用户名: 密码: 验证码:
基于反共振频率和压电阻抗的结构损伤检测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着世界经济和现代科学技术的迅速发展以及人们安全意识和安全需求的逐渐提高,那些关系国计民生的重要工程结构的损伤识别和健康监测问题逐渐被人们所重视,工程结构的损伤识别和健康监测也成为了当前结构工程学科十分活跃的研究领域。本文在国家自然科学基金(No.50378041)、教育部博士点基金(No.20030487016)以及华中科技大学优秀博士论文基金(No.2004-23)的资助下进行了基于反共振频率和压电阻抗的结构损伤检测数值与试验研究。
     本文所开展的主要研究工作和取得的主要成果为:
     (1)提出了一类基于反共振频率信息的损伤识别方法,即基于反共振频率曲线、反共振频率曲线斜率以及反共振频率曲线曲率的裂纹损伤检测方法。该方法的基本思想是:通过获取结构各驱动点阻抗(或导纳)响应和第一阶反共振频率曲线、反共振频率曲线斜率以及反共振频率曲线曲率,并观察曲线的弯折和突变情况来识别损伤的发生并对损伤定位;在裂纹位置确定之后,结合结构固有频率和裂纹梁频率方程识别裂纹损伤大小。
     (2)介绍了两种模拟梁裂纹的弯曲弹簧模型,并通过数值计算和试验验证了这两种模型的有效性。利用上述裂纹模型对裂纹混凝土梁进行了动力特性分析,分析结果表明:裂纹的产生会引起梁固有频率减小,但低阶固有频率对梁裂纹损伤并不敏感,而且简支梁对称位置的裂纹会引起相同的固有频率变化,因此单纯利用低阶固有频率对结构进行损伤识别是不可靠的。
     (3)推导了单裂纹简支梁、双裂纹简支梁的频率方程;利用基于反共振频率信息的损伤识别技术对单裂纹梁、双裂纹梁和多裂纹梁进行了振动分析和损伤识别数值研究。数值研究结果表明:利用梁结构的第一阶反共振频率曲线,不仅可以判断损伤的发生、准确识别中等深度以上梁裂纹的位置,而且能定性识别裂纹损伤程度;利用第一阶反共振频率曲线斜率和曲率可以对小裂纹损伤进行准确定位;结合裂纹梁频率方程和固有频率,对单裂纹梁和双裂纹梁裂纹尺寸进行了定量识别,识别误差较小。
     (4)基于反共振频率曲线的损伤识别技术对单裂纹梁、双裂纹梁和多裂纹梁进行了损伤识别试验研究。研究结果发现:反共振频率测量值与计算值是基本吻合的;基于测量得到的第一阶反共振频率曲线可以较好地识别出中等深度以上裂纹的位置;随着梁裂纹个数的增多,反共振频率曲线上的弯折或不连续现象变得不明显。
     (5)对表面粘贴有单压电片的钢梁进行了阻抗分析,在此基础上对单压电片智能钢梁的压电阻抗进行了数值计算和实验验证,二者结果基本吻合。利用压电阻抗技术,通过测量单压电片的电导纳变化成功识别了钢梁裂纹损伤;将三个压电片分布在钢梁的不同部位,通过监测各个压电片的电导纳变化,并结合各压电片处的反共振频率成功识别了梁裂纹损伤位置。
     (6)利用压电阻抗技术对钢框架结构进行了健康监测试验研究。通过监测粘贴在框架节点处的各压电片的电导纳变化发现,在不同损伤工况下,直接与螺栓连接的连接板上的压电片的电导纳变化最大,与连接板相连的下斜撑上的压电片的电导纳也有变化,而与连接板不直接相连的上斜撑上压电片的电导纳几乎没有变化。由此表明,利用压电阻抗技术能识别钢框架结构损伤;压电阻抗技术具有局部检测能力。分别建立了基于压电导纳实部和虚部的损伤程度识别指标RMSDR和RMSDI,研究结果发现,利用RMSDR指标能较好地对钢框架螺栓松动损伤程度进行定性识别,而利用RMSDI指标对螺栓松动损伤程度识别则不可靠。
     (7)利用压电阻抗技术对混凝土立方块固化过程进行了监测。监测结果发现,随着混凝土龄期的增加,粘贴在试块表面的压电片的电导纳曲线峰值频率逐渐增大,并且在混凝土龄期3-6天增幅较大,在随后的龄期增幅较小。由压电片的机电耦合特性可知,压电导纳曲线峰值频率与混凝土的固有频率具有对应关系,由此可间接预测龄期内混凝土刚度变化规律。
     (8)基于多压电片分布传感和压电阻抗技术,对裂纹混凝土梁进行了损伤定位试验研究。试验结果发现,靠近裂纹的压电传感器对梁裂纹损伤较为敏感,而远离裂纹的压电传感器则几乎不受裂纹损伤的影响,这进一步证实了压电传感器的局部检测能力和损伤定位能力;结合损伤程度识别指标RMSDR,实现了对不同损伤工况下混凝土梁裂纹的损伤定位。
     (9)利用压电阻抗技术对钢筋混凝土梁加载过程进行了监测实验。利用分配梁对钢筋混凝土梁进行两点加载,将压电片分布粘贴在梁的下表面来监测由于外加荷载所导致的结构开裂以及刚度损失。实验结果表明利用压电阻抗技术可以判断钢筋混凝土结构开裂荷载,能较直观地反映梁裂纹扩展过程及其刚度损失状态。
With the rapid developing global economy and modern science and technologies, as well as the improving safety consciousness and safety demands of people, the problems concerning damage detection and health monitoring of many important engineering structures have attracted wide attention in recent years, and the study on damage detection and health monitoring has become one of the most active research fields in structural engineering community. Supported jointly by the National Natural Science Foundation of China (No.50378041), the Specialized Research Fund for Doctoral Program of Higher Education (No.20030487016) and the Excellent PhD Dissertation Foundation of Huazhong University of Science and Technology (No.2004-23), in this dissertation, the studies on structural crack identification and health monitoring based on the anti-resonant frequency information and piezoelectric impedance (or admittance) have been implemented numerically and experimentally.
     In this dissertation, the main research works and results include:
     (1) A kind of damage identification techniques based on the first anti-resonance curve and its slope and curvature is proposed. The basic idea of the proposed method is: when the driving point impedances (or admittances), and the first anti-resonance curve of the beam structure, as well as the slope and curvature of the first anti-resonance curve are acquired, the presence and the location of crack damage can be identified by monitoring the presences of the breaks or jumps of the first anti-resonance curve. Once the crack locations are determined, integrated with the identified natural frequencies and frequency equation of cracked beam, the sizes of the beam cracks can also be identified.
     (2) Two rotational spring models used to represent beam cracks are introduced, and the validity of the models is subsequently verified by numerical and experimental examples. The vibration characteristics analysis of a cracked concrete beam based on one of the two rotational spring models is performed, and the analytical results indicate that the presence of the beam crack results in the decrease of natural frequencies, the lower natural frequencies, however, are insensitive to the beam crack, and the crack at a position induces the same change in natural frequencies as its symmetrical position of the beam. It seems to be deduced that it is not reliable to detect damage of beams only depending on the lower natural frequencies.
     (3) The frequency equation of simple supported beams with one crack or two cracks is deduced. Based on the antiresonance information vibration analysis and damage identification of single-crack and double-crack and multi-crack beams are numerically implemented. The results indicate that not only the presence of the crack damage and the location of moderate crack damage are identified, but also the extent of crack damage is qualitatively evaluated by using the first anti-resonance curve; the small crack damage is located by using the slope and curvature of the first anti-resonance curve; integrated with the first two identified natural frequencies and the frequency equation, the sizes of the beam cracks are also identified with a high degree of accuracy.
     (4) Damage identification of single-crack and double-crack and multi-crack beams based on the first antiresonance curve vibration analysis is experimentally implemented. It is concluded that the measured first antiresonance curve is close to the caculated one in genaral; by the use of the measured first antiresonance curve the moderate crack damage is identificated, however, when the number of the cracks increase, the breaks or jumps of the measued first antiresonance curve become not visible.
     (5) Impedance of a piezoelectric smart steel beam with a single PZT sheet is implemented theoretically. On the basis, the piezoelectric impedance of a smart steel beam with free boundary conditions at both ends is verified numerically and experimentally, and the numerical and experimental results are comparable. Experimental study on damage identification of cracked steel beams is performed based on the piezoelectric impedance technique. The presence of the crack of a steel beam with a PZT sheet is detected via monitoring the variations of piezoelectric admittances. Further, when the steel beam is furnished with three PZT sheets in different positions, integrated the antiresonant frequency in the scaning frequency range, the crack location is also identified successfully.
     (6) Experimental study on a steel frame structure for health monitoring is implemented based on the piezoelectric impedance technique. By monitoring the changes in piezoelectric admittances of different PZT sheets in different damage cases, it is found that the electric admittances of the PZT bonded on the joint plate vary obviously, and those of the PZT bonded on the low diagonal support vary a little, and those of the PZT bonded on the top diagonal support hardly vary. So it is concluded that the damage of the steel frame structure can be identified by using the piezoelectric impedance technique, and the piezoelectric impedance technique has the ability to detect the local damage. Subsequently, the two damage indexes, i.e. RMSDR and RMSDI, are used to qualitatively evaluate the damage extent of the steel frame structure, and the results show that the damage extent can be preferably evaluated by the use of the RMSDR index.
     (7) Curing process of concrete samples is monitored based on the piezoelectric impedance technique. It is found from the experimental results that with the increase of concrete ages, the resonance of electric admittance curve of the PZT sheet bonded on the concrete block gradually increases, and the extent of increase is larger in 3-6 day ages than in the next ages. From the electromechanical coupled characteristic of PZT it is known that the resonance of piezoelectric admittance is corresponding to the natural frequency of the concrete block, so the variations of rigidity of concrete block in concrete ages can be forecasted indirectly.
     (8) Based on distributed sensing of multi-PZT and piezoelectric impedance technique, the experimental study on crack location of a concrete beam is performed. From the experimental results it is found that the PZT sheet near to the crack is sensitive to the crack, the PZT sheet far from the crack, however, is insensitive to the crack, which further verifies the ability of PZT to detect local damage transducer and the ability to damage location. Integrated the RMSDR index the crack locations of the concrete beam are determined in different damage cases.
     (9) Experimental strudy on a reinfored concrete beam for load process monitoring is conducted. The RC beam is loaded on two sites of beam by the use of a distribution beam, and several PZT sheets are bonded to the bottom surface of the RC beam with certain interval, and are used to monitor the presence of cracking and the loss of rigidity of the RC beam. The experimental results indicate that the load value of cracking of the RC beam under the vertical loads can be estimated, and the cracking propagation and the loss status of rigidity of the RC beam can also intuitively reflected based on the piezoelectric impedance technique.
引文
[1] 郑栋梁, 李中付, 华宏星. 结构早期损伤识别技术的现状和发展趋势. 振动与冲击, 2002, 21(2): 1-7
    [2] 王丹生, 吴宁, 朱宏平. 光纤光栅传感器在桥梁工程中的研究与应用现状. 公路交通科技, 2004, 21(2): 57-61
    [3] 秦权. 桥梁结构的健康监测. 中国公路学报, 2000, 13(2): 37-42
    [4] 韩大建, 王文东. 基于振动的结构损伤识别方法的近期研究进展. 华南理工大学学报(自然科学版), 2003, 31(1): 91-96
    [5] Koyluoglu, H U, Nielsen, S R K, et al. Prediction of global and localized damage and future reliability for RC structures subject to earthquakes. Earthquake Engineering and Structural Dynamics, 1997, 26(4): 463-475
    [6] Zubaydi A, Haddara M R, Swamidas A S J, On the use of the autocorrelation function to identify the damage in the side shell of a ship’s hull. Marine Structures, 2000,13(6): 537-551
    [7] Seibold S, Weinert K, Time domain method for the localization of cracks in rotors. Journal of Sound and Vibration, 1996, 195(1): 57-73
    [8] Ma, J, Li, C J. Detection of localized defects in rolling element bearings via composite hypothesis test. Symposium on Mechatronics, ASME, 1993, 50: 295-300
    [9] Debra G, Hunter N, Farrar C R, et al. Identification damage sensitive features using nonlinear time-series and bi-spectral analysis. Proceedings of 18th International Modal Analysis Conference, San Antonio, Texas, 2000, pp. 1796-1802,
    [10] 程珩, 程明璜. 倒频谱在齿轮故障诊断中的应用. 太原理工大学学报, 2003, 34(6): 661-667
    [11] 高宝成, 时良平, 史铁林等. 基于小波分析的简支梁裂纹识别方法研究. 振动工程学报, 1997, 10(1): 81-85
    [12] Hou, Z., Noori, M., and St. Amand, R., Wavelet-Based Approach for Structural Damage Detection. Journal of Engineering Mechanics, ASCE, 2000, 126(7): 677-683.
    [13] Melhem, H., Kim, H. Damage detection in concrete by Fourier and wavelet analysis. Journal of Engineering Mechanics, ASCE, 2003, 129(5): 571-577
    [14] Kim, H, Melhem, H. Fourier and wavelet analyses for fatigue assessment of concrete beams. Experimental Mechanics, 2003, 43(2): 131-140
    [15] Kim, H, Melhem, H. Damage detection of structures by wavelet analysis. Engineering Structures, 2004, 26(3): 347-362
    [16] Ovanesova, A V, Suarez L E, Application of wavelet transforms to damage detection in frame structures. Engineering Structures, 2004, 26(1): 39-49
    [17] 孙增寿, 韩建刚, 任伟新. 基于曲率模态和小波变化的结构损伤识别方法. 振动、测试与诊断, 2005, 25(4): 263-267
    [18] Zhu X. Q., Law S. S. Wavelet-based crack identification of bridge beam from operational deflection time history. International Journal of Solids and Structures, 2006, 43(7-8): 2299-2317
    [19] Cohen L. Time-frequency distributions: a review. Proceedings of the IEEE, 1989, 77(7): 941-981
    [20] Zheng G. T., Mcfadden P. D. A time-frequency distribution for analysis of signals with transient components and its application to vibration analysis. Journal of Vibration and Acoustics, Transaction of the ASME, 1999,121(1): 328-333
    [21] Huang N. E., Zheng S., Long S. R., et al. The empirical mode decomposition and Hilbert spectral for nonlinear and non-stationary time series analysis. Proceedings of Royal Society of London, Series A, 1998, 454: 903-995
    [22] Huang N. E. A new method for nonlinear and non-stationary time series analysis: empirical mode decomposition and Hilbert spectral analysis. Proceeding of SPIE-The International Society for Optical Engineering, 2000, 4056: 197-209
    [23] Yang J. N., Lei Y. Identification of civil structures with nonproportional damping. Proceeding of SPIE-The International Society for Optical Engineering, 2000, 3988: 284-294
    [24] Pines, D.J., Salvino, L.W. Health monitoring of one-dimensional structures using empirical mode decomposition and the Hilbert-Huang transform. Proceeding of SPIE-The International Society for Optical Engineering, 2002, 4701: 127-43
    [25] Xu Y. L., Chen J. Structural damage detection using empirical mode decomposition: experimental investigation. Journal of Engineering Mechanics, ASCE, 2004, 130(11): 1279-1288
    [26] Huang N., Huang K. 基于希尔伯特—黄变换的铁路桥梁结构健康监测. 中国铁道科学, 2006, 27(1): 1-7
    [27] Yan B. F., Miyamoto A. A comparative study of modal parameter identification based on wavelet and Hilbert-Huang Transforms. Computer-Aided Civil and Infrastructure Engineering, 2006, 21(1): 9-23
    [28] 姜绍飞, 刘明, 倪一清等. 大跨悬索桥损伤定位的自适应概率神经网络研究. 土木工程学报, 2003, 36(8): 74-78
    [29] Xu H, Humar J. Damage detection in a girder bridge by artificial neural network technique. Computer-Aided Civil and Infrastructure Engineering, 2006, 21(6): 450-464
    [30] Zhu H. P., Li L, Wang D. S. Damage assessment in periodic structures from measured natural frequencies by a sensitivity and transfer matrix-based method. Structural Engineering and Mechanics, 2003,16(1): 17-34
    [31] 徐宜桂, 史铁林, 杨叔子. 基于神经网络的结构动力模型修改和破损诊断研究. 振动工程学报, 1997, 10(1): 8-12
    [32] Hao H, Xia Y. Vibration-based damage detection of structures by genetic algorithm. Journal of Computing in Civil Engineering, 2002,16(3): 222-229
    [33] 易伟建, 刘霞. 混凝土梁板类构件边界条件识别与研究. 湖南大学学报(自然科学版), 2000, 27(4): 81-87
    [34] Ananda R. M., Srinivas J. and Murthy B.S.N. Damage detection in vibrating bodies using genetic algorithms. Computers and Structures, 2004, 82(11-12): 963-968
    [35] 朱劲松, 肖汝诚. 基于定期检测与遗传算法的大跨度斜拉桥损伤识别. 土木工程学报, 2006, 39(5): 85-89
    [36] Unger J. F., Teughels A. and De Roeck G. Damage detection of a prestressed concrete beam using modal strains. Journal of Structural Engineering, 2005, 131(9): 1456-1463
    [37] Aishi B., Ren W. X. Damage detection by finite element model updating using modal flexibility residual. Journal of Sound and Vibration, 2006, 290(1-2): 369-387
    [38] Wu J. R., Li Q. S. Structural parameter identification and damage detection for a steel structure using a two-stage finite element model updating method. Journal of Constructional Steel Research, 2006, 62 (3): 231-239
    [39] 朱宏平. 利用动态特性测量值的结构损伤检测方法的比较研究. 华中科技大学学报(城市科学版), 2002.3, 19(1): 48-53
    [40] Cawley P., Adams A. D. The location of defects in structures from measurements of natural frequencies. Journal of Strain Analysis, 1979, 14(2): 49-57.
    [41] Patil D. P., Maiti S. K. Detections of multiple cracks using frequency measurements. Engineering Fracture Mechanics. 2003, 70(12): 1553-1572
    [42] Zhu H. P., He B and Chen X. Q. Detection of Structural damage through changes in frequency. Wuhan University Journal of Natural Sciences, 2005, 10(6): 1069-1073
    [43] West W. M. Illustration of the use of modal assurance criterion to detect structural changes in an orbiter test specimen. Proceeding of Air Force Conference on Aircraft Structural Integrity. 1984, 1-6
    [44] Waldron K, Ghoshal A, Schulz M. J., et al. Damage detection using finite element and laser operational deflection shapes. Finite Elements in Analysis and Design. 2002, 38(3): 193-226
    [45] 陆秋海, 李德葆, 张维. 利用模态实验参数识别结构损伤的神经网络法. 工程力学, 1999, 16(1): 35-42
    [46] 李德葆, 陆秋海. 实验模态分析及其应用. 北京: 科学出版社, 2001.320-322, 25-57
    [47] Li Y. Y., Cheng L. and Yam L. H., et al. Identification of damage locations for plate-like structures using damage sensitive indices: strain modal approach. Computers and Structures, 2002, 80(25): 1881-1894
    [48] Shi Z. Y., Law S. S. and Zhang M. L. Structural damage localization from modal strain energy change. Journal of Sound and Vibration, 1998, 218(5): 825-844
    [49] Pandey A K, Biswas M. Damage detection in structures using changes in flexibility. Journal of Sound and Vibration, 1994, 169(1): 3-7
    [50] David C, Zimmerman et al. Structural damage detection using frequency response function. Proceedings of 13th IMAC, 1995, 179-184
    [51] Zhao J, Dewolf J T. Sensitivity Study for vibrational parameters used in damage detection. Journal of Structural Engineering, 1999, 125(4): 410-416
    [52] Lew J. S. Using transfer function parameter changes for damage detection of structures. AIAA Journal, 1995, 33(11): 2189-2193
    [53] Wang Z, Lin R M, Lim M K. Structural damage detection using measured FRF data. Computer Methods in Applied Mechanics and Engineering, 1997, 147(1-2): 187-197
    [54] Doebling S W, Farrar C R, Prime M B. Summary review of vibration based damage identification methods, The Shock and Vibration Digest, 1998, 30(2): 91-105
    [55] Hwang H.Y., Kim C. Damage detection in structures using a few frequency response measurements. Journal of Sound and Vibration, 2004, 270(1-2): 1-14
    [56] 韩大建, 王文东. 基于振动的结构损伤识别方法的近期研究进展. 华南理工大学学报(自然科学版), 2003, 31(1): 91-96
    [57] 方同. 多自由度系统中的反共振. 力学学报, 1979, 4: 360-366
    [58] Lallement G. and Cogan S. Reconciliation between measured and calculated dynamic behaviors: enlargement of the knowledge space. Proceeding of 10th IMAC, 1992, pp487-493
    [59] Rade D.A., Lallement G. A strategy for the enrichment of experimental data as applied to an inverse engensensitivity-based FE mode update method. Mechanical Systems and Signal Processing. 1998, 12(2): 293-307
    [60] Mottershead J. E. On the zeros of structural frequency response function and their sensitivities. Mechanical Systems and Signal Processing, 1998, 12(5): 591-597
    [61] D’ambrogio W., Fregolent A. The use of anti-resonances for robust model updating. Journal of Sound and Vibration, 2000, 236(2): 227-243
    [62] Yang S. M., Lee G. S. Structural damage identification using pole/zero dynamics in neural networks. AIAA Journal, 2001, 39(9): 1805-1808
    [63] Jones K., Turcotte J. Finite element model updating using anti-resonant frequencies. Journal of Sound and Vibration, 2002, 252(4): 717-727
    [64] Bamnios Y., Douka E. and Trochidis A. Crack identification in beam structures using mechanical impedance. Journal of Sound and Vibration, 2002, 256(2): 287-297
    [65] Inada T., Shimamura Y., Todoroki A, et al. Development of the two-step delamination identification method by resonant and anti-resonant frequency changes. Key Engineering Materials, 2004, 270-273: 1852-1858
    [66] Dilena M., Morassi A. The use of antiresonances for crack detection in beams. Journal of Sound and Vibration, 2004, 276(1-2): 195-214
    [67] Egashira M, Shinya N. Local strain sensing using piezoelectric polymer. Journal of Intelligent Material Systems and Structures, 1993, 4(7): 558-560
    [68] Keisuke K, Shiro B. Measurement of strain distribution using piezoelectric polymer film. JSME International Journal, series A. 1999, 42(1): 11-16
    [69] Wang D. H., Huang S. L. Health monitoring and diagnosis for flexible structures with PVDF piezoelectric film sensor array. Journal of Intelligent Material Systems and Structures, 2000, 11(6): 482-491
    [70] 石荣, 李在铭, 黄尚廉. 桥梁动态应变的压电传感和远程监测的研究, 仪器仪表学报, 2002, 23(4): 369-372
    [71] 郑旭锋, 肖沙里, 谭霞等. 压电传感技术在桥梁振动检测中的研究与应用, 压电与声光, 2003, 25(1): 71-74
    [72] Boller C., Biemans, C., Staszewski W J. Structural damage monitoring based on actuator-sensor system, Proceeding of SPIE-The International Society for Optical Engineering, 1999, 3668: 285-294
    [73] Kessler S. S., Spearing S. M. Design of a piezoelectric-based structural health monitoring system for damage detection in composite materials. Proceeding of SPIE-The International Society for Optical Engineering, 2002, 4701: 86-96
    [74] IP K. H, Mai Y. W. Delamination detection in smart composite beams using Lamb wave, Smart Materials and Structures, 2004, 13(3): 544-551
    [75] Monnier T. Lamb waves-based impact damage monitoring of a stiffened aircraft panel using piezoelectric transducers. Journal of Intelligent Material Systems and Structures, 2006, 17(5): 411-421
    [76] Liang C, Sun F P, Rogers C A. Electro-mechanical impedance modeling of active material systems. Journal of Intelligent Material Systems and Structures, 1994, 21 (3): 232-252
    [77] Liang C, Sun F P, Rogers C A. An impedance method for dynamic analysis of active material system. Journal of Vibration and Acoustics, 1994, 116(1): 120-128
    [78] Liang C, Sun F P, Rogers C A. Coupled electromechanical analysis of adaptive material system-Determination of the actuator power consumption and system energy transfer. Journal of Intelligent Material Systems and Structures, 1994, 5(1): 12-20
    [79] F. P. Sun, C. Liang and C. A. Rogers. Structural modal analysis using collocated piezoelectric actuator/sensors-an electromechanical approach. Proceedings of the North American Conference on Smart Materials and Structures, 1994, 2: 13-18
    [80] Chaudhry Z. A., Joseph T, Sun F. P., et al. Local-area health monitoring of aircraft via piezoelectric actuator/sensor patches. Proceeding of SPIE-The International Society for Optical Engineering, 1995, 2443: 268-376
    [81] Sun F., P., Chaudhry Z. A., Liang C, et al. Truss structure integrity identification using PZT sensor-actuator. Journal of Intelligent Material Systems and Structures, 1995, 6(1): 134-139
    [82] Ayres J W, Rogers C A, and Chaudhry Z.A. Qualitative health monitoring of a steel bridge structure joint via piezoelectric actuator/sensor patches. Proceedings of SPIE-The International Society for Optical Engineering, 1996, 2719: 123-131
    [83] Ayres J W, Lalande F., Chaudhry Z.A, et al. Qualitative impedance-based health monitoring of civil infrastructures. Smart Materials and Structures, 1998, 7(5): 599-605
    [84] Zhou S. W., Liang C. and Rogers C. A. An impedance-based system modeling approach for induced strain actuator-driven structures. Journal of Vibration and Acoustics, Transaction of the ASME, 1996, 118(1): 323-331
    [85] Lalande F., Rogers C. A., Childs B. W., et al. High-frequency impedance analysis for NDE of complex precision parts. Proceedings of SPIE-The International Society for Optical Engineering, 1996, 2717: 237-243
    [86] Giurgiutiu V, Rogers C. A., Chao Y. J., et al. Adaptive health monitoring concepts for spot-welded and weld bonded structural joints. American Society of Mechanical Engineers, Aerospace Division (publication) AD, 1997, 54: 99-104
    [87] Giurgiutiu V, Reynolds A, Rogers C. A. Details of the electro-mechanical (E/M) impedance health monitoring of spot-welded structural joints. Proceedings of SPIE-The International Society for Optical Engineering, 1999, 3668: 351-362
    [88] Giurgiutiu V, Reynolds A, Rogers C. A. Experimental investigation of E/M impedance health monitoring for spot-welded structural joints. Journal of Intelligent Material Systems and Structures, 1999, 10(10): 802-812
    [89] Giurgiutiu V, Rogers C. A. Modeling of the electro-mechanical (E/M) impedance response of a damaged composite beam. American Society of Mechanical Engineers, Aerospace Division (publication) AD, 1999, 59: 39-46
    [90] Park G., Kabeya K., Cudney H. H, et al. Impedance-based structural health monitoring for temperature varying application. JSME International Journal, Series A: Solid Mechanics and Material Engineering,1999, 42(2): 249-258
    [91] Park G, Cudney H. H. and Inman D. J. Impedance-based health monitoring of civil structural components. Journal of Infrastructure Systems, 2000, 6(4): 153-160
    [92] Park G, Cudney H. H. and Inman D. J. Feasibility of using impedance-based damage assessment for pipeline structures. Earthquake Engineering and Structural Dynamics, 2001, 30(10): 1463-1474
    [93] Lopes JR. V., Park G, Cudney H. H., et al. Impedance-based structural health monitoring with artificial neural networks. Journal of Intelligent Material Systems and Structures, 2000, 11(3): 206-214
    [94] Park G, Cudney H. H. and Inman D. J. An integrated health monitoring technique using structural impedance sensors. Journal of Intelligent Material Systems and Structures, 2000, 11(6): 802-812
    [95] Giurgiutiu V and Zagrai A N. Electro-mechanical impedance method for crack detection in metallic plates. Proceedings of SPIE-The International Society for Optical Engineering, 2001, 4335: 131-142
    [96] Giurgiutiu, V, Zagrai, A. Embedded self-sensing piezoelectric active sensors for on-line structural identification, Journal of Vibration and Acoustics, Transaction of the ASME, 2002, 124(1): 116-124
    [97] Zagrai, A, Giurgiutiu V. Active sensors for health monitoring of ageing aerospace structures. Proceedings of SPIE-The International Society for Optical Engineering, 2000, 3985: 294-305
    [98] Zagrai, A, Giurgiutiu, V. Health monitoring of aging aerospace structures using the electro-mechanical impedance method, Proceedings of SPIE-The International Society for Optical Engineering, 2002, 4702: 289-300
    [99] Soh C K, Tseng K K and Bhalla S et al. Performance of smart piezoceramic patches in health monitoring of a RC bridge. Smart Materials and Structures, 2000, 9(4): 533-542
    [100] Bhalla S, Soh C K et al. Diagnosis of incipient damage in steel structures by means of piezoceramic patches. Proceedings of the 8th East Asia-Pacific Conference on Structural Engineering and Construction, 5-7 December, Singapore, 2001: 238-248
    [101] Tseng K K and Naidu A S K. Non-parametric damage detection and characterization using smart piezoelectric material. Smart Materials and Structures, 2002, 11(3): 317-329
    [102] Tseng K. K. Health monitoring of concrete structures subjected to environmental attacks. Proceedings of SPIE-The International Society for Optical Engineering, 2002, 4696, 168-175
    [103] Bhalla S. Naidu A. S. K., Wee O. C., et al. Practical issues in the implementation of electro-mechanical impedance technique for NDE. Proceedings of SPIE-The International Society for Optical Engineering, 2002, 4935: 484-494
    [104] Bhalla S. Naidu A. S. K., Soh C. K. Influence of structure-actuator interactions and temperature piezoelectric mechatronic signatures for NDE. Proceedings of SPIE-The International Society for Optical Engineering, 2003, 5062: 263-269
    [105] Bhalla S., Soh C., K. Structural impedance based damage diagnosis by piezo-transducers. Earthquake Engineering and Structural Dynamics, 2003, 32(12): 1897-1916
    [106] Xu Y. G., Liu G. R. A modified electro-mechanical impedance model of piezoelectric actuator-sensors for debonding detection of composite patches, Journal of Intelligent Material Systems and Structures, 2002, 13(6): 389-396
    [107] Masato A, Yozo F, Takeshi M. Structural health monitoring by smart structure technology using piezo-impedance method. Proceedings of China-Japan Workshop on Vibration Control and Health Monitoring of Structures and Third Chinese Symposium on Structural Vibration Control, Shanghai, China, Dec, 2002: 1-9
    [108] Ritdumrongkul, S, Abe, M, Fujino, Y. Quantitative health monitoring of bolted joints using a piezoceramic actuator-sensor, Proceedings of SPIE-The International Society for Optical Engineering, 2003, 5057:126-137
    [109] Giurgiutiu V, Claudia K. H. Comparative study of neural-network damage detection from a statistical set of electro-mechanical impedance spectra. Proceedings of SPIE-The International Society for Optical Engineering, 2003, 5047: 108-119
    [110] Giurgiutiu V, Harries K, Petrou M, et al. Disbond detection with piezoelectric wafer active sensors in RC strctures strengthened with FRP composite overlays. Earthquake Engineering and Engineering Vibration, 2003, 2(2): 213-223
    [111] Park G., Sohn H., Farrar C. R., et al. Overview of piezoelectric impedance-based health monitoring and path forward. The Shock and Vibration Digest, 2003, 35(6): 451-463
    [112] Rutherford A. C., Park G., Sohn H., et al. Nonlinear Feature Identification of Impedance-based Structural Health Monitoring. Proceedings of SPIE-The International Society for Optical Engineering, 2004, 5390: 521-531
    [113] Wait J. R., Park G., and Sohn H., et al. Plate damage identification using wave propagation and impedance methods. Proceedings of SPIE-The International Society for Optical Engineering, 2004, 5394: 53-65
    [114] Bhalla S., Soh C. K. Structural health monitoring by piezo-impedance transducers I: Modeling. Journal of Aerospace Engineering, 2004, 17(4): 154-165
    [115] Bhalla S., Soh C. K. Structural health monitoring by piezo-impedance transducers II: Applications. Journal of Aerospace Engineering, 2004, 17(4): 166-175
    [116] Giurgiutiu V, Xu B. L. Development of a Field-portable small-Size impedance analyzer for structural health monitoring using the electromechanical impedance technique. Proceedings of SPIE-The International Society for Optical Engineering, 2004, 5391: 774-785
    [117] Giurgiutiu V, Li B. In-situ fabricated composite piezoelectric wafer active sensors for structural health monitoring., American Society of Mechanical Engineers, Aerospace Division (publication) AD, 2004, 69: 89-95
    [118] Sodano, H.A., Park, G., Inman, D. J. An investigation into the performance of macro-fiber composites for sensing and structural vibration applications. Mechanical Systems and Signal Processing, 2004, 18 (3): 683-697
    [119] A. Tebaldi, V. Jr. Lopes and J. B. Aparecido. Fault detection using piezoelectric devices and genetic algorithms. Proceedings of Inverse Problems, Design and Optimization Symposium, Rio de Janeiro, Brazil, 2004, 1-8
    [120] Fasel T. R., Sohn H., Park G., et al. Active sensing using impedance-based ARX models and extreme value statistics for damage detection. Earthquake Engineering and Structural Dynamics, 2005, 34(7): 763-785
    [121] Dove J. R., Park G., Farrar C. R. Hardware design of hierarchal active-sensing networks for structural health monitoring. Smart Materials and Structures, 2006, 15(1): 139-146
    [122] Yang, Y., Soh, C.K., Xu, J. An integrated evolutionary programming and impedance-based NDE method. Proceedings of SPIE-The International Society for Optical Engineering, 2005, 5649: 154-161
    [123] Annamdas V. G. M., Soh C. K. Embedded piezoelectric ceramic transducers in sandwiched beams. Smart Materials and Structures, 2006, 15(2): 538-549
    [124] Liu W. P., Giurgiutiu V. Finite element modeling and simulation of piezoelectric wafer active sensors interaction with the host structure for structural health monitoring. Proceedings of SPIE-The International Society for Optical Engineering, 2006, 6174: 61742Z1-12
    [125] 高峰, 李以农, 王德俊等. 用于结构健康诊断的压电阻抗技术. 振动工程学报, 2000, 13(1): 94-99
    [126] 高峰, 沈亚鹏. 基于压电导率特性识别结构裂纹方法的研究. 实验力学, 2000, 15 (1): 60-67
    [127] 高峰, 沈亚鹏, 田晓耕. 基于压电增益特性进行梁中缺陷的识别. 机械强度, 2001,23(2):174-177
    [128] 李以农, 郑 玲, 闻邦椿. 基于压电阻抗的结构缺陷评价方法的实验研究. 力学与实践, 2002, 24(3): 44-47
    [129] 熊先锋, 杨光瑜, 杨拥民等. 压电阻抗技术用于结构健康诊断的一种方法. 传感器技术, 2003, 22(10): 62-64
    [130] 熊先锋, 杨拥民, 杨光瑜等. 应用压电阻抗技术的结构健康诊断法. 兵工自动化, 2005, 24(2): 2-4
    [131] 孙明清, 李卓球, 侯作富. 压电材料在土木工程结构健康检测中的应用. 混凝土, 2003, 10(3): 22-24
    [132] 焦莉, 李宏男. PZT的EMI技术在土木工程健康监测中的研究进展. 防灾减灾工程学报, 2006, 26(1): 102-107
    [133] C. M. 哈里斯, C. F. 克瑞德. 冲击与振动手册. 科学出版社, 1990. 214-248
    [134] Paipetis S. A., Dimarogonas, A. D. Analytical Methods in Rotor Dynamics. London: Elsevier Applied Science, 1986
    [135] Lee U, Yoo H. S. Spectral element method: application to structural damage identification. Proceedings of SPIE-The International Society for Optical Engineering, 2003, 5062: 712-719
    [136] Bamnios G, Trochides A. Dynamic behavior of a cracked cantilever beam. Applied Acoustics, 1995, 45(2): 97-112
    [137] Chen X. F, He Z. J, and Gao Q, et al. Identification of crack damage with wavelet finite element. Key Engineering Materials, 2005, 293-294: 63-70
    [138] 陶宝祺主编. 智能材料结构. 北京: 国防工业出版社, 1997
    [139] Esteban J., Modeling of the sensing region of a piezoelectric actuator/sensor. Ph.D. Dissertating, 1996, Virginia Polytechnic Institute and State University, Blacksburg, VA. USA.
    [140] Agilent4294A Precision Impedance Analyzer: Product Note 4294-1, Agilent Technologies, Inc, 2001
    [141] Inman D J. Engineering Vibration, Prentice-Hall, Inc, 1996
    [142] Blevins R D. Formulas for Natural Frequency and Mode Shape, Litton Educational Publication Inc, 1979
    [143] 周文委, 文玉梅, 李平等. 埋入混凝土中压电元的电-声换能特性研究. 压电与声光, 2004, 26(2): 116-118
    [144] 陈雨, 文玉梅, 李平等. 混凝土中压电陶瓷在变荷载作用下的特性研究. 压电与声光, 2005, 27(6): 700-703
    [145] Tseng K K and Wang L S. Smart piezoelectric transducers for in situ health monitoring of concrete. Smart Materials and Structures, 2004, 13(5): 1017-1024
    [146] 张建仁, 王海臣, 杨伟军. 混凝土早期抗压强度和弹性模量的实验研究. 中外公路, 2003, 23(3): 89-92

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700