用户名: 密码: 验证码:
肌肽复合物对人体无氧运动能力及代谢的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:研究肌肽复合物补充对人体无氧运动能力的影响,并通过测定运动后血清乳酸(LA)、丙二醛(MDA)、谷胱甘肽过氧化物酶(GSH-Px)、尿酸(UA)、尿pH值,探讨其影响运动能力的可能机制。
     方法:挑选某部队身体素质较为均一的男性士兵27名,首先完成1周的有氧和无氧功率自行车蹬车训练,然后进行两次测试,间隔时间为1周。两次测试均以Monark有氧车完成标准化的热身运动,无氧车进行1min最大无氧运动能力测试,负荷为体重(kg)×7.5%。按第一次测试无氧运动能力的结果将27名受试者随机分成三组,一周后各组服用相应的样品(膳食纤维、新剂型碳酸氢钠、肌肽复合物)进行第二次测试,两次试验条件相同。应用Monark Anaerobic Test Software(无氧车测试软件),采集两次测试无氧车运动的峰功率、平均功率。根据预试及相关文献的报道,测定第二次测试无氧车运动后10min、1h的血乳酸值(LA)、1h和2h的尿pH、血清丙二醛(MDA)、谷胱甘肽过氧化物酶(GSH-Px)及尿酸(UA)值。
     结果:(1)肌肽复合物组、碳酸氢钠组,平均功率明显高于对照组(p<0.05),肌肽复合物组与碳酸氢钠组相比无明显差别。(2)肌肽复合物组、碳酸氢钠组运动后10min的血乳酸值均明显高于对照组(p<0.05)。(3)运动后1h、2h的尿pH值,碳酸氢钠组明显高于对照组(p<0.01)。(4)运动后2h血清丙二醛(MDA)的水平与基础值比较,对照组与碳酸氢钠组均明显增高(p<0.05),而肌肽复合物组未出现明显变化。肌肽复合物组运动后血清谷胱甘肽过氧化物酶(GSH-Px)的水平明显高于对照组和碳酸氢钠组(p<0.05)。(5)运动后血尿酸的水平,肌肽复合物组明显低于对照组和碳酸氢钠组(p<0.01)。
     结论:补充肌肽复合物可提高1min最大无氧运动能力、运动后10min的血乳酸值,与补充碳酸氢钠(剂量0.3g/Kg)有同样的效应。补充肌肽复合物可降低运动后血清丙二醛(MDA)水平,增高运动后血清谷胱甘肽过氧化物酶(GSH-Px)水平,可降低运动后的氧化损伤。补充肌肽复合物还可降低运动后血尿酸(UA)水平。补充碳酸氢钠果冻,可增加血液的碱储备,升高运动后尿pH值,但对运动后的氧化损伤、尿酸代谢没有影响。据此推断肌肽复合物对无氧运动能力的影响主要与酸碱缓冲、抗氧化、降尿酸等作用有关。
Objectives:To investigate the impact of Carnosine complex on anaerobic capacity, and approach the mechanism of impacting sport ability through assaying the value of LA, MDA, GSH-Px, urine pH and UA.
     Methods:Twenty-seven soldiers who picked out from one company were asked to complete training and 2 tests. The normative warm-up exercise was completed by aerobic bicycle, and anaerobic capacity test by anaerobic bicycle, the load is weight (kg)X 7.5 %. The subjects were randomly separated into 3 groups according to the result of the first test. After taking the relative samples (dietary fiber, sodium bicarbonate, Carnosine compound), they started the second test, and the condition is same in the two tests. The peak power and average power was collected by Monark Anaerobic Test Software. According to the result of preexamination and relative literary, we assay the value of LA after the movement for 10 min and 1 hour, the value of urine pH after movement for 1 hour and 2 hour, the value of MDA GSH-Px UA after the movement for 1 hour and 2 hour.
     Results:(1) Average power of Carnosine compound group and sodium bicarbonate group was higher than the control group. (2)10 min after exercise, the lactic acid value of Carnosine compound group and sodium bicarbonate group was apparently higher than control group. (3) The urine pH value of sodium bicarbonate group was higher than the other groups. (4) The value of MDA in 1 h and 2h after exercise was increased in control group and sodium bicarbonate group, but no difference was found in Carnosine compound group. The value of GSH-Px of Carnosine compound group was higher than control group and sodium bicarbonate. (5) After 1h and 2h after exercise, UA value of Carnosine compound group was lower than control group and sodium bicarbonate group.
     Conclusion:Carnosine complex and new sodium bicarbonate preparation administration can improve 1 min maximal anaerobic capacity and. lactic acid value. Carnosine compound can reduce the level of MDA and UA, raise the level of LA and GSH-Px, and sodium bicarbonate can improve the value of urine pH, but it has no effect on oxidation and metabolism of UA. We can infer that increasing anaerobic capacity of Carnosine compound is through buffering action and antioxidation。
引文
[1]Gariballa SE, Sinclair AJ. Carnosine:physiological properties and therapeutic potential. Age Ageing,2000,29:207-10.
    [2]Mannion AF, Jakeman PM, Dunnett M, et al. Carnosine and anserine concentrations in the quadriceps femoris muscle of healthy humans. Eur J Appl Physiol Occup Physiol,1992,64:47-50.
    [3]Stuerenburg HJ. The roles of carnosine in aging of skeletal muscle and in neuromuscular diseases.'Biochemistry (Mosc),2000,65:862-5.
    [4]Churchill TA, Green CJ, Fuller BJ. Stimulation of glycolysis by histidine buffers in mammalian liver during cold hypoxia. Arch Biochem Biophys,1995,320:43-50.
    [5]Tallon MJ, Harris RC, Boobis LH, et al. The carnosine content of vastus lateralis is elevated in resistance-trained bodybuilders. J Strength Cond Res,2005,19:725-9.
    [6]Chan WK, Decker EA, Chow CK, et al. Effect of dietary carnosine on plasma and tissue antioxidant concentrations and on lipid oxidation in rat skeletal muscle. Lipids, 1994,29:461-6.
    [7]Decker EA, Livisay SA, Zhou S. A re-evaluation of the antioxidant activity of purified carnosine. Biochemistry (Mosc),2000,65:766-70.
    [8]Decker EA. The role of phenolics, conjugated linoleic acid, carnosine, and pyrroloquinoline quinone as nonessential dietary antioxidants. Nutr Rev,1995,53:49-58.
    [9]Aldini G, Carini M, Beretta G, et al. Carnosine is a quencher of 4-hydroxy-nonenal: through what mechanism of reaction?. Biochem Biophys Res Commun,2002,298:699-706.
    [10]Gutteridge.JM. Ferrous-salt-promoted damage to deoxyribose and benzoate. The increased effectiveness of hydroxyl-radical scavengers in the presence of EDTA. Biochem J, 1987,243:709-14.
    [11]O'Dowd A, O'Dowd JJ, Miller DJ. The dipeptide carnosine constricts rabbit saphenous vein as a zinc complex apparently via a serotonergic receptor. J Physiol, 1996,495 (Pt2):535-43.
    [12]Son DO, Satsu H, Kiso Y, et al. Characterization of carnosine uptake and its physiological function in human intestinal epithelial Caco-2 cells. Biofactors, 2004,21:395-8.
    [13]Pegova A, Abe H, Boldyrev A. Hydrolysis of carnosine and related compounds by mammalian carnosinases. Comp Biochem Physiol B Biochem Mol Biol,2000,127:443-6.
    [14]Gardner ML, Illingworth KM, Kelleher J, et al. Intestinal absorption of the intact peptide carnosine in man, and comparison with intestinal permeability to lactulose. J Physiol,1991,439:411-22.
    [15]Bakardjiev A, Bauer K. Transport of beta-alanine and biosynthesis of carnosine by skeletal muscle cells in primary culture. Eur J Biochem,1994,225:617-23.
    [16]Bakardjiev A, Bauer K. Biosynthesis, release, and uptake of carnosine in primary cultures. Biochemistry (Mosc),2000,65:779-82.
    [17]Hollo way SA, Sundstrom D, Senior DF. Effect of acute induced metabolic alkalosis on the acid/base responses to sprint exercise of six racing greyhounds. Res Vet Sci, 1996,61:245-51.
    [18]Mero AA, Keskinen KL, Malvela MT, et al. Combined creatine and sodium bicarbonate supplementation enhances interval swimming. J Strength Cond Res, 2004,18:306-10.
    [19]Bishop D, Claudius B. Effects of induced metabolic alkalosis on prolonged intermittent-sprint performance. Med Sci Sports Exerc,2005,37:759-67.
    [20]Horswill CA. Effects of bicarbonate, citrate, and phosphate loading on performance. Int J Sport Nutr,1995,5 Suppl:S111-9.
    [21]McNaughton L, Dalton B, Palmer G. Sodium bicarbonate can be used as an ergogenic aid in high-intensity, competitive cycle ergometry of 1 h duration. Eur J Appl Physiol Occup Physiol,1999,80:64-9.
    [22]Van Montfoort MC, Van Dieren L, Hopkins WG, et al. Effects of ingestion of bicarbonate, citrate, lactate, and chloride on sprint running. Med Sci Sports Exerc, 2004,36:1239-43.
    [23]Schott HC 2nd, Hinchcliff KW. Treatments affecting fluid and electrolyte status during exercise. Vet Clin North Am Equine Pract,1998,14:175-204.
    [24]Applegate E. Effective nutritional ergogenic aids. Int J Sport Nutr,1999,9:229-39.
    [25]McNaughton LR. Sodium bicarbonate ingestion and its effects on anaerobic exercise of various durations. J Sports Sci,1992,10:425-35.
    [26]Matson LG, Tran ZV. Effects of sodium bicarbonate ingestion on anaerobic performance:a meta-analytic review. Int J Sport Nutr,1993,3:2-28.
    [27]McNaughton LR. Bicarbonate ingestion:effects of dosage on 60 s cycle ergometry. J Sports Sci,1992,10:415-23.
    [28]Sahlin K. Intracellular pH and energy metabolism in skeletal muscle of man. With special reference to exercise. Acta Physiol Scand Suppl,1978,455:1-56.
    [29]Costill DL, Verstappen F, Kuipers H, et al. Acid-base balance during repeated bouts of exercise:influence of HC03. Int J Sports Med,1984,5:228-31.
    [30]Mainwood GW, Renaud JM. The effect of acid-base balance on fatigue of skeletal muscle. Can J Physiol Pharmacol,1985,63:403-16.
    [31]Sutton JR, Jones NL, Toews CJ. Effect of PH on muscle glycolysis during exercise. Clin Sci (Lond),1981,61:331-8.
    [32]Linderman J, Fahey TD. Sodium bicarbonate ingestion and exercise performance. An update. Sports Med,1991,11:71-7.
    [33]Hermansen L. Effect of metabolic changes on force generation in skeletal muscle during maximal exercise. Ciba Found Symp,1981,82:75-88.
    [34]Hultman E, Sjoholm H. Energy metabolism and contraction force of human skeletal muscle in situ during electrical stimulation. J Physiol,1983,345:525-32.
    [35]McCartney N, Heigenhauser GJ, Jones NL. Effects of pH on maximal power output and fatigue during short-term dynamic exercise. J Appl Physiol,1983,55:225-9.
    [36]Hermansen L, Osnes JB. Blood and muscle pH after maximal exercise in man. J Appl Physiol,1972,32:304-8.
    [37]艾华.酸性缓冲剂的研究进展及应用.中国运动医学杂志,2004,23:169—79.
    [38]'Suzuki Y, Ito O, Mukai N, et al. High level of skeletal muscle carnosine contributes to the latter half of exercise performance during 30-s maximal cycle ergometer sprinting. Jpn J Physiol,2002,52:199-205.
    [39]杨国宇,王艳玲,王月影,朱河水,惠参军,崔平安.肌肽对小鼠抗疲劳作用的试验研究.河南农业大学学报,2003,12.383—85.
    [40]赵玉红,孔保华,张立钢.鱼肽的抗疲劳功能研究.东北农业大学学报,2005,8,36:490-93.
    [41]Suzuki Y, Nakao T, Maemura H, et al. Carnosine and anserine ingestion enhances contribution of nonbicarbonate buffering. Med Sci Sports Exerc,2006,38:334-8.
    [42]又平芳春,菊地数晃.抗疲劳组合物.见:烧津水产化学工业株氏会社,主编.中国,2002.11-18.
    [43]Eto S, Yoshinaga T, Ushijima S, et al. [A case of polaprezinc-induced pneumonitis]. Nihon Kokyuki Gakkai Zasshi,2003,41:561-4.
    [44]Jin M, Otaka M, Watanabe S. [New therapeutic approaches to peptic ulcer using mucosal protective agents]. Nippon Rinsho,2002,60 Suppl 2:377-81.
    [45]Batrukova MA, Rubtsov AM. Histidine-containing dipeptides as endogenous regulators of the activity of sarcoplasmic reticulum Ca-release channels. Biochim Biophys Acta,1997,1324:142-50.
    [46]Rubtsov AM. Molecular mechanisms of regulation of the activity of sarcoplasmic reticulum Ca-release channels (ryanodine receptors), muscle fatigue, and Severin's phenomenon. Biochemistry (Mosc),2001,66:1132-43.
    [47]Goldfinch J, McNaughton LR, Davies P. Bicarbonate ingestion and its effects upon 400-m racing time. Eur J Appl Physiol Occup Physio,1988,57:45-48.
    [48]McNaughton LR. Bicarbonate ingestion:Effects of dosage on 60s cycle ergometry. 1992,10:415-423.
    [49]Jones NL, Sutton JR, Taylor R, et al. Effect of pH on cardiorespiratory and metabolic responses to exercise. J Appl Physiol,1977,43:959-64.
    [50]Potteiger JA, Webster MJ, Nickel GL, et al. The effects of buffer ingestion on metabolic factors related to distance running performance. Eur J Appl Physiol Occup Physiol,1996,72:365-71.
    [51]Stephens TJ, McKenna MJ, Canny BJ, et al. Effect of sodium bicarbonate on muscle metabolism during intense endurance cycling. Med Sci Sports Exerc, 2002,34:614-21.
    [52]Portington KJ, Pascoe DD, Webster MJ, et al. Effect of induced alkalosis on exhaustive leg press performance. Med Sci Sports Exerc,1998,30:523-8.
    [53]Verbitsky O, Mizrahi J, Levin M, et al. Effect of ingested sodium bicarbonate on muscle force, fatigue, and recovery. J Appl Physiol,1997,83:333-7.
    [54]Spriet LL, Lindinger MI, Heigenhauser GJ, et al. Effects of alkalosis on skeletal muscle metabolism and performance during exercise. Am J Physiol,1986,251:R833-9.
    [55]Roth DA, Brooks GA. Lactate transport is mediated by a membrane-bound carrier in rat skeletal muscle sarcolemmal vesicles. Arch Biochem Biophys,1990,279:377-85.
    [56]Roth DA, Brooks GA. Lactate and pyruvate transport is dominated by a pH gradient-sensitive carrier in rat skeletal muscle sarcolemmal vesicles. Arch Biochem Biophys,1990,279:386-94.
    [57]Hollidge-Horvat MG, Parolin ML, Wong D, et al. Effect of induced metabolic alkalosis on human skeletal muscle metabolism during exercise. Am J Physiol Endocrinol Metab,2000,278:E316-29.
    [58]Nielsen HB, Bredmose PP, Stromstad M, et al. Bicarbonate attenuates arterial desaturation during maximal exercise in humans. J Appl Physiol,2002,93:724-31.
    [59]McKenna MJ, Heigenhauser GJ, McKelvie RS, et al. Sprint training enhances ionic regulation during intense exercise in men. J Physiol,1997,501 (Pt 3):687-702.
    [60]McKenzie EC, Valberg SJ, Godden SM, et al. Effect of dietary starch, fat, and bicarbonate content on exercise responses and serum creatine kinase activity in equine recurrent exertional rhabdomyolysis. J Vet Intern Med,2003,17:693-701.
    [61]Peng HC, Lin SH. Effects of chicken extract on antioxidative status and liver protection under oxidative stress. J Nutr Sci Vitaminol (Tokyo),2004,50:325-9.
    [1]Gariballa SE, Sinclair AJ. Carnosine:physiological properties and therapeutic potential. Age Ageing,2000,29:207-10.
    [2]Son DO, Satsu H, Kiso Y, et al. Characterization of carnosine uptake and its physiological function in human intestinal epithelial Caco-2 cells. Biofactors, 2004,21:395-8.
    [3]Pegova A, Abe H, Boldyrev A. Hydrolysis of carnosine and related compounds by mammalian carnosinases. Comp Biochem Physiol B Biochem Mol Biol,2000,127:443-6.
    [4]Gardner ML, Illingworth KM, Kelleher J, et al. Intestinal absorption of the intact peptide carnosine in man, and comparison with intestinal permeability to lactulose. J Physiol,1991,439:411-22.
    [5]Bakardjiev A, Bauer K. Transport of beta-alanine and biosynthesis of carnosine by skeletal muscle cells in primary culture. Eur J Biochem,1994,225:617-23.
    [6]Bakardjiev A, Bauer K. Biosynthesis, release, and uptake of carnosine in primary cultures. Biochemistry (Mosc),2000,65:779-82.
    [7]Mannion AF, Jakeman PM, Dunnett M, et al..Carnosine and anserine concentrations in the quadriceps femoris muscle of healthy humans. Eur J Appl Physiol Occup Physiol,1992,64:47-50.
    [8]Penafiel R, Ruzafa C, Monserrat F, et al. Gender-related differences in carnosine, anserine and lysine content of murine skeletal muscle. Amino Acids,2004,26:53-8.
    [9]Chan WK, Decker EA, Chow CK, et al. Effect of dietary carnosine on plasma and tissue antioxidant concentrations and on lipid oxidation in rat skeletal muscle. Lipids, 1994,29:461-6.
    [10]Decker EA, Livisay SA, Zhou S. A re-evaluation of the antioxidant activity of purified carnosine. Biochemistry (Mosc),2000,65:766-70.
    [11]Gutteridge JM. Ferrous-salt-promoted damage to deoxyribose and benzoate. The increased effectiveness of hydroxyl-radical scavengers in the presence of EDTA. Biochem J, 1987,243:709-14.
    [12]Aldini G, Carini M, Beretta G, et al. Carnosine is a quencher of 4-hydroxy-nonenal:through what mechanism of reaction?. Biochem Biophys Res Commun, 2002,298:699-706.
    [13]Peng HC, Lin SH. Effects of chicken extract on antioxidative status and liver protection under oxidative stress. J Nutr Sci Vitaminol (Tokyo),2004,50:325-9.
    [14]Decker EA. The role of phenolics, conjugated linoleic acid, carnosine, and pyrroloquinoline quinone as nonessential dietary antioxidants. Nutr Rev,1995,53:49-58.
    [15]Stuerenburg HJ. The roles of carnosine in aging of skeletal muscle and in neuromuscular diseases. Biochemistry (Mosc),2000,65:862-5.
    [16]Churchill TA, Green CJ, Fuller BJ. Stimulation of glycolysis by histidine buffers in mammalian liver during cold hypoxia. Arch Biochem Biophys,1995,320:43-50.
    [17]谭竹钧,雅莉.肌肽对绵羊精子无氧酵解的影响.动物学研究,1995,16:37—41.
    [18]Ahmed SA, Gad MZ. Effect of schistosomal infection and its treatment on some key enzymes of glucose metabolism in mice livers. Arzneimittelforschung,1995,45:1324-8.
    [19]Batrukova MA, Rubtsov AM, Boldyrev AA. [The effect of carnosine on Ca-channels in rabbit skeletal muscle sarcoplasmic reticulum]. Biokhimiia,1992,57:904-10.
    [20]Batrukova MA, Rubtsov AM. Histidine-containing dipeptides as endogenous regulators of the activity of sarcoplasmic reticulum Ca-release channels. Biochim Biophys Acta,1997,1324:142-50.
    [21]Rubtsov AM. Molecular mechanisms of regulation of the activity of sarcoplasmic reticulum Ca-release channels (ryanodine receptors), muscle fatigue, and Severin's phenomenon. Biochemistry (Mosc),2001,66:1132-43.
    [22]Tallon MJ, Harris RC, Boobis LH, et al. The carnosine content of vastus lateralis is elevated in resistance-trained bodybuilders. J Strength Cond Res,2005,19:725-9.
    [23]Suzuki Y, Nakao T, Maemura H, et al. Carnosine and anserine ingestion enhances contribution of nonbicarbonate buffering. Med Sci Sports Exerc,2006,38:334-8.
    [24]O'Dowd A, O'Dowd JJ, Miller DJ. The dipeptide camosine constricts rabbit saphenous vein as a zinc complex apparently via a serotonergic receptor. J Physiol, 1996,495 (Pt2):535-43.
    [25]Prokopieva VD, Bohan NA, Johnson P, et al. Effects of carnosine and related compounds on the stability and morphology of erythrocytes from alcoholics. Alcohol Alcohol,2000,35:44-8.
    [26]Tamaki N, Tsunemori F, Wakabayashi M, et al. Effect of histidine-free and-excess diets on anserine and carnosine contents in rat gastrocnemius muscle. J Nutr Sci Vitaminol (Tokyo),1977,23:331-40.
    [27]Tamaki N, Funatsuka A, Fujimoto S, et al. The utilization of carnosine in rats fed on a histidine-free diet and its effect on the levels of tissue histidine and carnosine. J Nutr Sci Vitaminol (Tokyo),1984,30:541-51.
    [28]Dunnett M, Harris RC. Influence of oral beta-alanine and L-histidine supplementation on the carnosine content of the gluteus medius. Equine Vet J Suppl, 1999,30:499-504.
    [29]Maynard LM, Boissonneault GA, Chow CK, et al. High levels of dietary carnosine are associated with increased concentrations of carnosine and histidine in rat soleus muscle. J Nutr,2001,131:287-90.
    [30]Park YJ, Volpe SL, Decker EA. Quantitation of carnosine in humans plasma after dietary consumption of beef. J Agric Food Chem,2005,53:4736-9.
    [31]Harris RC, Tallon MJ, Dunnett M, et al. The absorption of orally supplied beta-alanine and its effect on muscle carnosine synthesis in human vastus lateralis. Amino Acids,2006,30:279-89.
    [32]Suzuki Y, Ito O, Mukai N, et al. High level of skeletal muscle carnosine contributes to the latter half of exercise performance during 30-s maximal cycle ergometer sprinting. Jpn J Physiol,2002,52:199-205.
    [33]杨国宇,王艳玲,王月影,朱河水,惠参军,崔平安.肌肽对小鼠抗疲劳作用的试验研究.河南农业大学学报,2003,12.383—85.
    [34]赵玉红,孔保华,张立钢.鱼肽的抗疲劳功能研究.东北农业大学学报,2005,8,36:490—93.
    [35]又平芳春,菊地数晃.抗疲劳组合物.见:烧津水产化学工业株氏会社,主编.中国,2002.11-18.
    [36]Eto S, Yoshinaga T, Ushijima S, et al. [Anserine ingestion enhances anaerobic capacity]. Nihon Kokyuki Gakkai Zasshi,2004,41:561-4.
    [37]Jin M, Otaka M, Watanabe S. [Interactions between anserine and buffers on capacity]. Nippon Rinsho,2005,60 Suppl 2:377-81.
    [38]Horswill CA. Effects of bicarbonate, citrate, and phosphate loading on performance. Int J Sport Nutr,1995,5 Suppl:S111-9.
    [39]Mainwood GW, Renaud JM. The effect of acid-base balance on fatigue of skeletal muscle. Can J Physiol Pharmacol,1985,63:403-16.
    [40]Chasiotis D. The regulation of glycogen phosphorylase and glycogen breakdown in human skeletal muscle. Acta Physiol Scand Suppl,1983,518:1-68.
    [41]Hultman E, Sjoholm H. Energy metabolism and contraction force of human skeletal muscle in situ during electrical stimulation. J Physiol,1983,345:525-32.
    [42]McCartney N, Heigenhauser GJ, Jones NL. Effects of pH on maximal power output and fatigue during short-term dynamic exercise. J Appl Physiol,1983,55:225-9.
    [43]Hermansen L, Osnes JB. Blood and muscle pH after maximal exercise in man. J Appl Physiol,1972,32:304-8.
    [44]Begum G, Cunliffe A, Leveritt M. Physiological role of carnosine in contracting muscle. Int J Sport Nutr Exerc Metab,2005,15:493-514.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700