N, Maehara N, et al. SPARC/osteonectin is a frequent target for aberrant methylation in pancreatic adenocarcinoma and a mediator of tumor-stromal interactions[J]. Oncogene 2003:22(32):5021-5030.
    193. Novina CD, Sharp PA. The RNAi revolution[J]. Nature 2004:430(6996):161-164.
    194. Caudy AA, Ketting RF, Hammond SM, et al. A micrococcal nuclease homologue in RNAi effector complexes [J]. Nature 2003:425(6956):411-414.
    195. Bernards R. RNAi Delivers Insights into Liver Cancer[J]. Cell 2008:135(5):793-795.
    196. Ngo VN, Davis RE, Lamy L, et al. A loss-of-function RNA interference screen for molecular targets in cancer[J]. Nature 2006:441(7089):106-110.
    197. Tang W, Dodge M, Gundapaneni D, et al. A genome-wide RNAi screen for Wnt/beta-catenin pathway components identifies unexpected roles for TCF transcription factors in cancer [J]. Proc Natl Acad Sci U S A 2008:105(28):9697-9702.
    198. Yu XJ, Fu DL, Zhang QH, et al. Analysis of gene expression profiles in pancreatic carcinoma by using cDNA microarray[J]. Hepatobiliary Pancreat Dis Int 2003;2(3):467-470.
    199. 狄扬,龙江,傅德良,等.甲基化CpG结合域蛋白1在胰腺癌组织中的表达和意义[J].外科理论与实践2006:11(1):35-38.
    200. Cheng X. DNA modification by methyltransferases[J]. Curr Opin Struct Biol 1995;5(1):4-10.
    201. Kass SU, Landsberger N, Wolffe AP. DNA methylation directs a time-dependent repression of transcription initiation[J]. Curr Biol 1997:7(3):157-165.
    202. Kass SU, Pruss D, Wolffe AP. How does DNA methylation repress transcription?[J]. Trends Genet 1997;13(11):444-449.
    203. Bird AP. CpG-rich islands and the function of DNA methylation [J]. Nature 1986:321 (6067):209-213.
    204. Li E, Beard C, Jaenisch R. Role for DNA methylation in genomic imprinting[J]. Nature 1993:366(6453):362-365.
    205. Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation[J]. N Engl J Med 2003:349(21):2042-2054.
    206. Ng HH, Jeppesen P, Bird A. Active repression of methylated genes by the chromosomal protein MBD1[J]. Mol Cell Biol 2000;20(4):1394-1406.
    207. Villa R, Morey L, Raker VA, et al. The methyl-CpG binding protein MBD1 is required for PML-RARalpha function[J]. Proc Natl Acad Sci U S A 2006; 103 (5):1400-1405.
    208. Fujita N, Shimotake N, Ohki I, et al. Mechanism of transcriptional regulation by methyl-CpG binding protein MBD1[J]. Mol Cell Biol 2000:20(14):5107-5118.
    209. Lopez-Serra L, Ballestar E, Fraga MF, et al. A profile of methyl-CpG binding domain protein occupancy of hypermethylated promoter CpG islands of tumor suppressor genes in human cancer[J]. Cancer Res 2006;66(17):8342-8346.
    210. 虞先浚,刘辰,徐近,等.MBD1 RNA干扰对胰腺癌细胞VIMENTIN、GRP78表达影响的实验研究[J].外科理论与实践2009;14(2):174-178.
    211. Zou H, Harrington JJ, Shire AM, et al. Highly methylated genes in colorectal neoplasia:implications for screening[J]. Cancer Epidemiol Biomarkers Prev 2007;16(12):2686-2696.
    212. Chen WD, Han ZJ, Skoletsky J, et al. Detection in fecal DNA of colon cancer-specific methylation of the nonexpressed vimentin gene[J]. J Natl Cancer Inst 2005:97(15):1124-1132.
    213. Li J, Lee AS. Stress induction of GRP78/BiP and its role in cancer[J]. Curr Mol Med 2006;6(1):45-54.
    214. Yang Q, Liu S, Tian Y, et al. Methylation-associated silencing of the heat shock protein 47 gene in human neuroblastoma[J]. Cancer Res 2004:64(13):4531-4538.
    215. Berx G, Becker KF, Hofler H, et al. Mutations of the human E-cadherin (CDH1) gene[J]. Hum Mutat 1998:12(4):226-237.
    216. Machado JC, Oliveira C, Carvalho R, et al. E-cadherin gene (CDH1) promoter methylation as the second hit in sporadic diffuse gastric carcinoma[J]. Oncogene 2001;20(12):1525-1528.
    217. More H, Humar B, Weber W, et al. Identification of seven novel germline mutations in the human E-cadherin (CDH1) gene[J]. Hum Mutat 2007:28(2):203.
    218. Van Aken E, De Wever 0, Correia da Rocha AS, et al. Defective E-cadherin/catenin complexes in human cancer[J]. Virchows Arch 2001;439(6):725-751.
    219. Campanero MR, Armstrong MI, Flemington EK. CpG methylation as a mechanism for the regulation of E2F activity[J]. Proc Natl Acad Sci U S A 2000;97(12):6481-6486.
    220. Esteller M, Corn PG, Baylin SB, et al. A gene hypermethylation profile of human cancer[J]. Cancer Res 2001;61(8):3225-3229.
    221. Cordon-Cardo C, Wartinger D, Petrylak D, et al. Altered expression of the retinoblastoma gene product:prognostic indicator in bladder cancer[J]. J Natl Cancer Inst 1992:84(16):1251-1256.
    222. Huang HJ, Yee JK, Shew JY, et al. Suppression of the neoplastic phenotype by replacement of the RB gene in human cancer cells [J]. Science 1988:242(4885):1563-1566.
    223. Lee EY, To H, Shew JY, et al. Inactivation of the retinoblastoma susceptibility gene in human breast cancers[J]. Science 1988:241(4862):218-221.
    224. Hirohashi S. Molecular aspects of adhesion-epigenetic mechanisms for inactivation of the E-Cadherin-mediated cell adhesion system in cancers[J]. Verh Dtsch Ges Pathol 2000:84:28-32.
    225. Gaubatz S, Lindeman GJ, Ishida S, et al. E2F4 and E2F5 play an essential role in pocket protein-mediated G1 control[J]. Mol Cell 2000:6(3):729-735.
    226. Field SJ, Tsai FY, Kuo F, et al. E2F-1 functions in mice to promote apoptosis and suppress proliferation[J]. Cell 1996:85(4):549-561.
    227. Wu X, Levine AJ. p53 and E2F-1 cooperate to mediate apoptosis [J]. Proc Natl Acad Sci U S A 1994;91 (9):3602-3606.
    228. Qin XQ, Livingston DM, Kaelin WG, Jr., et al. Deregulated transcription factor E2F-1 expression leads to S-phase entry and p53-mediated apoptosis [J]. Proc Natl Acad Sci U S A 1994:91(23):10918-10922.
    229. Liggett WH, Sidransky D. Role of the p16 tumor suppressor gene in cancer[J]. J Clin Oncol 1998;16(3):1197-1206.
    230. Rocco JW, Sidransky D. p16(MTS-1/CDKN2/INK4a) in cancer progression[J]. Exp Cell Res 2001;264(1):42-55.
    231. Wong IH, Lo YM, Zhang J, et al. Detection of aberrant p16 methylation in the plasma and serum of liver cancer patients[J]. Cancer Res 1999;59(1):71-73.
    232. Gnarra JR, Tory K, Weng Y, et al. Mutations of the VHL tumour suppressor gene in renal carcinoma[J]. Nat Genet 1994;7(1):85-90.
    233. Kim WY, Kaelin WG. Role of VHL gene mutation in human cancer [J]. J Clin Oncol 2004;22(24):4991-5004.
    234. Akakura N, Kobayashi M, Horiuchi I, et al. Constitutive expression of hypoxia-inducible factor-lalpha renders pancreatic cancer cells resistant to apoptosis induced by hypoxia and nutrient deprivation[J]. Cancer Res 2001;61(17):6548-6554.
    235. Dietrich G, Bubert A, Gentschev I, et al. Delivery of antigen-encoding plasmid DNA into the cytosol of macrophages by attenuated suicide Listeria monocytogenes[J]. Nat Biotechnol 1998:16(2):181-185.
    236. Tighe H, Corr M, Roman M, et al. Gene vaccination:plasmid DNA is more than just a blueprint[J]. Immunol Today 1998:19(2):89-97.
    237. Nakamura J, Fumoto S, Shoji K, et al. Stomach-selective gene transfer following the administration of naked plasmid DNA onto the gastric serosal surface in mice[J]. Biol Pharm Bull 2006:29(10):2082-2086.
    238. Dietrich A, Becherer L, Brinckmann U, et al. Particle-mediated cytokine gene therapy leads to antitumor and antimetastatic effects in mouse carcinoma models [J]. Cancer Biother Radiopharm 2006; 21 (4):333-341.
    239. de Fougerolles AR. Delivery vehicles for small interfering RNA in vivo[J]. Hum Gene Ther 2008;19(2):125-132.
    240. Barenholz Y, Amselem S, Goren D, et al. Stability of liposomal doxorubicin formulations:problems and prospects[J]. Med Res Rev 1993:13(4):449-491.
    241. 汪朝阳,赵耀明.聚乙醇酸类生物降解高分子[J].广州化学2004:29(1):54-57.
    242. Wang Y, Challa P, Epstein DL, et al. Controlled release of ethacrynic acid from poly(lactide-co-glycolide) films for glaucoma treatment[J]. Biomaterials 2004;25(18):4279-4285.
    243. Xue JM, Shi M. PLGA/mesoporous silica hybrid structure for controlled drug release[J]. J Control Release 2004;98(2):209-217.
    244. Singh L, Kumar V, Ratner BD. Generation of porous microcellular 85/15 poly (DL-lactide-co-glycolide) foams for biomedical applications[J]. Biomaterials 2004;25(13):2611-2617.
    245. Wang J, Wang BM, Schwendeman SP. Characterization of the initial burst release of a model peptide from poly(D, L-lactide-co-glycolide) microspheres[J]. J Control Release 2002;82(2-3):289-307.
    246. Allen TM, Sapra P, Moase E, et al. Adventures in targeting [J].J Liposome Res 2002;12(1-2):5-12.
    1. Medintz IL, Uyeda HT, Goldman ER, et al. Quantum dot bioconjugates for imaging, labelling and sensing[J]. Nat Mater 2005;4(6):435-446.
    2. Wu X, Liu H, Liu J, et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots[J]. Nat Biotechnol 2003;21(1):41-46.
    3. Wang X, Zhuang J, Peng Q, et al. Synthesis and characterization of sulfide and selenide colloidal semiconductor nanocrystals[J]. Langmuir 2006:22(17):7364-7368.
    4. Mirkin CA, Taton TA. Semiconductors meet biology[J]. Nature 2000:405(6787):626-627.
    5. Michalet X, Pinaud FF, Bentolila LA, et al. Quantum dots for live cells, in vivo imaging, and diagnostics[J]. Science 2005:307(5709):538-544.
    6. Wang X, Ren X, Kahen K, et al. Non-blinking semiconductor nanocrystals[J]. Nature 2009:459(7247):686-689.
    7. Henglein A. Small-Particle Research:Physiochemical Properties of Metal and Semiconductor Particles[J]. Chem Rev 1989;(89):1861-1873
    8. Rosenthal SJ. Bar-coding biomolecules with fluorescent nanocrystals[J]. Nat Biotechnol 2001;19 (7):621-622.
    9. Correaduarte M, Giersig, M., Lizmarzan, L. Stabilization of CdS semiconductor nanoparticles against photodegradation by a silica coating procedure [J]. Chemical Physics Letters 1998:286(5):497-501.
    10. Bruchez M, Jr., Moronne M, Gin P, et al. Semiconductor nanocrystals as fluorescent biological labels[J]. Science 1998:281(5385):2013-2016.
    11. Alivisatos P. The use of nanocrystals in biological detection[J]. Nat Biotechnol 2004;22 (1):47-52.
    12. Chan WC, Maxwell DJ, Gao X, et al. Luminescent quantum dots for multiplexed biological detection and imaging[J]. Curr Opin Biotechnol 2002; 13(1):40-46.
    13. Doty RC, Fernig DG, Levy R. Nanoscale science:a big step towards the Holy Grail of single molecule biochemistry and molecular biology [J]. Cell Mol Life Sci 2004;61(15):1843-1849.
    14. Hanaki K, Momo A, Oku T, et al. Semiconductor quantum dot/albumin complex is a long-life and highly photostable endosome marker[J]. Biochem Biophys Res Commun 2003;302(3):496-501.
    15. L. B. Quantum crystallites and nonlinear optics[J]. Appl Phys A 1991;6(53):465-474.
    16. Nirmal M BL. Luminescence Photophysics in Semiconductor Nanocrystals. [J]. Ace Chem Res 1999;5(32):407-414.
    17. Chan WC, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection[J]. Science 1998;281(5385):2016-2018.
    18. Jaiswal JK, Mattoussi H, Mauro JM, et al. Long-term multiple color imaging of live cells using quantum dot bioconjugates [J]. Nat Biotechnol 2003;21(1):47-51.
    19. Dahan M, Levi S, Luccardini C, et al. Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking [J]. Science 2003:302(5644):442-445.
    20. So MK, Xu C, Loening AM, et al. Self-illuminating quantum dot conjugates for in vivo imaging[J]. Nat Biotechnol 2006;24(3):339-343.
    21. Sato K FY, Nakajima K. Advances in Crystal Growth Research, the first edition, Japan[J]. Elsevier science,2001;23(1):1-21.
    22. Steigerwald MLA, A. P.; Gibson, J. M.; Harris, T. D.; Kortan, R. Muller, A. J.; Thayer, A. M.; Duncan, T. M.; Douglass, D. C.; Brus, L. E. Surface Derivatization and Isolation of Semiconductor Cluster Molecules[J]. Journal of the American Chemical Society 1988:110(10):3046-3050.
    23. Gao F LQ, Zhao DY. In Situ Adsorption Method for Synthesis of Binary Semiconductor CdS Nanocrystals inside Mesoporous SBA-15 [J]. Chem Phys Lett 2002:5(360):385-591.
    24. Lemon BI CR. Preparation and Characterization of Dendrimer-Encapsulated CdS Semiconductor Quantum Dots[J]. J Am Chem Soc 2000:122(51):12886-12887.
    25. Yu SH, Wu, Y. S.,Yang, J., Han, Z. H.,Xie, Y., Qian, Y. T., Liu, X. M. A Novel Solventothermal Synthetic Route to Nanocrystalline CdE (E=S, Se, Te) and Morphological Control [J]. Chem Mater 1998; 10 (9):2309-2312.
    26. Li YD LH, Qian YT. A solvothermal synthetic route to CdE (E=S, Se) semiconductor nanocrystalline [J]. Materials Chemistry and Physics 1999;58(1):87-89.
    27. J.M. Huang YY, B. Yang, S. Y. Liu and J. C. Shen. Assembly and applications of the inorganic nanocrystals in polymer networks [J]. Thin Solid Films 1998;327(8):536-540.
    28. DM M. Microwaves in chemical synthesis[J]. Chemistry and industry 1994:15(8):596-599.
    29. Murugan AV KC, Campet G, et al. A Novel Approach To Prepare Poly(3,4-ethylenedioxythiophene) Nanoribbons between V205 Layers by Microwave Irradiation[J]. J Phys Chem B 2004;108(30):10736-10742.
    30. Sugimoto T CS, Muramatsu A. Synthesis of uniform particles of CdS, ZnS, PbS and CuS from concentrated solutions of the metal chelates [J]. Colloids and Surfaces A Physicochemical and Engineering Aspects 1998:135(1):207-226.
    31. Murray CB ND, Bawendi Synthesis and characterization of nearly monodisperse CdE (E=sulfur, selenium, tellurium) semiconductor nanocrystallites[J].J Am Chem Soc 1993; (115):8706-8715.
    32. Dabbousi BO MC, Rubner MF, Bawendi Langmuir-Blodgett Manipulation of Size-Selected CdSe Nanocrystallites[J]. Chem Mater 1994; (6):216-219.
    33. Qu LH PZ, Peng XG. Alternative Routes toward High Quality CdSe Nanocrystals [J]. Nano Letters 2001;1 (6):333-337.
    34. V. Pardo-Yissar EK, J. Wasserman, I. Willner. Acetylcholine esterase-labeled CdS nanoparticles on electrodes:Photoelectrochemical sensing of the enzyme inhibitors. [J]. J Am Chem Soc 2003; (125):622-623.
    35. Lu Liu QW, Yaping Ding, HuqJie Liu, Jingyu Qi, Qian Liu. Biomimetic Synthesis of Ag2CrO4 Quasi-nanorods and Nanowires by Emulsion Liquid Membrane[J]. Australia journal of chemistry 2004;(57):219-222.
    36. Sukhanova A, Devy J, Venteo L, et al. Biocompatible fluorescent nanocrystals for immunolabeling of membrane proteins and cells [J]. Anal Biochem 2004;324(1):60-67.
    37. Mattheakis LC, Dias JM, Choi YJ, et al. Optical coding of mammalian cells using semiconductor quantum dots[J]. Anal Biochem 2004:327(2):200-208.
    38. Akerman ME, Chan WC, Laakkonen P, et al. Nanocrystal targeting in vivo[J]. Proc Natl Acad Sci U S A 2002;99(20):12617-12621.
    39. Gao X, Cui Y, Levenson RM, et al. In vivo cancer targeting and imaging with semiconductor quantum dots[J]. Nat Biotechnol 2004;22(8):969-976.
    40. Voura EB, Jaiswal JK, Mattoussi H, et al. Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy[J]. Nat Med 2004;10(9):993-998.
    41. Dubertret B, Skourides P, Norris DJ, et al. In vivo imaging of quantum dots encapsulated in phospholipid micelles[J]. Science 2002:298(5599):1759-1762.
    42. Goldman ER, Anderson GP, Tran PT, et al. Conjugation of luminescent quantum dots with antibodies using an engineered adaptor protein to provide new reagents for fluoroimmunoassays[J]. Anal Chem 2002:74(4):841-847.
    43. Jaiswal JK, Goldman ER, Mattoussi H, et al. Use of quantum dots for live cell imaging[J]. Nat Methods 2004;1(1):73-78.
    44. Yu WW, Chang E, Falkner JC, et al. Forming biocompatible and nonaggregated nanocrystals in water using amphiphilic polymers[J]. J Am Chem Soc 2007;129(10):2871-2879.
    45. Bentzen EL, Tomlinson ID, Mason J, et al. Surface modification to reduce nonspecific binding of quantum dots in live cell assays[J]. Bioconjug Chem 2005;16(6):1488-1494.
    46. Weissleder R. A clearer vision for in vivo imaging[J]. Nat Biotechnol 2001:19(4):316-317.
    47. Alivisatos AP, Gu W, Larabell C. Quantum dots as cellular probes [J]. Annu Rev Biomed Eng 2005;7(1):55-76.
    48. Flum DR, McClure TD, Morris A, et al. Misdiagnosis of appendicitis and the use of diagnostic imaging [J]. J Am Coll Surg 2005; 201 (6):933-939.
    49. Chang SS, Reuter VE, Heston WD, et al. Five different anti-prostate-specific membrane antigen (PSMA) antibodies confirm PSMA expression in tumor-associated neovasculature[J]. Cancer Res 1999:59(13):3192-3198.
    50. Salgaller ML, Lodge PA, McLean JG, et al. Report of immune monitoring of prostate cancer patients undergoing T-cell therapy using dendritic cells pulsed with HLA-A2-specific peptides from prostate-specific membrane antigen (PSMA)[J]. Prostate 1998;35 (2):144-151.
    51. Bagalkot V, Zhang L, Levy-Nissenbaum E, et al. Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer [J]. Nano Lett 2007;7(10):3065-3070.
    52. Moschos SJ, Drogowski LM, Reppert SL, et al. Integrins and cancer [J]. Oncology (Williston Park) 2007;21(9):13-20.
    53. Varner JA, Cheresh DA. Integrins and cancer[J]. Curr Opin Cell Biol 1996; 8 (5):724-730.
    54. Juliano RL, Varner JA. Adhesion molecules in cancer:the role of integrins[J]. Curr Opin Cell Biol 1993;5(5):812-818.
    55. Arap W, Pasqualini R, Ruoslahti E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model[J]. Science 1998;279(5349):377-380.
    56. Chen X, Conti PS, Moats RA. In vivo near-infrared fluorescence imaging of integrin alphavbeta3 in brain tumor xenografts[J]. Cancer Res 2004:64(21):8009-8014.
    57. Canney PA, Moore M, Wilkinson PM, et al. Ovarian cancer antigen CA125: a prospective clinical assessment of its role as a tumour marker [J]. Br J Cancer 1984;50(6):765-769.
    58. Wang HZ, Wang HY, Liang RQ, et al. Detection of tumor marker CA125 in ovarian carcinoma using quantum dots[J]. Acta Biochim Biophys Sin (Shanghai) 2004;36(10):681-686.
    59. Yu X, Chen L, Li K, et al. Immunofluorescence detection with quantum dot bioconjugates for hepatoma in vivo[J]. J Biomed Opt 2007;12(1):014-018.
    60. Cai W, Shin DW, Chen K, et al. Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects[J]. Nano Lett 2006;6(4):669-676.
    61. Soltesz EG, Kim S, Laurence RG, et al. Intraoperative sentinel lymph node mapping of the lung using near-infrared fluorescent quantum dots[J]. Ann Thorac Surg 2005;79(1):269-277.
    62. Stamatakos M, Stefanaki C, Kontzoglou K, et al. Sentinel lymph node biopsy in breast cancer:a systematic review[J]. Onkologie 33(3):121-126.
    63. Veronesi U, Viale G, Paganelli G, et al. Sentinel Lymph Node Biopsy in Breast Cancer:Ten-Year Results of a Randomized Controlled Study[J]. Ann Surg.
    64. Krag DN, Anderson SJ, Julian TB, et al. Technical outcomes of sentinel-lymph-node resection and conventional axillary-lymph-node dissection in patients with clinically node-negative breast cancer: results from the NSABP B-32 randomised phase III trial[J]. Lancet Oncol 2007;8(10):881-888.
    65. Gershenwald JE, Thompson W, Mansfield PF, et al. Multi-institutional melanoma lymphatic mapping experience:the prognostic value of sentinel lymph node status in 612 stage I or II melanoma patients [J]. J Clin Oncol 1999:17(3):976-983.
    66. Mathelin C, Croce S, Brasse D, et al. Methylene blue dye, an accurate dye for sentinel lymph node identification in early breast cancer[J]. Anticancer Res 2009:29(10):4119-4125.
    67. East JM, Valentine CS, Kanchev E, et al. Sentinel lymph node biopsy for breast cancer using methylene blue dye manifests a short learning curve among experienced surgeons:a prospective tabular cumulative sum (CUSUM) analysis[J]. BMC Surg 2009;9:2-2.
    68. Simmons R, Thevarajah S, Brennan MB, et al. Methylene blue dye as an alternative to isosulfan blue dye for sentinel lymph node localization[J]. Ann Surg Oncol 2003;10(3):242-247.
    69. Gretschel S, Bembenek A, Hunerbein M, et al. Efficacy of different technical procedures for sentinel lymph node biopsy in gastric cancer staging[J]. Ann Surg Oncol 2007;14(7):2028-2035.
    70. Lee JH, Ryu KW, Kim CG, et al. Sentinel node biopsy using dye and isotope double tracers in early gastric cancer[J]. Ann Surg Oncol 2006:13(9):1168-1174.
    71. Frangioni JV, Kim SW, Ohnishi S, et al. Sentinel lymph node mapping with type-Ⅱ quantum dots[J]. Methods Mol Biol 2007:374:147-159.
    72. Kim S, Lim YT, Soltesz EG, et al. Near-infrared fluorescent type Ⅱ quantum dots for sentinel lymph node mapping[J]. Nat Biotechnol 2004:22(1):93-97.
    73.O'Conor GT, Tatarinov YS, Abelev GI, et al. A collaborative study for the evaluation of a serologic test for primary liver cancer[J]. Cancer 1970:25(5):1091-1098.
    74. Chen LD, Liu J, Yu XF, et al. The biocompatibility of quantum dot probes used for the targeted imaging of hepatocellular carcinoma metastasis [J]. Biomaterials 2008;29(31):4170-4176.
    75. Ghasemi Y, Peymani P, Afifi S. Quantum dot:magic nanoparticle for imaging, detection and targeting[J]. Acta Biomed 2009;80(2):156-165.
    76. Smith AM, Dave S, Nie S, et al. Multicolor quantum dots for molecular diagnostics of cancer[J]. Expert Rev Mol Diagn 2006;6(2):231-244.
    77. Azzazy HM, Mansour MM, Kazmierczak SC. Nanodiagnostics:a new frontier for clinical laboratory medicine[J]. Clin Chem 2006;52(7):1238-1246.
    78. Kerman K, Endo T, Tsukamoto M, et al. Quantum dot-based immunosensor for the detection of prostate-specific antigen using fluorescence microscopy[J]. Talanta 2007;71(4):1494-1499.
    79. W. J. Parak RB, M. Le Gros, D. Gerion, D. Zanchet, C. M. Micheel, S. C. Williams, A. P. Alivisatos, C. Larabell. Cellmotility and metastatic potential studies based on quantum dot imaging of phagokinetic tracks [J]. AdvMater 2002;14(12):882-885.
    80. Pellegrino T, Parak WJ, Boudreau R, et al. Quantum dot-based cell motility assay[J]. Differentiation 2003;71(9-10):542-548.
    81. Tada H, Higuchi H, Wanatabe TM, et al. In vivo real-time tracking of single quantum dots conjugated with monoclonal anti-HER2 antibody in tumors of mice[J]. Cancer Res 2007;67(3):1138-1144.
    82. Lidke DS, Nagy P, Heintzmann R, et al. Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction[J]. Nat Biotechnol 2004;22 (2):198-203.
    83. Minet O, Dressler C, Beuthan J. Heat stress induced redistribution of fluorescent quantum dots in breast tumor cells[J]. J Fluoresc 2004;14(3):241-247.
    84. Slamon DJ, Godolphin W, Jones LA, et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer[J]. Science 1989:244(4905):707-712.
    85. Slamon DJ, Clark GM, Wong SG, et al. Human breast cancer:correlation of relapse and survival with amplification of the HER-2/neu oncogene[J]. Science 1987;235(4785):177-182.
    86. Slamon DJ. Studies of the HER-2/neu proto-oncogene in human breast cancer[J]. Cancer Invest 1990;8(2):253.
    87. Stsiapura V, Sukhanova A, Artemyev M, et al. Functionalized nanocrystal-tagged fluorescent polymer beads:synthesis, physicochemical characterization, and immunolabeling application[J]. Anal Biochem 2004;334(2):257-265.
    88. Yum K, Na S, Xiang Y, et al. Mechanochemical delivery and dynamic tracking of fluorescent quantum dots in the cytoplasm and nucleus of living cells[J]. Nano Lett 2009;9(5):2193-2198.
    89.孟磊,宋增璇.量子点在生物医学中的应用[J].生物化学与生物物理进展2004:31(2):185-187.
    90. Sun B, Xie W, Yi G, et al. Microminiaturized immunoassays using quantum dots as fluorescent label by laser confocal scanning fluorescence detection[J]. J Immunol Methods 2001;249(1-2):85-89.
    91. Li Y, Tang ZY, Ye SL, et al. Establishment of cell clones with different metastatic potential from the metastatic hepatocellular carcinoma cell line MHCC97[J]. World J Gastroenterol 2001;7(5):630-636.
    92. Mitchell G P MCA, Letsinger R L. Programmed assembly of DNA functionalized quantum dots[J]. J Am Chem Soc 1999; 121 (35):8122-8123.
    93. R. Mahtab JPR, C. J. Murphy. Protein-Sized Quantum Dot Luminescence Can. Distinguish between "Straight", "Bent", and. "Kinked" Oligonucleotides[J]. J Am Chem Soc 1995;(117):9099-9100.
    94. Han M, Gao X, Su JZ, et al. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules[J]. Nat Biotechnol 2001;19 (7):631-635.
    95. Willner I, Patolsky F, Wasserman J. Photoelectrochemistry with Controlled DNA-Cross-Linked CdS Nanoparticle Arrays This research is supported by The U.S.-Israel Binational Science Foundation. The Max Planck Research Award for International Cooperation (I. W.) is gratefully acknowledged[J]. Angew Chem Int Ed Engl 2001;40(10):1861-1864.
    96. Morris RL, Azizuddin K, Lam M, et al. Fluorescence resonance energy transfer reveals a binding site of a photosensitizer for photodynamic therapy[J]. Cancer Res 2003;63(17):5194-5197.
    97. Nyman ES, Hynninen PH. Research advances in the use of tetrapyrrolic photosensitizers for photodynamic therapy[J]. J Photochem Photobiol B 2004:73(1-2):1-28.
    98. Samia AC, Chen X, Burda C. Semiconductor quantum dots for photodynamic therapy[J]. J Am Chem Soc 2003;125(51):15736-15737.
    99. Yaghini E, Seifalian AM, MacRobert AJ. Quantum dots and their potential biomedical applications in photosensitization for photodynamic therapy[J]. Nanomedicine (Lond) 2009;4(3):353-363.
    100. Hong H, Zhang Y, Cai W. In vivo imaging of RNA interference[J]. J Nucl Med 2009;51(2):169-172.
    101. Zhang CY, Johnson LW. Single quantum-dot-based aptameric nanosensor for cocaine[J]. Anal Chem 2009:81(8):3051-3055.
    102. Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans[J]. Nature 1998:391(6669):806-811.
    103. Tan WB, Jiang S, Zhang Y. Quantum-dot based nanoparticles for targeted silencing of HER2/neu gene via RNA interference [J]. Biomaterials 2007:28(8):1565-1571.
    104. Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy [J]. Adv Drug Deliv Rev 2004; 56 (11):1649-1659.
    105. Schiffelers RM, Ansari A, Xu J, et al. Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle[J]. Nucleic Acids Res 2004:32(19):e149.
    106. Weng KC, Noble CO, Papahadjopoulos-Sternberg B, et al. Targeted tumor cell internalization and imaging of multifunctional quantum dot-conjugated immunoliposomes in vitro and in vivo[J]. Nano Lett 2008:8(9):2851-2857.
    107. Medintz IL, Clapp AR, Mattoussi H, et al. Self-assembled nanoscale biosensors based on quantum dot FRET donors[J]. Nat Mater 2003:2(9):630-638.
    108. Shi L, De Paoli V, Rosenzweig N, et al. Synthesis and application of quantum dots FRET-based protease sensors[J]. J Am Chem Soc 2006:128(32):10378-10379.
    109. Winter JO LT, Korgel BA, Schmidt CE. Recognition molecule directed interfacing between semiconductor quantum dots and nerve cells[J]. Adv Mater 22(13):1673-1677.
    110. Derfus AM CW, Bhatia SN. Probing the cytotoxicity of semiconductor quantum dots[J]. Nano Lett 2004;(4):11-18.
    111. Larson DR, Zipfel WR, Williams RM, et al. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo[J]. Science 2003:300(5624):1434-1436.
    112. Pinaud F, King D, Moore HP, et al. Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides[J]. J Am Chem Soc 2004;126(19):6115-6123.
    113. Ballou B, Lagerholm BC, Ernst LA, et al. Noninvasive imaging of quantum dots in mice[J]. Bioconjug Chem 2004;15(1):79-86.
    114. Liu L, Zhang J, Su X, et al. In vitro and In vivo Assessment of CdTe and CdHgTe Toxicity and Clearance[J]. J Biomed Nanotechnol 2008:4(4):524-528.
    115. Jiang X, Ahmed M, Deng Z, et al. Biotinylated Glyco-Functionalized Quantum Dots:Synthesis, Characterization, and Cytotoxicity Studies[J]. Bioconjug Chem 2009,20(5),994-1001.
    116. Pinaud F, Michalet X, Bentolila LA, et al. Advances in fluorescence imaging with quantum dot bio-probes[J]. Biomaterials 2006:27(9):1679-1687.
    117. Yu WW, Chang E, Drezek R, et al. Water-soluble quantum dots for biomedical applications[J]. Biochem Biophys Res Commun 2006:348(3):781-786.
    118. Jain RK, Stroh M. Zooming in and out with quantum dots[J]. Nat Biotechnol 2004;22(8):959-960.
    119. Zhang H, Yee D, Wang C. Quantum dots for cancer diagnosis and therapy:biological and clinical perspectives[J]. Nanomedicine (Lond) 2008:3(1):83-91.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700