用户名: 密码: 验证码:
南大洋太平洋扇区风生大洋环境变异与动力机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
南大洋内的海陆分布具有海洋占主导、各大洋间相互连通的特征,使得这一海域大洋间的物质与能量交换对全球气候变化的响应与影响显得尤为显著和深远。绕极西风带风场作为南大洋最重要的外驱动场:副极地的纬向风应力直接驱动了全球最强的南极绕极流系统(Antarctic Circumpolar Current,ACC)并维持着南大洋的经向翻转环流结构(meridional overturning circulation,MOC),从而影响着全球主要水团的生成和性质变化;副热带的风应力旋度场分布使得南半球的三个副热带环流系统在其南边缘连通形成了副热带超级流涡结构(SouthernHemisphere subtropical supergyre)。后者作为近几年新发现的大洋环流结构特征,其与南侧的ACC系统之间存在密切的联系,本文围绕南太平洋扇区风场变化作用下这两个大洋环流系统间的相互作用、长期变化与气候效应这一关键科学问题进行了深入系统的研究,通过敏感性实验揭示了海洋对风场变化响应中的机制过程。本文主要的创新成果如下:
     1.受与南半球环状模(Southern Hemisphere Annular Mode,SAM)相关的南半球西风带纬向风应力极向增强变化影响,增强的Ekman北向输送导致了南半球副热带超级流涡内部除厄加勒斯环流系统外水团主要呈现变冷变淡趋势,且在南太平洋中部海域超级流涡表现出显著的南向偏移变化。超级流涡内部联通性也随着这一南移变化而增强,随之通过南部路径的大洋间水团、能量交换增多,从而将影响局地甚至全球气候变化。
     2.利用高分辨率模式结果研究确认了西向的塔斯曼流(Tasman Outflow,TO)水体主要来自东澳大利亚流延伸体与ACC回流,并揭示了TO在塔斯马尼亚岛西部海域中层深度的分叉路径,同时发现TO流量输送存在多时间尺度的变化特征,中尺度与准季节变化量级相近,年际变化信号较弱。海盆尺度的风应力旋度场与东澳大利亚流的强季节变化决定了其流量的准季节变化;源自东澳大利亚流的中尺度涡旋向南向西移动,调节着塔斯曼流输送中尺度变化。
     3.世界大洋环流实验计划(WOCE)I9S断面的全水深CTD观测分析显示其北端受南澳大利亚环流系统控制,以西向输送为主,对应于印太大洋间的塔斯曼通道。基于水团性质指标与斜压输送极值位置两种方法分辨的ACC主要锋面结构相互匹配。高分辨率的CTD观测与卫星高度计数据相结合追踪到两个反气旋式中尺度涡旋现象引起了亚南极锋(Subantarctic Front,SAF)位置与输送流量的显著变化,并且随着其移动引起了跨锋面的水团输送。多年的高度计数据分析发现中尺度涡旋变化主要集中在南极极地锋带(Antarctic Polar Frontal Zone,APFZ),其伴随着ACC主要锋面的合并、分叉,改变着对应锋面的位置与强度。
     4.分析ERA-40风场数据显示在南太平洋扇区具有典型SAM正位相变化特征,即西风带纬向风应力极向增强,中纬度风应力旋度增强、零线位置南移。为了研究南太平洋海洋环流在这种风场变化下的响应机制,我们利用MIT GeneralCirculation Model(MITgcm)大洋环流模式分别进行了粗网格(1o1o)和涡旋(18o18o)两种分辨率的数值模拟试验。粗网格模拟结果显示风场变化下首先是海洋Ekman动力响应过程。随着纬向风应力的极向增强,南移增强的Ekman北向速率与Ekman抽吸速率使得DeaconCell尤其是其南上升分支显著南移增强,随之使得ACC海域等密面经向梯度南侧增大、北侧减小,造成ACC输送南侧增强、北侧减弱。ACC南侧等密面经向梯度的增强也使得副极地罗斯流涡增强与膨胀,同时南太平洋正风应力旋度场的变化引起了副热带流涡的增强与极向膨胀,而两流涡之间的ACC系统由于受挤压流幅变窄、总输送减小,但是ACC锋面位置并没有随西风带急流的极向增强发生显著偏移现象。增强南移的Ekman输送将更多副极地较轻海水向北运移然后潜沉,南太平洋副热带的中层水团受其影响呈现以新西兰东部海域为中心变冷变淡;ACC海域在副热带流涡南移和深层MOC南向输送增强综合作用下增温;南极底层水(Antarctic Bottom Water,AABW)生成减少、变暖。而涡旋分辨率下的模拟结果反映了在较长时间尺度上风场极向增强下的极向涡致输运的响应变化补偿并减弱了海洋Ekman动力响应调整过程,使得海洋对风场变化的响应表现与粗网格分辨率数值试验结果相比没有那么显著,并且其热输送作用显著贡献于南大洋变暖。
     以上研究为揭示南大洋环流与水团在气候变化中的重要作用奠定了基础。
The Southern Ocean, where the sea takes lager proportion in the land-seadistribution and contacts the southernmost waters of the Southern Hemisphere, plays amuch significant and profound role on the responses and feedback of the exchanges ofthe mass and energy to global climate changes. As the most important driving factor,the Southern Hemisphere subpolar westerlies drives directly the ACC system a ndmaintains the Southern Ocean MOC, thus influencing indirectly the formation andproperties of water masses; the property of the wind stress curl in the midlatitudesassociated with the westerly winds permits an inter-oceanic connection of the threesubtropical gyres and the formation of the Southern Hemisphere subtropical supergyre.As a new found character of the ocean general circulation, the supergyre has closeconnection with the southern ACC system. In this paper, we provide somecomprehensive and systematic researches on their interaction, multidecadel changesand the climate impact under the influence of the wind changes in the Pacific sectionof the Southern Ocean, and reveal the key mechanisms and processes of the oceanicresponses to this wind changes through sensitivity experiments. Some main newreseareh results are listed as follows:
     1. Driving by the poleward-intensifying basin-scale westerly winds associated withthe SAM changes, the water masses in the Southern Hemisphere subtropicalsupergyre interiors become cooler/fresher, with the significant exceptions of theAgulhas Current system and Agulhas leakage. The results also exhibit a strongsouthward shift in the central-south Pacific, suggesting a pronounced strengthening ofthe inter-basin connection of the supergyre.
     2. The simulated Tasman Outflow (TO) off eastern Tasmania originates in theremainder of the East Australian Current (EAC) and joins the ACC recirculation toturn west. After flowing past southern Tasmania, the TO splits a weak northwardbranch flowing along the western slope off Tasmania constitutes partly the FlindersCurrent (FC) while others merge ultimately into a much stronger westward flowacross the South Australian Basin. The simulated transport variability of TO is largestin the decadal band, slightly smaller in the mesoscale and quasi-annual bands, andsmallest in the interannual band. In particular, the modeling results fairly support thatthe energetic offshore eddies associated with the EAC migrate poleward andwestward around the Tasmania and play a key role in modulating the current path and the mesoscale variability. And it also reveals that the quasi-annual changes intransport are highly correlated with changes in wind stress curl over the South Pacificand the EAC.
     3. The full-depth CTD observations reveal the net westward transport at the northend of WOCE I9S section, determined by the south Australian circulation system,corresponds to the above Tasman leakage. Relying on a consistent set of water masscriteria and baroclinic transport maxima, the ACC fronts are identified. Mesoscaleeddy features are identifiable in the high-resolution CTD sections and tracked inconcurrent maps of altimetric sea level anomalies (SLA). Because of the existenceand propagation of the remarkable mesoscale eddy features within the SAF, theeastward transport of the SAF presents at two latitude bands separating by1oand thecross-front transport occurs. Both the CTD surveys and the altimetric data suggestthat the mesoscale variability is concentrated around the APFZ and causes the ACCfronts to merge, diverge, and to fluctuate in intensity and position along their paths.
     4. The above researches suggest the dominated role of the wind-driving on thesupergyre and ACC system. The European Centre for Medium-Range WeatherForecasts (ECMWF) Re-Analysis (ERA-40) westerly winds represent a significantmultidecadal poleward-intensifying changes in the Pacific section, which is associatedwith the typical positive phase of the SAM. Using the MITgcm s imulations at thecoarse and eddy-resolving resolutions, we discuss the mechanisms of the oceanicresponses to this wind changes in detail. The results indicate that the first response isthe oceanic Ekman dynamical processes. The strengthening and the poleward shift ofthe northward Ekman velocity as well as the Ekman pumping rate led to acorresponding strengthening trend in the southern branch of the Deacon Cell. Thisstrengthening, in turn, intensified the meridional density gradient and the tilting of theisopycnal surfaces, so the southern ACC transport and the subpolar gyre strengthened.The intensified wind stress curl over the midlatitude ocean leads an enhanced andexpanded subtropical gyre, making the Tasman leakage be more crucial in thePacific/Indian connection. The changes of the gyres then lead a considerablenarrowing of the ACC that tends to reduce the ACC transport. However, there is nosignificant correlation between the ACC position change and the poleward-shiftingwesterly wind jet. The modeling reveals that the enhanced and poleward shift of the Ekman transport carries more lighter water from the subpolar region and results in theSAMW and AAIW presenting a robust cooling/freshening in the central-south Pacific,east of New Zealand. The combined influences of the poleward-intensifyingsubtropical gyre and strengthening southward transport of the subtropical deep MOCmake the ACC region significantly warm. The SAM-like wind changes alsocontribute to warming and reducing the formation rate of AABW. In the longer term,the eddy permitting simulations demonstrate that changes in poleward eddy fluxespartially compensate for the enhanced equatorward Ekman transport and makes thewind-driven changes is only moderate and not as strong as the coarse-resolutions. Theenhanced eddy state is more effcient at transporting poleward heat, leading to awarming of the Southern Ocean.
     Above research results lay the foundation for the further exploration of the keyrole of the Southern Ocean on the global climate change.
引文
[1]. Abernathey R, Marshall J, Ferreira D (2011). The Dependence of Southern Ocean MeridionalOverturning on Wind Stress. Journal of Physical Oceanography,41,2261–2278.
    [2]. Adcroft A, Campin J M, Heimbach P et al (2006). Mitgcm user’s manual, MIT/EAPS,Cambridge, MA02139, USA.
    [3]. Alory G, Wijffels S, Meyers G (2007). Observed temperature trends in the Indian Ocean over1960–1999and associated mechanisms. Geophysical Research Letters,34, L02606,doi:10.1029/2006GL028044.
    [4]. Aoki S, Yoritaka M, Masuyama A (2003). Multidecadal warming of subsurface temperaturein the Indian sector of the Southern Ocean. Journal of Geophysical Research,108(C4),8081,doi:10.1029/2000JC000307.
    [5]. Aoki S, Bindoff N L, Church J A (2005). Interdecadal w ater mass changes in the SouthernOcean between30°E and160°E. Geophysical Research Letters,32, L07607,doi:10.1029/2004GL022220.
    [6]. Aoki S, Akitomo K (2007). Observations of small-scale disturbances of the SubantarcticFront south of Australia. Deep-Sea Research I,54,320-339.
    [7]. Aoki S, Sasai Y, Sasaki H et al (2010). The cyclonic circulation in the Australian–Antarcticbasin simulated by an eddy-resolving general circulation model. Ocean Dynamics,30(3),743–757, doi:10.1007/s10236-009-0261-y.
    [8]. Arbic B K, Flierl G R (2004). Baroclinically Unstable Geostrophic Turbulence in the Limitsof Strong and Weak Bottom Ekman Friction: Application to Midocean Eddies. Journal ofPhysical Oceanography,34,2257–2273.
    [9]. Arblaster J M, Meehl G A (2006). Contributions of external forcings to Southern AnnularMode trends. Journal of Climate,19,2896-2905.
    [10].Arthur W C (2007). The Flinders Current and upwelling in submarine canyon. Master Thesis,University of New South Wales, Australia,118pp.
    [11].Badin G, Williams R G (2010). On the Buoyancy Forcing and Residual Circulation in theSouthern Ocean: The Feedback from Ekman and Eddy Transfer. Journal of PhysicalOceanography,40,295-310.
    [12].Baines P G, Edwards R J, Fandry C B (1983). Observations of a new Baroclinic currentalong the western continental slope of Bass Strait. Australian Journal of Marine andFreshwater Research,34,155-157
    [13].Beal L M, Bryden H L (1999). The velocity and vorticity structure of the Agulhas Current at32oS. Journal of Geophysical Research,104,5151-5176.
    [14].Beal L M, De Ruijter W P M, Biastoch A et al (2011). On the role of the Agulhas system inocean circulation and climate. Nature,472,429-436.
    [15].Belkin I M, Gordon A (1996). Southern Ocean fronts from the Greenwich meridian toTasmania. Journal of Geophysical Research,101,3675-3696.
    [16].Biastoch A, B ning C W, Lutjeharms J R E et al (2009). Increase in Agulhas leakage due topole-ward shift of the Southern Hemisphere westerlies. Nature,462,495-498.
    [17].Bindoff N L, Church J A (1992). Warming of the water column in the southwest PacificOcean. Nature,357,59-62
    [18].B ning C W, Dispert A, Visbeck M et al (2008). The response of the Antarctic CircumpolarCurrent to recent climate change. Nature Geoscience,1,864-869.
    [19].Borowski D, Gerdes R, Olbers D (2002). Thermohaline and wind forcing of a circumpolarchannel with blocked geostrophic contours. Journal of Physical Oceanography,32,2520-2540.
    [20].Boyer T P, Levitus S, Antonov J I et al (2005). Linear trends in salinity for the World Ocean,1955–1998. Geophysical Research Letters,32, L01604, doi:10.1029/2004GL021791.
    [21].Bryden H L, Beal L M, Duncan L M (2005). Structure and transport of the Agulhas Currentand its temporal variability. Journal of Oceanography,61,479-492.
    [22].Cai W, Whetton P H, Karoly D J (2003). The response of the Antarctic Oscillation toincreasing and stabilized atmospheric CO2. Journal of Climate,16,1525-1538.
    [23].Cai W, Sh G i, Cowan T, Bi D et al (2005). The response of the Southern Annular Mode, theEast Australian Current and the southern mid-latitude circulation to global warming.Geophysical Research Letters,32, L23706, doi:10.1029/2005GL024701.
    [24].Cai W (2006). Antarctic ozone depletion causes an intensification of the Southern Oceansuper-gyre circulation. Geophysical Research Letters,33, L03712,doi:10.1029/2005GL024911.
    [25].Cai W, Cowan T (2007). Trends in Southern Hemisphere circulation in IPCC AR4modelsover1950–99: Ozone depletion versus greenhouse forcing. Journal of Climate,20,681-693.
    [26].Cai W, Cowan T, Godfrey S et al (2010). Simulations of Processes Associated with the FastWarming Rate of the Southern Midlatitude Ocean. Journal of Climate,23,197-206.
    [27].Carton J A, Giese B S (2008). A Reanalys is of Ocean Climate Using Simple Ocean DataAssimilation (SODA). Monthly Weather Review,136,2999-3017.
    [28].Cenedese C, Marshall J, Whitehead J A (2004). A laboratory model of thermocline depth andexchange fluxes across circumpolar fronts. Journal of Physical Oceanography,34,656-667.
    [29].Cerove ki I, Marshall J (2008). Eddy Modulation of Air–Sea Interaction and Convection.Journal of Physical Oceanography,38,65-83.
    [30].Chelton D B, Schlax M G (2003). The accuracies of smoothed sea surface height fieldsconstructed from tandem altimeter datasets. Journal of Atmospheric and Oceanic Technology,20,1276-1302.
    [31].Chelton D B, Schlax M G, Samelson R M et al (2007). Global observations of large oceaniceddies. Geophysical Research Letters,34, doi:10.1029/2007GL030812.
    [32].Chelton D B, Schlax M G, Samelson R M (2011). Global observations of nonlinearmesoscale eddies. Progress in Oceanography,91,167-216.
    [33].Chiswell S M, Toole J, Church J (1997). Transports across the Tasman Sea from WOCErepeat sections: The East Australian Current1990-94. New Zealand Journal of Marine andFreshwater Research,31,469-476.
    [34].Cirano M, Middleton J F (2004). Aspects of the mean winter circulation along Australia’ssouthern shelves: Numerical studies. Journal of Physical Oceanography,34,668-684.
    [35].Coward A C, de Cuevas B A (2005). The OCCAM66level model. Physics, initial c onditionsand external forcing, Internal Rep.99, Southampton Oceanogr Cent, Southampton, U K.83pp.
    [36].Cresswell G R (2000). Currents of the continental shelf and upper slope of Tasmania. Papersand proceedings of the Royal Society of Tasmania,133,21-30.
    [37].Cunningham S A, Alderson S G, King B A et al (2003). Transport and variability of theAntarctic Circumpolar Current in Drake Passage. Journal of Geophysical Research,108(C5),8084, doi:10.1029/2001001147.
    [38].Davis R (2005). Intermediate-depth circulation of the Indian and South Pacific Oceansmeasured by autonomous floats. Journal of Physical Oceanography,35,683-707.
    [39].De Ruijter W P M (1982). Asymptotic analysis of the Agulhas and Brazil current systems.Journal of Physical Oceanography,12,361-373.
    [40].Dong Shenfu, Sprintall J, Gille S T.(2006). Location of the Antarctic Polar Front fromAMSR-E Satellite Sea Surface Temperature Measurements. Journal of PhysicalOceanography,36,2075–2089.
    [41].Donohue K A, Firing E (2000). Comparison of three velocity sections of the Agulhas Currentand Agulhas Undercurrent. Journal of Geophysical Research,105,28585-28593.
    [42].D s K, Webb D J (1994). The Deacon cell and the other meridional cells of the southernocean. Journal of Physical Oceanography,24,429-442.
    [43].Drijfhout S S, de Vries P, D s K et al (2003). Impact of eddy-induced transport on theLagrangian structure of the upper branch of the thermohaline circulation. Journal of PhysicalOceanography,33,2141-2155.
    [44].Drijfhout S S, Donners J, de Ruijter W P M (2005). The origin of Intermediate and SubpolarMode Waters crossing the Atlantic equator in OCCAM. Geophysical Research Letters,32,L06602, doi:101029/2004GL021851.
    [45].Drijfhout S S (2005). What sets the surface eddy mass flux in the Southern Ocean? Journalof Physical Oceanography,35,2152-2166.
    [46].Duan Y L, Hou Y J, Liu H W et al (2012). Fronts, baroclinic transport, and mesoscalevariability of the Antarctic Circumpolar Current in the southeast Indian Ocean. ActaOceanologica Sinica,31,1-11.
    [47].Dufour C O, Sommer J L, Zika J D et al (2012). Standing and Transient Eddies in theResponse of the Southern Ocean Meridional Overturning to the Southern Annular Mode.Journal of Climate,25,6958-6974.
    [48].Fahrbach E, Rohardt G, Schr der M, Strass V (1994). Transport and structure of the WeddellGyre. Annales Geophysicae,12,840-855.
    [49].Farneti R, Delworth T L (2010). The Role of Mesoscale Eddies in the Remote OceanicResponse to Altered Southern Hemisphere Winds. Journal of Physical Oceanography,40,2348-2354.
    [50].Farneti R, Delworth T L, Rosati A J et al (2010). The role of mesoscale eddies in therectification of the Southern Ocean response to climate change. Journal of PhysicalOceanography,40,1539-1557.
    [51].Fine R A (1993). Circulation of Antarctic Intermediate Water in the South Indian Ocean.Deep Sea Research I,40,2021-2042.
    [52].Friocourt Y, Drijfhout S, Blanke B et al (2005). Water mass export from Drake Passage tothe Atlantic, Indian, and Pacific Oceans: a Lagrangian model analysis. Journal of PhysicalOceanography,35,1206-1222.
    [53].Fu L L (2003). Wind-forced intraseasonal sea level variability of the extratropical oceans.Journal of Physical Oceanography,33,436-449.
    [54].Fu L L (2009). Pattern and velocity of propagation of the global ocean eddy variability.Journal of Geophysical Research,114, C11017, doi:10.1029/2009JC005349.
    [55].Fyfe J C, Boer G J, G M Flato (1999). The Arctic and Antarctic Oscillations and theirprojected changes under global warming. Geophysical Research Letters,26,1601-1604.
    [56].Fyfe J C, Saenko O A (2005). Human-Induced Change in the Antarctic Circumpolar Current.Journal of Climate,18,3068-3073.
    [57].Fyfe J C (2006). Southern Ocean warming due to human influence. Geophysical ResearchLetters,33, L19701, doi:10.1029/2006GL027247.
    [58].Fyfe J C, Saenko O A, Zickfeld K et al (2007). The role of poleward-intensifying winds onSouthern Ocean warming. Journal of Climate,20,5391-5400.
    [59].Ganachaud A, Wunsch C (2000). Improved estimates of global ocean circulation, heattransport and mixing from hydrographic data. Nature,408,453-457.
    [60].Garfield N (1990). The Brazil Current at subtropical latitudes. Dissertations and Master'sTheses, the University of Rhode Island, Paper AAI9106513.
    [61].Garzoli S L, Garrafo Z,(1989). Transports, frontal motions and eddies at the Brazil-Malvinascurrents confluence. Deep Sea Research I,36,681–703.
    [62].Garzoli S L, Baringer M O, Dong Shenfu et al (2012). South Atlantic Meridional Fluxes.Deep Sea Research I,71,21-32.
    [63].Gent P R, Danabasoglu G (2011). Response to increasing Southern Hemisphere winds inCCSM4. Journal of Climate,24,4992-4998.
    [64].Gill A E (1982). Atmosphere-ocean dynamics. International Geophysics Series.30,662pp.
    [65].Gille S T (2002). Warming of the Southern Ocean since the1950s. Science,295,1275-1277.
    [66].Gille S T (2008). Decadal-scale temperature trends in the southern hemisphere Ocean.Journal of Climate,21,4749-4765, doi:10.1175/2008JCLI2131.1.
    [67].Gillett N P, Thompson D W J (2003). Simulation of Recent Southern Hemisphere ClimateChange. Science,302,273-275.
    [68].Gladyshev S, Arhan M, Sokov A et al (2008). A hydrographic section from South Afric a tothe southern limit of the Antarctic Circumpolar Current at the Greenwich meridian. Deep-SeaResearch I,55,1284-1303.
    [69].Gnanadesikan A, Hallberg R W (2000). On the relationship of the Circumpolar Current toSouthern Hemisphere winds in coarse resolution ocean models. Journal of PhysicalOceanography,30,2013-2034.
    [70].Goni G J, Garzoli S L, Roubicek A J et al (1997). Agulhas ring dynamics fromTOPEX/POSEIDON satellite altimeter data. Journal of Marine Research,55(5),861-883.
    [71].Gordon A L (1986). Interocean exchange of thermocline water. Journal of GeophysicalResearch,91,5037-5046.
    [72].Gordon A L, Greengrove C L (1986). Geostrophic circulation of the Brazil-Falklandconfluence. Deep Sea Research I,33,573-585.
    [73].Graham R M, de Boer A M, Heywood K J et al (2012). Southern Ocean fronts: Controlled bywind or topography? Journal of Geophysical Research,117, C08018,doi:10.1029/2012JC007887.
    [74].Gregg W W, Casey N W, McClain C R (2005). Recent trends in global ocean chlorophyll.Geophysical Research Letters,32, L03606.
    [75].Gründlingh M L (1980). On the volume transport of the Agulhas Current. Deep-SeaResearch I,27,557–563.
    [76].Guhin S, Ray P, Mariano A J et al (2003). The South Atlantic Current. Ocean SurfaceCurrents. http://oceancurrents.rsmas.miami.edu/atlantic/south-atlantic.html.
    [77].Hall A, Visbeck M (2002). Synchronous variability in the Southern Hemisphere atmosphere,sea ice, and ocean resulting from the annular mode. Journal of Climate,15,3043-3057.
    [78].Hallberg R, Gnanadesikan A (2001). An exploration of the role of transient eddies indetermining the transport of a zonally reentrant current. Journal of Physical Oceanography,31,3312-3330.
    [79].Hallberg R, Gnanadesikan A (2006). The role of eddies in determining the structure andresponse of the wind-driven southern hemisphere overturning: results from the modelingeddies in the Southern Ocean (MESO) project. Journal of Physical Oceanography,36,2232-2252.
    [80].Hartin C A, Fine R A, Sloyan B M et al (2011). Formation rates of Subantarctic mode waterand Antarctic intermediate water within the South Pacific. Deep Sea Research I,58,524–534.
    [81].Hartmann D L, Wallace J M, Limpasuvan V et al (2000). Can ozone depletion and globalwarming interact to produce rapid climate change? Proceedings of the National Academy ofSciences of the United States of America,97,1412–1417.
    [82].He Z, Dong Z (2010). Fronts and surface zonal geostrophic current along115oE in thesouthern Indian Ocean. Acta Oceanologica Sinica,29,1-9.
    [83].Herraiz-Borreguero L, Rintoul S R (2011). Regional circulation and its impact on upperocean variability south of Tasmania. Deep-Sea Research II,58,2071-2081.
    [84].Heywood K J, Stevens D P (2007), Meridional heat transport across the AntarcticCircumpolar Current by the Antarctic Bottom Water overturning cell. Geophysical ResearchLetters,34, L11610, doi:10.1029/2007GL030130.
    [85].Hill K L, Rintoul S R, Coleman R et al (2008). Wind forced low frequency variability of theEast Australia Current. Geophysical Research Letters,35, L08602,doi:10.1029/2007GL032912.
    [86].Hill K L, Rintoul S R, Ridgway K R et al (2011). Decadal changes in the South Pacificwestern boundary current system revealed in observations and ocean state estimates. Journalof Geophysical Research,116, C01009, doi:10.1029/2009JC005926.
    [87].Hofmann M, Maqueda M M (2011). The response of Southern Ocean eddies to increasedmidlatitude westerlies: A non-eddy resolving model study. Geophysical Research Letters,38,L03605, doi:10.1029/2010GL045972.
    [88].Hogg A M, Meredith M P, Blundell J R et al (2008). Eddy heat flux in the Southern Ocean:response to variable wind forcing. Journal of Climate,21,608-620.
    [89].Holbrook N J, Goodwin I D, McGregor S et al (2009). Baroclinic Modeling of the SouthPacific Gyre. Extended Abstracts of the Ninth International Conference on Southern OceanMeterology and Oceanography,9-13.
    [90].Holte J W, Talley L D, Chereskin T K et al (2012). The role of air-sea fluxes in SubantarcticMode Water formation. Journal of Geophysical Research,117, doi:10.1029/2011JC007798.
    [91].Hughes C W (1995). Rossby waves in the Southern Ocean: A comparison of Topex/Poseidonaltimetry and model predictions. Journal of Geophysical Research,100,15933-15950.
    [92].Hughes C W (2002). Sverdrup-like theories of the Antarctic Circumpolar Current. Journal ofMarine Research,60,1–17.
    [93].Hughes C W, Stepanov V (2004). Ocean dynamics associated with rapid J2fluctuations:importance of circumpolar modes and identification of a coherent Arctic mode. Journal ofGeophysical Research,109, C06002, doi:10.1029/2003JC002176.
    [94].Ito T, Marshall J (2008). Control of Lower-Limb Overturning Circulation in the SouthernOcean by Diapycnal Mixing and Mesoscale Eddy Transfer. Journal of PhysicalOceanography,38,2832-2845.
    [95].Iudicone D, Rodgers K B, Schopp R et al (2007). An Exchange Window for the Injection ofAntarctic Intermediate Water into the South Pacific. Journal of Physical Oceanography,37,31–49.
    [96].Jacobs S (2006). Observations of change in the Southern Ocean. Philosophical Transactionsof the Royal Society, London, A364,1657-1681.
    [97].Jayne S R, Marotzke J (2002). The Oceanic Eddy Heat Transport. Journal of PhysicalOceanography,32,3328-3345.
    [98].Johnson G C, Bryden H L (1989). On the size of the Antarctic Circumpolar Current. DeepSea Research I,36,39-53.
    [99].Johnson G C, Orsi A H (1997). Southwest Pacific Ocean Water-Mass Changes between1968/69and1990/91. Journal of Climate,10,306–316.
    [100]. Kindson J W (1986). Index cycles in the Southern Hemisphere during the globalweather experiment. Monthly Weather Review,11(12),1654-1663.
    [101]. Klatt O, Fahrbach E, Hoppema M et al (2005). The transport of the Weddell Gyre acrossthe Prime Meridian. Deep Sea Research II,52,513-528.
    [102]. Koshlyakov M N, Tarakanov R Y (2011). Water Transport across the Subantarctic Frontand the Global Ocean Conveyer Belt. Oceanology,51(5),721-735.
    [103]. Kostianoy A G, Ginzburg A I, Lebedev S A et al (2003). Fronts and mesoscalevariability in the Southern Indian Ocean as inferred from the TOPEX/POSEIDON and ERS-2altimetry data. Oceanology,43,632-642.
    [104]. Kushner P J, Held I M, Delworth T L (2001). Southern Hemisphere AtmosphericCirculation Response to Global Warming. Journal of Climate,14,2238-2249.
    [105]. Lachkar Z, Orr J C, Dutay J C et al (2009). On the role of mesoscale eddies in theventilation of Antarctic Intermediate Water. Deep-Sea Research I,56(6),909-925.
    [106]. Large W G, McWilliams J C, Doney S C (1994). Oceanic vertical mixing: a review anda model with a non-local boundary layer parameterization. Reviews of Geophysics,32,363-403.
    [107]. Lee Mei-Man, Coward A (2003). Eddy mass transport for the Southern Ocean in aneddy-permitting global ocean model. Ocean Modelling,5,249-266.
    [108]. Lee Mei-Man, Nurser A J G (2012). Eddy Subduction and the Vertical TransportStreamfunction. Journal of Physical Oceanography,42,1762–1780.
    [109]. Lee S K, Park W, van Sebille E et al (2011). What caused the significant increase inAtlantic Ocean heat content since the mid-20th century? Geophysical Research Letters,38,L17607, doi:10.1029/2011GL048856.
    [110]. Levitus S, Antonov J I, Boyer T P et al (2000). Warming of the world oceans. Science,287,2225-2229, doi:10.1126/science.287.5461.2225.
    [111]. Levitus S, Antonov J I, Boyer T P (2005). Warming of the world ocean,1955–2003.Geophysical Research Letters,32, L02604, doi:10.1029/2004GL021592.
    [112]. Levitus S, Antonov J I, Boyer T P et al (2009). Global ocean heat content1955–2008inlight of recently revealed instrumentation problems. Geophysical Research Letters,36,L07608, doi:10.1029/2008GL037155.
    [113]. Lovenduski N S, Gruber N (2005). Impact of the Southern Annular Mode on SouthernOcean circulation and biology. Geophysical Research Letters,32, L11603,doi:10.1029/2005GL022727.
    [114]. Luick J L, Kase R, Tomczak M (1994). On the formation and spreading of the BassStrait Cascade. Continental Shelf Research,14,385-399.
    [115]. Lumpkin R, Speer K (2007). Global ocean meridional overturning. Journal of PhysicalOceanography,37,2550-2562.
    [116]. MacDonald A M, Wunsch C (1996). An estimate of global ocean circulation and heatfluxes. Nature,382,436-439, doi:10.1038/382436a0.
    [117]. Marshall D (1995). Topographic steering of the Antarctic Circumpolar Current. Journalof Physical Oceanography,25,1636-1650.
    [118]. Marshall G J (2003). Trends in the Southern Annular Mode from observations andreanalyses. Journal of Climate,16,4134-4143.
    [119]. Marshall G J, Stott P A, Turner J et al (2004). Causes of exceptional atmosphericcirculation changes in the Southern Hemisphere. Geophysical Research Letters,31, L14205,doi:10.1029/2004GL019952.
    [120]. Marshall J, Hill C, Perelman L et al (1997a). Hydrostatic, quasihydrostatic andnon-hydrostatic ocean modeling. Journal of Geophysical Research,102(C3),5733-5752.
    [121]. Marshall J, Adcroft A, Hill C et al (1997b). A finitevolume, incompressibleNavier-Stokes model for studies of the ocean on parallel computers. Journal of GeophysicalResearch,102(C3),5753-5766.
    [122]. Mata M M, Tomczak M, Wijffels S et al (2000). East Australian Current volumetransports at30oS: Estimates from the World Ocean Circulation Experiment hydrographicsections PR11/P6and the PCM3current meter array. Journal of Geophysical Research,105,28509-28526.
    [123]. Matthews A J, Meredith M P (2004).Variability of Antarctic circumpolar transport andthe Southern Annular Mode associated with the Madden-Julian Oscillation. GeophysicalResearch Letters,31, L24312, doi:10.1029/2004GL021666.
    [124]. Mazloff M R, Heimbach P, Wunsch C (2010). An Eddy-Permitting Southern OceanState Estimate. Journal of Physical Oceanography,40,880-899.
    [125]. McCartney M S, Donohue K A (2007). A deep cyclonic gyre in theAustralian–Antarctic Basin. Progress in Oceanography,75,675-750.
    [126]. McClain C R, Signorini S R, Christian J R (2004). Subtropical gyre variability observedby ocean color. Deep Sea Research II,51(1–3),281-301.
    [127]. Meijers A J S, Bindoff N L, Rintoul S R (2011). Frontal movements and property fluxes:Contributions to heat and freshwater trends in the Southern Ocean. Journal of GeophysicalResearch,116, C08024, doi:10.1029/2010JC006832.
    [128]. Meijers A J S, Shuckburgh E, Bruneau N et al (2012). Representation of the AntarcticCircumpolar Current in the CMIP5climate models and future changes under warmingscenarios. Journal of Geophysical Research,117, doi:10.1029/2012JC008412.
    [129]. Menemenlis D, Campin J, Heimbach P et al (2008). ECCO2: High resolution globalocean and sea ice data synthesis. Mercator Ocean Quarterly Newsletter,31,13-21.
    [130]. Meredith M P, Woodworth P L, Hughes C W et al (2004). Changes in the oceantransport through Drake Passage during the1980s and1990s, forced by changes in theSouthern Annular Mode. Geophysical Research Letters,31, L21305,doi:10.1029/2004GL021169.
    [131]. Meredith M P, Hogg A M (2006). Circumpolar response of Southern Ocean eddyactivity to a change in the Southern Annular Mode. Geophysical Research Letters,33,L16608, doi:10.1029/2006GL026499.
    [132]. Meredith M P, Naveira-Garabato A C, Hogg A M et al (2012). Sensitivity of theOverturning Circulation in the Southern Ocean to Decadal Changes in Wind Forcing. Journalof Climate,25,99–110.
    [133]. Metzl N, Moore B, Poisson A L (1990). Resolving the intermediate and deep advectiveflows in the Indian Ocean by using temperature, salinity, oxygen and phosphate data: Theinterplay of biogeochemical and geophys ical tracers. Paleoceanography, Paleoclimatologyand Paleoecology,89,81-111.
    [134]. Middleton J F, Cirano M (2005). Wintertime circulation off southeast Australia: Strongforcing by the East Australian Current. Journal of Geophysical Research,110, C12012, doi.101029/2004JC002855.
    [135]. Morris M, Roemmich D, Cornuelle B (1996). Observations of Variability in the SouthPacific Subtropical Gyre. Journal of Physical Oceanography,26,2359-2380.
    [136]. Morrison A K, Hogg A M (2013). On the Relationship between Southern OceanOverturning and ACC Transport. Journal of Physical Oceanography,43,140–148.
    [137]. Morrow R A, Coleman R, Church J A et al (1994). Surface eddy momentum flux andvelocity variances in the Southern Ocean from GeoSat altimetry. Journal of PhysicalOceanography,24,2050-2071.
    [138]. Morrow R, Donguy J R, Chaigneau A et al (2004a). Cold core anomalies at theSubantarctic Front, south of Tasmania. Deep-Sea Research I,51,1417-1440.
    [139]. Morrow R, Florence B, Griffin D et al (2004b). Divergent pathways of cyclonic andanti-cyclonic ocean eddies. Geophysical Research Letters,31, L24311,doi:10.1029/2004GL020974.
    [140]. Munk W H (1950). On the wind-driven ocean circulation. Journal of Meteorology,7,79-93.
    [141]. Nan S L, Li J P (2003). The relationship between summer precipitation in the YangtzeRiver valley and the previous Southern Hemisphere Annular Mode. Geophysical ResearchLetters,30(24),2266, doi:10.1029/2003GL018381.
    [142]. Nowlin Jr. W D, Klinck J M (1986). The physics of the Antarctic Circumpolar Current.Reviews of Geophysics,24,469–491.
    [143]. Olbers D, Ivchenko V O (2001). On the meridional circulation and balance ofmomentum in the Southern Ocean of POP. Ocean Dynamics,52,79-93.
    [144]. Oke P R, England M H (2004). Oceanic response to changes in the latitude of theSouthern Hemisphere subpolar westerly winds. Journal of Climate,17,1040-1054.
    [145]. Orsi A H, Whitworth III T, Nowlin Jr. W D (1995). On the meridional extent and frontsof the Antarctic Circumpolar Current. Deep-Sea Research I,42,641-673.
    [146]. Park Y H, Gambéroni L, Charriaud E (1991). Frontal structure and transport of theAntarctic Circumpolar Current in the South Indian Ocean sector,40°–80°E. MarineChemistry,35,45-62.
    [147]. Park Y H, Gambéroni L, Charriaud E (1993). Frontal structure, water masses andcirculation in the Crozet Basin. Journal of Geophysical Research,98,12361-12385.
    [148]. Park Y H, Gambéroni L (1995). Large-scale circulation and its variability in the southIndian Ocean from TOPEX/POSEIDON altimetry. Journal of Geophysical Research,100,24911–24929.
    [149]. Park Y H, Vivier F, Roquet F et al (2009). Direct observations of the ACC transportacross the Kerguelen Plateau. Geophysical Research Letters,36, L18603,doi:10.1029/2009GL039617.
    [150]. Peeters F J C, Acheson R, Brummer G A et al (2004). Vigorous exchange between theIndian and Atlantic oceans at the end of the past five glacial periods. Nature,430,661-665.
    [151]. Phillips H E, Rintoul S R (2000). Eddy variability and energetics from direct currentmeasurements in the Antarctic Circumpolar Current south of Australia. Journal of PhysicalOceanography,30,3050-3076.
    [152]. Polovina J J, Howell E A, Abecassis M (2008). Ocean’s least productive waters areexpanding. Geophysical Research Letters,35, L03618, doi:10.1029/2007GL031745.
    [153]. Purkey S G, Johnson G C (2010). Warming of Global Abyssal and Deep SouthernOcean Waters between the1990s and2000s: Contributions to Global Heat and Sea LevelRise Budgets. Journal of Climate,23,6336–6351.
    [154]. Purkey S G, Johnson G C (2012). Global Contraction of Antarctic Bottom Waterbetween the1980s and2000s. Journal of Climate,25,5830-5844.
    [155]. Qiu Bo, Chen Shuiming (2004). Seasonal modulations in the eddy field of the SouthPacific Ocean. Journal of Physical Oceanography,34,1515-1527.
    [156]. Qiu Bo, Chen Shuiming (2006). Decadal variability in the large-scale sea surface heightfield of the South Pacific Ocean: Observations and causes. Journal of PhysicalOceanography,36,1751-1762.
    [157]. Reid J L (1986). On the total geostrophic circulation of the South Pacific Ocean: flowpatterns, tracers, and transports. Progress in Oceanography,16,1-61.
    [158]. Reid J L (1989). On the total geostrophic circulation of the South Atlantic Ocean: flowpatterns, tracers, and transports. Progress in Oceanography,23,149-244.
    [159]. Reid J L (1994). On the total geostrophic circulation of the North Atlantic Ocean: flowpatterns, tracers, and transports. Progress in Oceanography,33,1-92.
    [160]. Reid J L (1997). On the total geostrophic circulation of the Pacific Ocean: flow patterns,tracers, and transports. Progress in Oceanography,39,263-352.
    [161]. Reid J L (2003). On the total geostrophic circulation of the Indian Ocean: Flow patterns,tracers and transports. Progress in Oceanography,56,137-186.
    [162]. Ridgway K R, Godfrey J S (1994). Mass and heat budgets in the East Australian Current:A direct approach. Journal of Geophysical Research,99,3231-3248.
    [163]. Ridgway K R, Godfrey J S (1997). Seasonal cycle of the East Australian Current.Journal of Geophysical Research,102,22921-22936.
    [164]. Ridgway K R, Dunn J R, Wilkin J L (2002). Ocean interpolation by four-dimensionalleast squares-Application to the waters around Australia. Journal of Atmospheric andOceanic Technology,9,1357-1375.
    [165]. Ridgway K R, Dunn J R (2003). Mesoscale structure of the mean East AustralianCurrent System and its relationship with topography. Progress in Oceanography,56,189-222.
    [166]. Ridgway K R, Condie S (2004). The5500-km long boundary flow off western andsouthern Australia. Journal of Geophysical Research,109, C04017,doi:10.1029/2003JC001921.
    [167]. Ridgway K R, Dunn J R (2007). Observational evidence for a southern hemisphereoceanic supergyre. Geophysical Research Letters,34, L13612, doi.101029/2007GL030392.
    [168]. Ridgway K R (2007a). Seasonal circulation around Tasmania–an interface betweeneastern and western boundary dynamics. Journal of Geophysical Research,112, C10016. doi:10.1029/2006JC003898.
    [169]. Ridgway K R (2007b). Long-term trend and decadal variability of the southwardpenetration of the East Australian Current. Geophysical Research Letters,34, L13613, doi.101029/2007GL030393.
    [170]. Ridgway K R, Coleman R C, Bailey R J et al (2008). Decadal variability of EastAustralian Current transport inferred from repeated high-density XBT transects, a CTDsurvey and satellite altimetry. Journal of Geophysical Research,113, C08039,doi:10.1029/2007JC004664.
    [171]. Ridgway K R, Hill K (2009). The East Australian Current. In A Marine Climate ChangeImpacts and Adaptation Report Card for Australia2009(Eds. Poloczanska ES, Hobday A Jand A J Richardson), NCCARF Publication05/09, and ISBN978-1-921609-03-9.
    [172]. Rintoul S R, Bullister J L (1999). A late winter hydrographic section from Tasmania tothe Antarctic. Deep-Sea Research I,46,1417-1454.
    [173]. Rintoul S R, Sokolov S (2001). Baroclinic transport variability of the AntarcticCircumpolar Current south of Australia (WOCE repeat section SR3). Journal of GeophysicalResearch,106,2815-2832.
    [174]. Rintoul S R, Trull T W (2001). Seasonal evolution of the mixed layer in theSubantarctic Zone south of Australia. Journal of Geophysical Research,106,31447-31462.
    [175]. Rintoul S R, England M H (2002). Ekman Transport Dominates Local Air–Sea Fluxesin Driving Variability of Subantarctic Mode Water. Journal of Physical Oceanography,32,1308-1321.
    [176]. Rintoul S R, Sokolov S, Church J (2002). A6-year record of baroclinic transportvariability of the Antarctic Circumpolar Current at140°E derived from expendablebathythermograph and altimeter measurements. Journal of Geophysical Research,107,C103155, doi:10.1029/2001JC000787.
    [177]. Robinson A R, McWilliams J C (1974). The Baroclinic Instability of the Open Ocean.Journal of Physical Oceanography,4,281–294.
    [178]. Roemmich D, Gilson J (2009). The2004–2008mean and annual cycle of temperature,salinity, and steric height in the global ocean from the Argo Program. Progress inOceanography,82,81-100.
    [179]. Roemmich D, Gilson J, Davis R et al (2007). Decadal Spinup of the South PacificSubtropical Gyre. Journal of Physical Oceanography,37,162-173.
    [180]. Roemmich D (2007). Super spin in the southern seas. Nature,449,34-35.
    [181]. Romanova V, K hl A, Stammer D et al (2010). Sea surface fresh water flux estimatesfrom GECCO, HOAPS and NCEP. Tellus,62A,435-452.
    [182]. Rouault M, Penven P, Pohl B (2009). Warming in the Agulhas Current system since the1980’s. Geophysical Research Letters,36, L12602, doi:10.1029/2009GL037987.
    [183]. Ryan A, Marshall J, Mazloff M et al (2010). Enhancement of Mesoscale Eddy Stirringat Steering Levels in the Southern Ocean. Journal of Physical Oceanography,40,170-184.
    [184]. Saenko O A, Fyfe J C, England M H (2005). On the response of the oceanicwind-driven circulation to atmospheric CO2increase. Climate Dynamics,25,415-426.
    [185]. Saenko O A, Sen Gupta A, Spence P (2012). On Challenges in Predicting Bottom WaterTransport in the Southern Ocean. Journal of Climate,25,1349-1356.
    [186]. Sallée J B, Morrow R, Speer K (2008). Eddy heat diffusion and Subantarctic ModeWater formation. Geophysical Research Letters,35, L05607, doi:10.1029/2007GL032827.
    [187]. Sallée J B, Speer K, Rintoul S et al (2010). Southern Ocean thermocline ventilation.Journal of Physical Oceanography,40,509-529.
    [188]. Sallée J B, Rintoul S R (2011). Parameterization of eddy-induced subduction in theSouthern Ocean surface-layer. Ocean Modelling,39,146-153.
    [189]. Santoso A, England M H (2004). Antarctic Intermediate Water Circulation andVariability in a Coupled Climate Model. Journal of Physical Oceanography,34,2160-2179.
    [190]. Sasaki Y N, Minobe S, Schneider N et al (2008). Decadal Sea Level Variability in theSouth Pacific in a Global Eddy-Resolving Ocean Model Hindcast. Journal of PhysicalOceanography,38,1731-1747.
    [191]. Savchenko V G, Emery W G, Vladimirov O A (1978). A cyclonic eddy in the AntarcticCircumpolar Current south of Australia. Journal of Physical Oceanography,8,825-837.
    [192]. Schodlok M P, Tomczak M, White N (1997). Deep sections through the SouthAustralian Bas in and across the Australian-Antarctic Discordance. Geophysical ResearchLetters,24,2785-2788.
    [193]. Schr der M, Fahrbach E (1999). On the structure and the transport of the easternWeddell gyre. Deep Sea Research II,46,501-527.
    [194]. Screen J A, Gillett N P, Stevens D P et al (2009). The role of eddies in the SouthernOcean temperature response to the Southern Annular Mode. Journal of Climate,22,806-818.
    [195]. Sen Gupta A, England M H (2006). Coupled ocean–atmosphere–ice response tovariations in the Southern Annular Mode. Journal of Climate,19,4457-4486.
    [196]. Sen Gupta A, Santoso A, Taschetto A S et al (2009). Projected Changes to the SouthernHemisphere Ocean and Sea Ice in the IPCC AR4Climate Models. Journal of Climate,22,3047-3078.
    [197]. Sexton D M H (2001). The effect of stratospheric ozone depletion on the phase of theAntarctic Oscillation. Geophysical Research Letters,28,3697–3700.
    [198]. Shaffer G, Leth O, Ulloa O et al (2000). Warming and circulation change in the easternSouth Pacific Ocean. Geophysical Research Letters,27(9),1247-1250.
    [199]. Shi Jiuxin, Le Kentang, Byung Ho Choi (2002). Circulation and its seasonal variabilityin region around the Kerguelen Plateau. Acta oceanologica sinica,21,1-17
    [200]. Shindell D T, Schmidt G A (2004). Southern Hemisphere climate response to ozonechanges and greenhouse gas increases. Geophysical Research Letters,31, L18209,doi:10.1029/2004GL020724.
    [201]. Shuckburgh E, Helen J, Marshall J et al (2009). Understanding the Regional Variabilityof Eddy Diffusivity in the Pacific Sector of the Southern Ocean. Journal of PhysicalOceanography,39,2011-2023.
    [202]. Sijp W P, England M H (2008). The effect of a northward shift in the southernhemisphere westerlies on the global ocean. Progress in Oceanography,79,1-19.
    [203]. Sijp, W P, England M H (2009). Southern Hemisphere Westerly Wind Control over theOcean's Thermohaline Circulation. Journal of Climate,22,1277-1286.
    [204]. Sloyan B M, Rintoul S R (2001). Circulation, renewal, and modification of AntarcticMode and Intermediate Water. Journal of Physical Oceanography,31,1005-1030.
    [205]. Smith K S (2007a). The geography of linear baroclinic instability in Earth's oceans.Journal of Marine Research,65,655-683
    [206]. Smith K S (2007b). Eddy Amplitudes in Baroclinic Turbulence Driven by NonzonalMean Flow: Shear Dispersion of Potential Vortic ity. Journal of Physical Oceanography,37,1037–1050.
    [207]. Smith K S, Marshall J (2009). Evidence for Enhanced Eddy Mixing at Middepth in theSouthern Ocean. Journal of Physical Oceanography,39,50-69.
    [208]. Sokolov S, Rintoul S R (2002). Structure of Southern Ocean fronts at140oE. Journal ofMarine Research,37,151-184.
    [209]. Sokolov S, Rintoul S R (2007). Multiple jets of the Antarctic Circumpolar Current southof Australia. Journal of Physical Oceanography,37,1394-1412.
    [210]. Sokolov S, Rintoul S R (2009a). Circumpolar structure and distribution of the AntarcticCircumpolar Current fronts:1. Mean circumpolar paths. Journal of Geophysical Research,114, C11018, doi:10.1029/2008JC005108.
    [211]. Sokolov S, Rintoul S R (2009b). Circumpolar structure and distribution of the AntarcticCircumpolar Current fronts:2. Variability and relationship to sea surface height. Journal ofGeophysical Research,114, C11019, doi:10.1029/2008JC005248.
    [212]. Sparrow M D, Heywood K J, Brown J et al (1996). Current structure of the south IndianOcean. Journal of Geophysical Research,101,6377–6391.
    [213]. Speich S, Blanke B, Madec G (2001). Warm and cold water paths of a GCMthermohaline conveyor belt. Geophysical Research Letters,28,311-314.
    [214]. Speich S, Blanke B, de Vries P et al (2002). Tasman leakage: A new route in the globalocean conveyor belt. Geophysical Research Letters,29,1416, doi.101029/2001GL014586.
    [215]. Speich S, Blanke B, Cai W (2007). Atlantic meridional overturning circulation and theSouthern Hemisphere supergyre. Geophysical Research Letters,34, L23614,doi:10.1029/2007GL031583.
    [216]. Spence P, Fyfe J C, Montenegro A et al (2010). Southern Ocean Response toStrengthening Winds in an Eddy-Permitting Global Climate Model. Journal of Climate,23,5332-5343.
    [217]. Spence P, Saenko O A, Dufour C O et al (2012). Mechanisms Maintaining SouthernOcean Meridional Heat Transport under Projected Wind Forcing. Journal of PhysicalOceanography,42,1923-1931.
    [218]. Sprintall J (2003). Seasonal to interannual upper-ocean variability in the Drake Passage.Journal of Marine Research,61,27-57.
    [219]. Stammer D (1998). On Eddy Characteristics, Eddy Transports, and Mean FlowProperties. Journal of Physical Oceanography,28,727-739.
    [220]. Stewart A L, Thompson A F (2012). Sensitivity of the ocean’s deep overturningcirculation to easterly Antarctic winds. Geophysical Research Letters,39, L18604,doi:10.1029/2012GL053099.
    [221]. Stommel H (1957). A survey of ocean current theory. Deep-Sea Research II,4,149-184.
    [222]. Stramma L (1989). The Brazil current transport south of23°S. Deep Sea Research I,36,639-646.
    [223]. Stramma L, Lutjeharms J R E (1997). The flow field of the subtropical gyre of the southIndian Ocean. Journal of Geophysical Research,102,5513-5530.
    [224]. Sultan E, Mercier H, Pollard R T (2007). An inverse model of the large scale circulationin the South Indian Ocean. Progress in Oceanography,74,71-94.
    [225]. Suthers I M, Young J W, Baird M E, et al.(2011). The strengthening East AustralianCurrent, its eddies and biological effects—an introduction and overview. Deep Sea ResearchII,58,538-546.
    [226]. Thompson D W J, Wallace J M, Hegerl G (2000). Annular modes in the extratropicalcirculation. Part II: Trends. Journal of Climate,13,1018-1036.
    [227]. Thompson D W J, Solomon S (2002). Interpretation of recent Southern Hemisphereclimate change. Science,296,895-899.
    [228]. Thompson D W J, Solomon S, Kushner P J et al (2011). Signatures of the Antarcticozone hole in Southern Hemisphere surface climate change. Nature Geoscience,4,741-749
    [229]. Treguier A, Sommer J L, Molines J et al (2010). Response of the Southern Ocean to theSouthern Annular Mode: interannual variability and multidecadal trend. Journal of PhysicalOceanography,40,1659-1668.
    [230]. Turner J, Colwell S R, Marshall G J et al (2005). Antarctic climate change during thelast50years. International Journal of Climatology,25,279-294.
    [231]. van Sebille E, Biastoch A, van Leeuwen P J et al (2009). A weaker Agulhas Currentleads to more Agulhas leakage. Geophysical Research Letters,36, L03601,doi:10.1029/2008GL036614.
    [232]. van Sebille E, England M H, Zika J D et al (2012). Tasman leakage in a fine-resolutionocean model. Geophysical Research Letters,39, L06601, doi:10.1029/2012GL051004.
    [233]. Viebahn J, Eden C (2010). Towards the impact of eddies on the response of theSouthern Ocean to climate change. Ocean Modelling,34,150-165.
    [234]. Viebahn J, Eden C (2012). Standing Eddies in the Meridional Overturning Circulation.Journal of Physical Oceanography,42,1486–1508.
    [235]. Volkov D L, Lee T, Fu L L (2008). Eddy-induced meridional heat transport in the ocean.Geophysical Research Letters,35, L20601, doi:10.1029/2008GL035490.
    [236]. Volkov D L, Fu L L, Lee T (2010). Mechanisms of the meridional heat transport in theSouthern Ocean. Ocean Dynamics,60,791-801.
    [237]. Wang Weiqiang, K hl A, Stammer D (2010). Estimates of global ocean volumetransports during1960through2001. Geophysical Research Letters,37, L15601,doi:10.1029/2010GL043949.
    [238]. Wang Zhaomin, Meredith M P (2008). Density-driven Southern Hemisphere subpolargyres in coupled climate models. Geophysical Research Letters,35, L14608,doi:10.1029/2008GL034344.
    [239]. Wang Zhaomin, Kuhlbrodt T, Meredith M P (2011). On the response of the AntarcticCircumpolar Current transport to climate change in coupled climate models. Journal ofGeophysical Research,116, C08011, doi:10.1029/2010JC006757.
    [240]. Webb D J, de Cuevas B A (2007). On the fast response of the Southern Ocean tochanges in the zonal wind. Ocean Science,3,417-427.
    [241]. Wijffels S, Meyers G (2004). An intersection of Oceanic Waveguides: Variability in theIndonesian Throughflow Region. Journal of Physical Oceanography,34,1232-1253.
    [242]. Willis J K, Roemmich D, Cornuelle B (2004). Interannual variability in upper oceanheat content, temperature, and thermosteric expansion on global scales. Journal ofGeophysical Research,109, C12036, doi:10.1029/2003JC002260.
    [243]. Wolff J O, Maier-Reimer E, Olbers D J (1991). Wind-driven flow over topography in azonal-plane channel: A quasi-geostrophic model of the Antarctic Circumpolar Current.Journal of Physical Oceanography,21,236-264.
    [244]. Wong A P S, Bindoff N, Church J (1999). Large-scale freshening of intermediate watersin the Pacific and Indian Oceans. Nature,400,440-443.
    [245]. Wu Lixin, Cai Wenju, Zhang Liping, et al (2012). Enhanced warming over the globalsubtropical western boundary currents. Nature Climate Change,2,161-166.
    [246]. Yang Xiaoyi, Huang Ruixin, Wang Dongxiao (2007a). Decadal changes of wind stressover the Southern Ocean associated with Antarctic ozone depletion. Journal of Climate,20(14),3395-3410.
    [247]. Yang Xiaoyi, Wang Dongxiao, Wang Jia et al (2007b). Connection between the decadalvariability in the Southern Ocean circulation and the Southern Annular Mode. GeophysicalResearch Letters,34, L16604, doi:10.1029/2007GL030526.
    [248]. Yang Xiaoyi, Huang Rui Xin, Wang Jia et al (2008). Delayed baroclinic response of theAntarctic Circumpolar Current to surface wind stress. Science in China Series D: EarthSciences,51,1036-1043.
    [249]. You Yuzhu (1998). Intermediate water circulation and ventilation of the Indian Oceanderived from water-mass contributions. Journal of Marine Research,56,1029-1067.
    [250]. Yuan Xiaojun, Martinson D G, Dong Zhaoqian (2004). Upper ocean thermohalinestructure and its temporal variability in the southeast Indian Ocean. Deep-Sea Research I,51,333-347.
    [251]. Zangenberg N (1995). Die Zirkulation des Oberfl chen-und des Tiefenwassers imsüdlichen brasilianischen Becken. Berichte aus dem Institut für Meereskunde an derChristian-Albrechts-Universit t Kiel,281,142pp.
    [252]. Zemba J C (1991). The structure and transport of the Brazil Current between27°S and36°S. Woods Hole Oceanogr. Inst., Ph.D. thesis,164pp.
    [253]. Zika J D, Sommer J L, Dufour C O et al (2012). Vertical Eddy Fluxes in the SouthernOcean. Journal of Physical Oceanography, doi: http://dx.doi.org/10.1175/JPO-D-12-0178.1.
    [254].龚道益,王绍武(1998).南极涛动.科学通报,43(3):296-301.
    [255].马浩(2011).南大洋风应力和淡水通量在全球海-气耦合系统中的作用.中国海洋大学.博士论文.156pp.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700