用户名: 密码: 验证码:
富氧环境下碳烟还原NO_x的微观反应机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柴油机因热循环效率高、燃油经济性好、CO_2排放量低而倍受重视。但柴油机尾气中碳烟和NO_x造成的环境污染问题也日益突出。由于柴油机机内NO_x与碳烟控制存在所谓的trade-off关系,仅通过改进发动机降低NO_x和碳烟排放有一定的局限性。利用柴油机尾气中的碳烟还原NO_x为N_2、同时自身被氧化为CO_2,是较理想的同时去除NO_x和碳烟的后处理技术。而研究NO_x和碳烟微观反应机理,则有助于揭示催化剂催化NO_x和碳烟反应的本质,发现催化剂表面反应过程中促进和制约NO_x还原、碳烟燃烧的因素,对发展NO_x和碳烟互为氧化还原技术有指导意义。
     本文将BaAl_2O_4用于催化NO_x和碳烟反应的研究,利用程序升温反应(TPR)技术评价了该催化剂在不同反应条件下催化同时去除碳烟和NO_x的活性。采用漫反射红外光谱和拉曼光谱,详细地研究了BaAl_2O_4催化碳烟和NO_x反应的微观机理。具体工作如下:
     (1)制备了La_(0.8)K_(0.2)MnO_3和BaAl_2O_4催化剂,采用XRD、FT-IR、SEM等对制备的催化剂进行物理性能表征。利用TPR技术综合评价和比较了La_(0.8)K_(0.2)MnO_3和BaAl_2O_4的催化性能。结果表明,这两种催化剂催化碳烟和NO_x的反应均具有较高的活性,与非催化反应相比,碳烟的起燃温度和最大燃烧温度分别降低了175℃和240℃以上,NO_x转化为N_2的效率有了很大提高。
     (2)分析了各种反应条件对催化同时去除碳烟和NO_x反应的影响。研究发现,反应气体的空速越低、碳烟和催化剂的质量比越高,越有利于催化反应进行;O_2的存在能促进碳烟和NO_x的催化反应,当模拟尾气中O_2含量由2%增加为5%时,碳烟的起燃温度和最大燃烧温度分别由330℃和405℃降低了大约30℃,在BaAl_2O_4催化作用下,NO_x转化为N_2和N_2O的效率分别由10.2%和3.5%升至12.1%和3.9%,在La_(0.8)K_(0.2)MnO_3催化作用下,由14.52%和6.63%降至11.02%和4.93%。
     (3)采用漫反射红外光谱,用NH3作为探针分子,分析了BaAl_2O_4表面的酸性中心,发现BaAl_2O_4表面同时存在质子酸(Br?nsted酸)和非质子酸(Lewis酸)。分析了不同反应条件下NO、NO_2和O_2在BaAl_2O_4表面的动态行为以及它们之间的相互作用。研究表明,NO主要以线性和桥位亚硝酸盐的形态吸附在催化剂表面;除了形成亚硝酸盐外,NO_2在催化剂表面还直接形成了单齿硝酸盐、桥位硝酸盐和离子硝酸盐;生成的亚硝酸盐将继续与催化剂表面的吸附氧( O~-_(surf)和O 2 ?lattice)或O_2反应生成硝酸盐物种,其中O ? surf的氧化能力最强。研究发现,O_2除了将NO氧化为NO_2外,另外一个重要作用是将亚硝酸盐氧化为硝酸盐,O_2的浓度越高越有利于硝酸盐物种形成;高温也有利于形成硝酸盐物种,350℃时(碳烟和NO_x以较快速度反应),硝酸盐物种的形成与吸附时间关系不大。
     (4)利用拉曼光谱(LRS)分析了碳烟与NO、NO_2及O_2的反应。发现碳烟用O_2或NO_x处理后,因与这些气体反应生成C(O)中间体,其非晶质碳渣和SP2碳结构被破坏。研究证明,高温有利于NO_x、O_2等与碳烟反应,相同温度下反应活性以NO+O_2 > O_2 > NO的顺序递减。
     (5)采用漫反射红外光谱原位分析了碳烟和NO_x在催化剂BaAl_2O_4表面的详细反应过程。研究表明,催化剂表面的硝酸盐物种因具有较强的氧化能力,优先与碳烟的部分氧化产物(C(O))发生氧化还原反应,生成的最终产物CO_2、N_2和N_2O从催化剂表面脱附,催化剂获得再生;硝酸盐物种与C(O)中间体的反应在催化同时去除碳烟和NO_x的过程中起主要作用,是碳烟和NO_x反应的速控步骤,与程序升温反应结果及NO_x在催化剂表面动态行为的分析结果相符。研究发现,N_2O具有一定的氧化能力,高温下生成的N_2O还没有来得及被红外光谱检测到,就已和C(O)反应了。催化剂表面生成硝酸盐物种浓度的多少直接关系到NO_x转化为N_2的效率,这与催化剂吸附NO_x后生成硝酸盐物种的能力有关。
     (6)利用密度泛函理论(DFT)构建并优化了BaAl_2O_4、C(O)中间体、NO_x在催化剂表面反应的中间产物及反应气体分子模型,利用推广的休克尔分子轨道法(EHMO)计算了各模型的分子轨道。结合分子轨道理论,比较分析了最高占据分子轨道和最低未占分子轨道的能级。结果表明催化剂表面O~-_(surf)的活性比O~(2-)_(lattice)强,其表面的亚硝酸盐物种被吸附氧( O~-_(surf)、O~(2-)_(lattice))或O_2氧化为硝酸盐物种。
Diesel engines have attracted much attention due to their high efficiency, economy and low CO_2 emissions. Correspondingly, with the main emissions of NO_x and soot, the related problems of environmental pollution are serious day by day. In cylinder, there exist trade-off effects for NO_x and soot control. Therefore, soot and NO_x cannot be reduced efficiently by improving combustion alone. Simultaneous removal of soot and NO_x is the optimal diesel engine after-treatment technique, in which NO_x is reduced into N_2 by soot, in return, soot is oxidized into CO_2 at the same time. To investigate the essence of the redox and find the crtical factors that promote and restrict the reaction, will be of great interesting in developing the technique for simultaneous removal of soot and NO_x.
     In this study, the catalytic activity of BaAl_2O_4 in simultaneous removal of soot and NO_x was evaluated by Temperature Programmed Reaction (TPR) technique under various reaction conditions. Then, the micro mechanism for the catalytic reaction of soot with NO_x on the surface of BaAl_2O_4 was investigated by DRIFTS (Diffuse Reflectance Infrared Fourier Transform Spectroscopy) and LRS (Laser Raman Spectroscopy). The detailed research is summarized as following:
     (1) La_(0.8)K_(0.2)MnO_3 and BaAl_2O_4 were prepared and characterized by XRD, FT-IR and SEM. The catalytical activity of La_(0.8)K_(0.2)MnO_3 and BaAl_2O_4 was evaluated systematically by TPR. These two catalysts all exhibit high catalytic activity in simultaneous removal of soot and NO_x, for exampe, Tig and Tm of soot decrease by more than 175℃and 240℃respectively, and the conversion of NO_x into N_2 is improved markedly.
     (2) The reaction of soot with NO_x was studied under various conditions. It is found that low GHSV (Gas Hourly Space Velocity) and high mass ratio of soot to catalyst are benefitial to the redox. Oxygen may promote the catalytic reaction of soot with NO_x. Both Tig and Tm of soot is decreased by ca. 30℃by increasing O_2 content from 2% to 5%. It is interesting that O_2 ehances the maximum conversion efficiencies of NO_x into N_2 and N_2O with the catalysis of BaAl_2O_4, however, the conversion efficiencies were depressed by changing BaAl_2O_4 to La_(0.8)K_(0.2)MnO_3.
     (3) Adsorption of ammonia was studied in order to obtain informaion on the surface acidity (Lewis and Br?nsted) of BaAl_2O_4 by DRIFTS. It is found that Lewis and Br?nsted acid exist simultaneously on the the surface of BaAl_2O_4. The dynamic behavior of NO, NO_2 and O_2 on the surface of the sample as well as their interactions was analyzed under different reaction conditions. NO adsorption produces linear nitrites and bridged nitrites in the absence of O_2. NO_2 adsorption produces monodentate nitrates, bridged nitrates and ionic nitrates besides nitrites species. The produced nitrites will further react with O? surf, O~(2-)_(lattice) and O_2 to form nitrates, of which O ? surf owns the highest oxidative activity. Besides oxidizing NO into NO_2, O_2 oxidizes nitrites into nitrates, while this role is neglected by previous study. High oxygen content in the NO-containing flow and high temperature contribute to the formation of nitrates species.
     (4) The reaction of soot with NO, NO_2 and O_2 was analyzed by LRS (Laser Raman Spectroscopy). It is found that amorphous material and SP2 structure of soot are destroyed after soot is pretreated with NO_x or O_2. High temperature favors the reaction of soot with NO_x and O_2, and the reaction activity is weakened in the order of NO+O_2> O_2 > NO at the same temperature.
     (5) The reaction of soot and NO_x was analyzed in situ on the surface of BaAl_2O_4 by DRIFTS. The chemical configuration of NO_x in the redox is revealed. Nitrates species on the sample will react with C(O) preferentially due to their high oxidative ability, accompanied by the formation of CO_2, N_2 and N_2O. When these products desorb from the catalyst, the catalyst is regenerated. It is presumed that the reaction of nitrates with C(O) plays the main role in the redox and is regarded as the rate determing step. The presumption is consistent with the dynamic behavior of NO_x on BaAl_2O_4 during the TPR proceedure. The produced N_2O at high temperature will react with C(O) as an oxidant before it can be detected by DRIFTS easily. The conversion efficiency of NO_x into N_2 and N_2O directly depends on the quantity of nitrates on BaAl_2O_4, which is related to the performance of the catalyst in forming of nitrates.
     (6) The molecule model of BaAl_2O_4, the intermediates of adsorbed NO_x, carbon-oxygen complexes and the reaction gases were constructed and optimized with DFT (Density Functional Theory) theory. The molecular orbital and the molecular orbital energy of the constructed model were calculated by EHMO (Extended Hückel Molecular Orbital) method. It is also revealed with frontier molecular orbital theory that nitrites will be oxidized into nitrates by O~-_(surf), O~(2-)_(lattice) or O_2, of which O~-_(surf) presents the highest oxidative activity by comparing the energy of HOMO (High Occupied Molecular Orbital) and LUMO (Low Unoccupied Molecular Orbital). The results of simulation calculation are in accordance with those of TPR and DRIFTS experiments.
引文
[1] 贺弘. 环境多相催化研究过程中的表面科学研究方法. 环境科学学报, 2003, 23 (2): 224-229
    [2] 余运波, 贺弘. Ag/Al2O3 选择性催化丙稀还原氮氧化物表面反应机理的原位红外光谱研究. 催化学报, 2003, 24 (5): 385-390
    [3] 李英杰, 林赫, 黄震等. La0.8K0.2MnO3 催化去除 NOx 和碳烟反应的研究. 上海交通大学学报, 2007, 41 (7): 1189-1193
    [4] Noel W C, Michael J P.The Storage of Nitrogen Oxides on Alumina-Supported Barium Oxide. Catalysis Today, 2002, 73 (3-4): 271-278
    [5] Paul T F, Margaret R. H, Delgass W N etc. FTIR Analysis of Storage Behavior and Sulfur Tolerance in Barium-Based NOx Storage and Reduction (NSR) Catalysts. Applied CatalysisB: Environmental, 2003, 46 (2): 393-413
    [6] Milt V G, Querini C A, Miró E E etc. Abatement of Diesel Exhaust Pollutants: NOx Adsorption on Co, Ba, K/CeO2 Catalysts. Journal of Catalysis, 2003, 220 (2): 424-432
    [7] Szailer T, Kwak J H, Kim D H etc. Effects of Ba Loading and Calcination Temperature on BaAl2O4 Formation for BaO/Al2O3 NOx Storage and Reduction Catalysts. Catalysis Today, 2006, 114 (1): 84-93
    [8] 李新刚, 孟命, 林培等. NOx 储存催化剂 Pt/BaAl2O4-Al2O3 的 XAFS 研究. 物理化学学报, 2001, 17 (12): 1072-1076
    [9] Graham G W, Jen H W, Theis J R etc. Leaching of Ba2+ in NOx Traps. Catalysis Letters, 2004, 93 (1-2): 3-6
    [10] Hodjati S, Bernhardt P, Petit C etc. Removal of NOx: Part I. Sorption/Desorption Processes on Barium Aluminate. Applied Catalysis B: Environmental, 1998, 19 (3-4): 209-219
    [11] Hodjati S, Bernhardt P, Petit C etc. Removal of NOx: Part II. Species Formed During the Sorption/Desorption Processes on Barium Aluminates. Applied Catalysis B: Environmental, 1998, 19 (3-4): 221-232
    [12] 刘永长. 内燃机原理. 北京: 高等教育出版社, 2004
    [13] 胡成南, 郝郑平, 沈迪新. 柴油车排放净化技术. 中国环保产业, 2002 (5): 26-28
    [14] Neeft J P A, Van Pruissen O P, Makkee M etc. Catalysts for the Oxidation of Soot from Diesel Exhaust Gases Ⅱ. Contact between Soot and Catalysts under Practical Conditions. Applied Catalysis B: Environmental, 1997, 12 (1): 21-31
    [15] 焦天民. 柴油机排气后处理的研究现状及存在问题. 拖拉机与农用运输车, 2002, (2): 16-18
    [16] 刘坚, 赵震, 许春明. 柴油车排放碳黑颗粒消除催化剂的研究进展. 催化学报, 2004, 25 (8): 673-680
    [17] Kamimoto M. Diesel Combustion and the Pollutant Formation as Viewed From Turbulent Mixing Concept. SAE Paper 880425, 1988
    [18] 王建昕, 傅立新, 黎维彬. 汽车排气污染治理及催化转化器. 北京: 化学工业出版社, 2000
    [19] Yuichi G. The Japanese Approach to Emission Reduction from Vehicles, in International Conference on Transport and Environment. Italy, 2007
    [20] Hiroyasu H, Arai M, Nakanishi H. Soot Formation and Oxidation in Diesel Engines. SAE Paper 800252, 1980
    [21] Kawatani T, Mari K, Fukano I etc. Exhaust Emission Regulations on Heavy-Duty Diesel Engine. SAE Paper 880425, 1993
    [22] Slodowske K. An Engine Manufacturer's Prospective on Diesel Fuels and the Environment, in Proceedings of the SAE Panel Presentation at SAE Fuels and Lubrificant Meeting. Detroit, 1993
    [23] 白屏, 黄荣光, 卢军. 稀土钙钛矿型复合氧化物在汽车尾气催化转化器中的应用. 贵金属, 2004, 25 (1): 67-70
    [24] 宋崇林, 沈美庆, 王军. 稀土钙钛矿型催化剂 LaBO3 对 NOx 反应性能及催化机理的研究(1). 燃烧科学与技术, 1999, 5 (2): 186-191
    [25] 许建昌, 李孟良, 李锦等. 满足欧Ⅳ/V 排放法规的柴油机排气后处理技术. 现代车用动力, 2006, (2): 12-16
    [26] 孙志强, 王虹. 同时去除柴油机排气中碳颗粒物和 NOx 的催化技术. 北京石油化工学院学报, 2007, 15 (20): 60-64
    [27] Fino D, Fino P, Saracco G etc. Studies on Kinetics and Reactions Mechanism of La2?xKxCu1?yVyO4 Layered Perovskites for the Combined Removal of Diesel Particulate and NOx. Applied Catalysis B: Environmental, 2003, 43 (3): 243-259
    [28] Yoshida K, Makino S, Sumiya S etc. Simultaneous Reduction of NOx and Particulate Emissions from Diesel Engine Exhaust. SAE paper 892046, 1989
    [29] Setten B A A L, Makkee M, Moulijn J A etc. Science and Technology of Catalytic Diesel Particulate Filters. Catalysis Reviews-Science and Engineering, 2001, 43 (4): 489-564
    [30] Andersson S L, Gabrielson P L, Odenbrand C U, Reducing NOx in Diesel Exhausts by SCR Technique-Experiments and Simulations. American Institute of Chemical Engineers Journal, 1994, 40 (11): 1911-1919
    [31] Petunchi J O, Sill G, Hall W K, Studies of the Selective Reduction of Nitric Oxide by Hydrocarbons. Applied Catalysis B: Environmental, 1993, 2 (4): 303-321
    [32] Lee C Y, Chai K Y, Ha B H. Catalytic Decomposition of Nitric-Oxide on Copper Zeolites. Applied Catalysis B: Environmental, 1994, 5 (1): 7-21
    [33] Milt V G, Ulla M A, Miro E E. NOx Trapping and Soot Combustion on BaCoO3?y Perovskite: LRS and FTIR Characterization. Applied Catalysis B: Environmental, 2005, 57 (1): 13-21
    [34] Russo N, Fino D, Saracco G. Studies on the Redox Properties of Chromite Perovskite Catalysts for Soot Combustion. Journal of Catalysis, 2005, 229 (2): 459-469
    [35] 许越, 夏海涛, 刘振琦. 催化剂设计与制备工艺. 北京: 化学工业出版社, 2002
    [36] Castoldi L, Matarrese R, Lietti L etc. Simultaneous Removal of NOx and Soot on Pt–Ba/Al2O3 NSR Catalysts. Applied Catalysis B: Environmental, 2006, 64 (1): 25-34
    [37] Illán-Gómez M J, Raymundo-Pi?ero E, García-García A etc. Catalytic NOx Reduction by Carbon Supporting Metals. Applied Catalysis B: Environmental, 1996, 20 (4-5): 267-275
    [38] Illán-Gómez M J, Brandán S, Linares-Solano A etc. NOx Reduction by Carbon Supporting Potassium-Bimetallic Catalysts. Applied Catalysis B: Environmental, 2000, 25 (1): 11-18
    [39] Matarrese R, Castoldi L, Lietti L etc. High Performances of Pt-K/Al2O3 versus Pt-Ba/Al2O3 LNT Catalysts in the Simultaneous Removal of NOx and Soot. Topics in Catalysis, 2007, 42-43 (1-4): 293-297
    [40] Milt V G, Pissarello M L, Miró E E etc. Abatement of Diesel-Exhaust Pollutants: NOx Storage and Soot Combustion on K/La2O3 Catalysts. Applied Catalysis B: Environmental, 2003, 41 (4): 397-414
    [41] Nejar N, García-Cortés J M, Salinas-Martínez de Lecea C etc. Bimetallic Catalysts for the Simultaneous Removal of NOx and Soot from Diesel Engine Exhaust: A Preliminary Study using Intrinsic Catalysts. Catalysis Communications, 2005, 6 (4): 263-267
    [42] Nejar N, Illán-Gómez M J. Performance of Potassium-Promoted Catalysts for NOx and Soot Removal from Simulated Diesel Exhaust. Topics in Catalysis, 2007, 42-43 (1-4): 277-282
    [43] Nejar N, Illán-Gómez M J. Potassium-Copper and Potassium-Cobalt Catalysts Supported on Alumina for Simultaneous NOx and Soot Removal from Simulated Diesel Engine Exhaust. Applied Catalysis B: Environmental, 2007, 70 (1-4): 261-268
    [44] Nejar N, Illán-Gómez M J. Noble-Free Potassium-Bimetallic Catalysts Supported on Beta-Zeolite for the Simultaneous Removal of NOx and Soot from Simulated Diesel Exhaust. Catalysis Today, 2007, 119 (1-4): 262-266
    [45] Pisarello M L, Milt V, Peralta M A etc. Simultaneous Removal of Soot and Nitrogen Oxides from Diesel Engine Exhausts. Catalysis Today, 2002, 75 (1-4): 465-470
    [46] Kureti S, Hizbullah K, Weisweiler W. Simultaneous Catalytic Removal of Nitrogen Oxides and Soot from Diesel Exhaust Gas over Potassium Modified Iron oxide. Chemical Engineering & Technology, 2003, 26 (9): 1003-1006
    [47] Weisweiler W, Hizbullah K, Kureti S. Simultaneous Catalytic Conversion of NOx and Soot from Diesel Engines Exhaust into Nitrogen and Carbon Dioxide. Chemical Engineering & Technology, 2002, 5 (2): 140-143
    [48] Fino D, Russo N, Saracco G etc. Removal of NOx and Diesel Soot over Catalytic TrapsBased on Spinel-Type Oxides. Powder Technology, 2008, 180 (1-2): 74-78
    [49] Lin H, Huang Z, Shangguan W F etc. Temperature-Programmed Oxidation of Diesel Particulate Matter in a Hybrid Catalysis-Plasma Reactor, in Proceedings of the Combustion Institute, 31st International Symposium on Combustion. 2006: Heidelberg, Germany
    [50] Liu G H, Huang Z, Shangguan W F etc. Simultaneously Catalytic Removal of NOx and Particulate Matter On Diesel Particulate Filter. Chinese Science Bulletin, 2002, 47 (21): 1620-1623
    [51] Liu J, Zhao Z, Xu C M etc. Simultaneous Removal of NOx and Diesel Soot over Nanometer Ln-Na-Cu-O Perovskite-like Complex Oxide Catalysts. Applied Catalysis B: Environmental, 2008, 78 (1-2): 61-72
    [52] Liu J, Zhao Z, Xu C M etc. Simultaneous Removal of NOx and Diesel Soot Particulates over Nanometric La2-xKxCuO4 Complex Oxide Catalysts. Catalysis Today, 2007, 119 (1-4): 267-272
    [53] Pei M X, Lin H, Shangguan W F etc. Simultaneous Catalytic Removal of NOx and Diesel PM over La0.9K0.1CoO3 Catalysis Assisted by Plasma. Journal of Environmental Science, 2005, 17 (2): 220-223
    [54] Peng X S, Lin H, Shangguan W F etc. Surface Properties and Catalytic Performance of La0.8K0.2CuxMn1-xO3 for simultaneous removal of NOx and soot. Chemical Engineering & Technology, 2007, 30 (1): 99-104
    [55] Peng X S, Lin H, Shangguan W F etc. A Highly Efficient and Porous Catalyst for Simultaneous Removal of NOx and Diesel Soot. Catalysis Communications, 2006, 8 (2): 157-161
    [56] Peng X S, Lin H, Shangguan W F etc. Effect of Catalysis on Plasma Assisted Catalytic Removal of Nitrogen Oxides and Soot. Chemical Engineering & Technology, 2006, 29 (10): 1262-1266
    [57] Shangguan W F, Teraoka Y, Kagawa S. Simultaneous Catalytic Removal of NOx and Diesel Soot Particulates over Ternary AB2O4 Spinel-Type Oxides. Applied Catalysis B: Environmental, 1996, 2 (2): 217-227
    [58] Shangguan W F, Teraoka Y, Kagawa S. Promotion Effect of Potassium on the Catalytic Property of CuFe2O4 for the Simultaneous Removal of NOx and Diesel soot particulate. Applied Catalysis B: Environmental, 1998, 16 (2): 149-154
    [59] Teraoka Y, Kanada K, Kagawa S etc., Synthesis of La-K-Mn-O Perovskite-Type Oxides andTheir Catalytic Property for Simultaneous Removal of NOx and Diesel Soot Particulates. Applied Catalysis B: Environmental, 2001, 34 (1): 73-78
    [60] Teraoka Y, Nakano K, Kagawa S etc. Simultaneous Removal of Nitrogen Oxides and Diesel Soot Particulates Catalyzed by Perovskite-Type Oxides. Applied Catalysis B: Environmental, 1995, 5 (3): L181-L185
    [61] Teraoka Y, Nakano K, Shangguan W F etc. Simultaneous Catalytic Removal of Nitrogen Oxides and Diesel soot Particulate over Perovskite-Related Oxides. Catalysis Today, 1996, 27 (1-2): 107-113
    [62] 刘光辉, 黄震, 上官文峰等. 同时催化去除柴油机微粒和 NOx 的试验研究(1). 内燃机学报, 2003, 21 (1): 40-44
    [63] 刘光辉, 黄震, 上官文峰等. 同时催化去除柴油机微粒和 NOx 的试验研究(2). 内燃机学报, 2003, 21 (1): 111-114
    [64] 刘光辉, 上官文峰, 黄震. 催化剂与微粒接触对同时去除 PM 和 NOx 反应的影响. 燃烧科学与技术, 2003, 9 (5): 463-468
    [65] 彭小圣, 林赫, 黄震等. 采用钙钛矿型催化剂(La0.8K0.2Cu0.05Mn0.95O3 )同时催化去除 NOx和碳烟的研究. 环境科学学报, 2006, 26 (5): 779-784
    [66] 彭小圣, 林赫, 上官文峰等. K 和 Cu 部分取代对 LaMnO3 钙钛矿型催化剂同时去除 NOx和碳烟的影响. 催化学报, 2006, 27 (9): 767-771
    [67] 彭小圣, 林赫, 上官文峰等. 一种用于同时去除 NOx 和碳烟的新型高效催化剂. 上海交通大学学报, 2007, 41 (5): 669-672
    [68] 孙志强, 王虹. La1-xSrxCo0..5Mn0.5O3 催化剂同时去除柴油机碳颗粒和 NOx 的性能. 石油化工高等学校学报, 2007, 20 (1): 35-38
    [69] 裴梅香, 林赫, 上官文峰等. 低温等离子体技术及其在柴油机排气处理中的应用. 环境污染治理技术与设备, 2004, 5 (5): 56-60
    [70] 裴梅香, 林赫, 上官文峰等. 等离子体辅助La0.9K0.1CoO3 同时催化去除NOx和柴油机碳烟微粒的试验研究. 燃烧科学与技术, 2005, 11 (3): 278-281
    [71] 裴梅香, 林赫, 上官文峰等. 等离子体辅助同时催化去除柴油机 NOx和碳烟的试验研究. 工程热物理学报, 2005, 26 (5): 879-882
    [72] 裴梅香, 林赫, 上官文峰等. 等离子体在同时去除 NOx 和碳烟催化反应中的作用. 物理化学学报, 2005, 21 (3): 255-260
    [73] 彭小圣. 催化与高频放电耦合催化同时去除氮氧化物和碳烟, [学位论文]. 上海: 上海交通大学, 2007
    [74] John P A, Neeft T, Xander N etc. Kinetics of the Oxidation of Diesel Soot. Fuel, 1997, 76 (12): 1129-1136
    [75] Shangguan W F, Teraoka Y, Kagawa S. Kinetics of Soot-O2, Soot-NO and Soot-O2-NO Reactions over Spinel-Type CuFe2O4 Catalyst. Applied Catalysis B: Environmental, 1997, 12 (2-3): 237-247
    [76] Matyshak V A, Krylov O V. In Situ IR Spectroscopy of Intermediates in Heterogeneous Oxidative Catalysis. Catalysis Today, 1995, 25 (1): 1-87
    [77] Cant N W, Cowan A D. The Mechanism of Nitrogen Oxides Reduction by Hydrocarbons and in Other Systems. Catalysis Today, 1997, 35 (1-2): 89-95
    [78] Long R Q, Yang R T. Characterization of Fe-ZSM-5 Catalyst for Selective Catalytic Reduction of Nitric Oxide by Ammonia. Journal of Catalysis, 2000, 194 (1): 80-90
    [79] Shangguan W F. Simultaneous Catalytic Removal of NOx and Diesel Soot Particulate by Mixed Metal Oxides, [Dissertation]. Nagasaki: Nagasaki University, 1995
    [80] 刘光辉. 催化过滤器同时去除柴油机微粒和氮氧化物的基础研究, [学位论文]. 上海: 上海交通大学, 2004
    [81] Fino D, Russo N, Saracco G etc. Catalytic Removal of NOx and Diesel Soot over Nanostructured Spinel-Type Oxides. Journal of Catalysis, 2006, 242 (1): 38-47
    [82] Hong S S, Lee G D. Simultaneous Removal of NO and Carbon Particulates over Lanthanoid Perovskite-Type Catalysts. Catalysis Today, 2000, 63 (1): 397-404
    [83] Fredrik Ahlstr?m A, Ingemar Odenbrand C U. Catalytic Combustion of Soot Deposits from Diesel Engines. Applied Catalysis B: Environmental, 1990, 60 (1): 143-156
    [84] Teraoka Y, Harada T, Kagawa S. Reaction Mechanism of Direct Decomposition of Nitric Oxide over Co-and Mn-Based Perovskite-Type Oxides. Journal of the Chemical Society, Faraday Transactions, 1998, 94 (17): 1887-1891
    [85] Cooper B J, Thoss J E. Role of NO in Diesel Particulate Emission Control. SAE Paper 890404, 1989
    [86] Teraoka Y, Shangguan W F, Jansson K etc. Identification of Active Crystalline Phase in La-K-Cu-V Mixed Oxide for the Simultaneous Removal of Nitrogen Oxides and Diesel Soot. Bulletin of the Chemical Society of Japan, 1999, 72 (1): 133-137
    [87] Saracco G, Serra V, Specchia V. Catalyst Materials for High-Temperature Processes. Ceramic Transaction, 1997, 73 (1): 27-38
    [88] Matsuoka K, Orikasa H, Itoh Y etc. Reaction of NO with Soot over Pt-Loaded Catalyst in thePresence of Oxygen. Applied Catalysis B: Environmental, 1999, 26 (1): 89-99
    [89] 林赫. 富氧环境中氮氧化物和碳烟同时催化去除的微观机理, [博士后出站报告], 上海交通大学机械动力与工程学院, 2004
    [90] 周克斌. 含 Pd 钙钛矿型复合氧化物催化剂结构与催化性能的研究, [学位论文]. 北京:中国科学院生态环境研究中心, 2003
    [91] Tanaka H, Tan I, Uenishi M etc. Regeneration of palladium subsequent to solid solution and segregation in a perovskite catalyst: an intelligent catalyst. Topics in Catalysis, 2001, 16-17 (1): 63-67
    [92] Querini C A, Ulla M A, Requejo F etc. Catalytic Combustion of Diesel Soot Particles, Activity and Characterization of Co/MgO and Co, K/MgO Catalysts. Applied Catalysis B: Environmental, 1998, 15 (1): 5-19
    [93] Miró E E, Ravelli F. Ulla M A etc., Catalytic Combustion of Diesel Soot on Co, K Supported Catalysts. Catalysis Today, 1999, 53 (4): 631-638
    [94] Miró E E, Ravelli F, Ulla M A etc. Catalytic Diesel Soot Elimination on Co-K/La2O3 Catalysts: Reaction Mechanism and the Effect of NO Addition. Studies in Surface Science and Catalysis, 2000, 130 (1): 731-736
    [95] Querini C A, Cornaglia L, Ulla M A etc. Catalytic Combustion of Diesel Soot on Co,K/MgO Catalysts. Effect of the Potassium Loading on Activity and Stability. Applied Catalysis B: Environmental, 1999, 20 (3): 165-177
    [96] Pisarello M L, Saux C, Miro E E etc. Stability of K-La2O3 Catalysts During the Combustion of Diesel soot. High Frequency CO2 Pulses and Soot-Catalyst Contacting Studies. Studies In Surface Science And Catalysis, 2001, 139: 141-148
    [97] 张平, 王乐夫, 徐建昌. 原位漫反射红外光谱研究 NO 在 Ag/SAPO-34 催化剂上的选择性催化还原. 光谱学与光谱分析, 2003, 23 (1): 46-48
    [98] 万颖, 王正, 马建新. Rh-Al-MCM-41 上 NO 选择性催化还原的原位红外研究. 上海环境科学, 2002, 21 (2): 143-145
    [99] 余运波. 富氧条件下Ag/Al2O3选择性催化还原NOx反应机理研究, [学位论文]. 北京: 中国科学院生态研究中心, 2004
    [100] Chi Y, Chuang S S C. Infrared Study of NO Adsorption and Reduction with C3H6 in the Presence of O2 over CuO/Al2O3. Journal of Catalysis, 2000, 190 (1): 75-91
    [101] Eng J, Bartholomew C H. Kinetic and Mechanistic Study of NOx Reduction by NH3 over H-Form Zeolites. Journal of Catalysis, 1997, 171 (1): 27-44
    [102] Aylor A W, Lobree L J, Reimer J A etc. NO Adsorption, Desorption, and Reduction by CH4 over Mn-ZSM-5. Journal of Catalysis, 1997, 170 (2): 390-401
    [103] Lobree L J, Hwang I C, Reime J A etc. An in situ Infrared Study of NO Reduction by C3H8 over Fe-ZSM-5. Catalysis Letters, 1999, 63 (3-4): 233-240
    [104] Fernández-García M. Martínez-Arias A. Belver C. etc., Behavior of Palladium–Copper Catalysts for CO and NO Elimination. Journal of Catalysis, 2000, 190 (2): 387-395
    [105] Laane J, Ohlsen J R. Characterization of Nitrogen Oxides by Vibrational Spectroscopy Progress in Inorganic Chemistry, 1980, 27: 465-472
    [106] Oi-Uchisawa J, Obuchi A, Ogata A etc. Effect of Feed Gas Composition on the Rate of Carbon Oxidation with Pt/SiO2 and the Oxidation Mechanism. Applied Catalysis B: Environmental, 1999, 21 (1): 9-17
    [107] Liu S T, Obuchi A, Oi-Uchisawa J etc. Synergistic Catalysis of Carbon Black Oxidation by Pt with MoO3 or V2O5. Applied Catalysis B: Environmental, 2001, 30 (3-4): 259-265
    [108] Setiabudi A, Makkee M, Moulijn J A etc. The Role of NO2 and O2 in the Accelerated Combustion of Soot in Diesel Exhaust Gases. Applied Catalysis B: Environmental, 2004, 50 (3): 185-194
    [109] Mul G, Neeft J P A, Kapteijn F etc. The Formation of Carbon Surface Oxygen Complexes by Oxygen and Ozone. The Effect of Transition Metal Oxides. Carbon, 1998, 36 (9): 1269-1276
    [110] Fanning P E, Vannice M A. A DRIFTS Study of the Formation of Surface Groups on Carbon by Oxidation. Carbon, 1993, 31 (5): 721-730
    [111] Smith D M, Chughtai A R. The Surface Structure and Reactivity of Black Carbon. Colloids and Surfaces, A: Physicochemical and Engineering Aspects, 1995, 105 (1): 47-77
    [112] Zawadzki J, Wi?niewski M, Skowrońska K. Heterogeneous reactions of NO and NO-O2 on the surface of Carbons. Carbon, 2003, 41 (2): 235-246
    [113] Muckenhuber H, Grothe H. The Heterogeneous Reaction between Soot and NO2 at Elevated Temperature. Carbon, 2006, 44 (3): 546-559
    [114] Muckenhuber H, Grothe H. The Reaction between Soot and NO2-Investigation on Functional Groups using TPD-MS. Topics in Catalysis, 2004, 30-31 (1-4): 287-291
    [115] Stanmore B R, Brilhac J F, Gilot P etc. The Oxidation of Soot: A Review of Experiments, Mechanisms and Models. Carbon, 2001, 39 (15): 2247-2268
    [116] Jelles S J, Krul R R, Makkee M etc. The Influence of NOx on the Oxidation of Metal Activated Diesel Soot. Catalysis Today, 1999, 53 (4): 623-630
    [117] Kirchner U, Scheer V, Vogt R etc. FTIR Spectroscopic Investigation of the Mechanism and Kinetics of the Heterogeneous Reactions of NO2 and HNO3 with soot. Journal of Physical Chemistry, 2000, 104 (39): 8908-8915
    [118] Fanning P E, Mannice A V. A DRIFTS Study of the Formation of Surface Groups on Carbon by Oxidation. Carbon, 1993, 31 (5): 721-730
    [119] Setiabudi A, Setten B, Makkee M etc. The Influence of NOx on Soot Oxidation Rate: Molten Salt versus Platinum. Applied Catalysis B: Environmental, 2002, 35 (3): 159-166
    [120] Mul G. Catalytic Diesel Exhaust Purification-A Mechanistic Study of Soot Oxidation, [Dissertation]. Delft: Delft University of Technology, 1997
    [1] Fino D, Fino P, Saracco G etc. Studies on Kinetics and Reactions Mechanism of La2?xKxCu1?yVyO4 Layered Perovskites for the Combined Removal of Diesel Particulate and NOx. Applied Catalysis B: Environmental, 2003, 43 (3): 243-259
    [2] Milt V G, Ulla M A, Miro E E. NOx Trapping and Soot Combustion on BaCoO3?y Perovskite: LRS and FTIR Characterization. Applied Catalysis B: Environmental, 2005, 57 (1): 13-21
    [3] Setiabudi A, Makkee M, Moulijn J A etc. The Role of NO2 and O2 in the Accelerated Combustion of Soot in Diesel Exhaust Gases. Applied Catalysis B: Environmental, 2004, 50 (3): 185-194
    [4] 黄仲涛, 林维明, 庞先桑. 工业催化剂设计与开发. 广州: 华南理工大学出版社, 1991
    [5] 刘希尧. 工业催化剂分析测试表征. 北京: 中国石化出版社, 1993
    [6] 李丽. NOx净化用 Cu/Sepiolite 催化剂的性能及其作用机理的研究, [学位论文]. 北京: 北京工业大学, 2004
    [7] 刘光辉. 催化过滤器同时去除柴油机微粒和氮氧化物的基础研究, [学位论文]. 上海: 上海交通大学, 2004
    [8] Janusz R. IR Spectroscopy in Catalysis. Catalysis Today, 2001, 68 (4): 263-281
    [9] 杨成, 董庆年, 任杰等. 甲醇在γ-Al2O3, CeO2 及其负载 Pd 催化剂上吸附和分解的原位红外光谱研究. 光谱学与光谱分析, 2004, 24 (7): 810-812
    [10] 安德森 J R, 普拉特 K C. 催化剂表征与测试. 北京: 烃加工出版社, 1989
    [11] http://courseware.imu.edu.cn
    [12] 杜廷发. 现代仪器分析. 北京: 国防科技大学出版社, 1994
    [13] Shangguan W F. Simultaneous Catalytic Removal of NOx and Diesel Soot Particulate by Mixed Metal Oxides, [Dissertation]. Nagasaki: Nagasaki University, 1995
    [14] 刘坚, 赵震, 徐春明等. Mn1- x( Li,Ti )xCo2O4 尖晶石型复合氧化物的制备、表征与催化性能. 无机化学学报, 2005, 21 (9): 1306-1310
    [15] 吴越. 催化化学. 北京: 科学出版社, 1995
    [16] 刘省明, 殷元骐, 李树本. 加温加压催化反应及其催化剂的原位红外光谱表征. 见, 辛勤, 催化研究中的原位技术. 北京: 北京大学出版社, 1993: 81-93
    [17] Harrick Scientific Corporation. http://www.haricksci.com
    [18] Ryczkowski J. IR Spectroscopy in catalysis. Catalysis Today, 2001, 68 (4): 263-381
    [19] 张平. 多相催化中的原位漫反射红外光谱研究, [学位论文]. 广州: 华南理工大学, 2002
    [20] 辛勤. 固体催化剂研究方法. 北京: 科学出版社, 2004
    [1] Yoshida K, Makino S, Sumiya S etc. Simultaneous Reduction of NOx and Particulate Emissions from Diesel Engine Exhaust. SAE paper 892046, 1989
    [2] Milt V G, Ulla M A, Miro E E. NOx Trapping and Soot Combustion on BaCoO3?y Perovskite: LRS and FTIR Characterization. Applied Catalysis B: Environmental, 2005, 57 (1): 13-21
    [3] Miró E E, Ravelli F, Ulla M A etc. Catalytic Combustion of Diesel Soot on Co, K Supported Catalysts. Catalysis Today, 1999, 53 (4): 631-638
    [4] Nejar N, García-Cortés J M, Salinas-Martínez de Lecea C etc. Bimetallic Catalysts for the Simultaneous Removal of NOx and Soot from Diesel Engine Exhaust: A Preliminary Study using Intrinsic Catalysts. Catalysis Communications, 2005, 6 (4): 263-267
    [5] Shangguan W F, Teraoka Y, Kagawa S. Promotion Effect of Potassium on the Catalytic Property of CuFe2O4 for the Simultaneous Removal of NOx and Diesel soot particulate. Applied Catalysis B: Environmental, 1998, 16 (2): 149-154
    [6] Shangguan W F, Teraoka Y, Kagawa S. Simultaneous Catalytic Removal of NOx and Diesel Soot Particulates over Ternary AB2O4 Spinel-Type Oxides. Applied Catalysis B: Environmental, 1996, 2 (2): 217-227
    [7] Teraoka Y, Kanada K, Kagawa S etc. Synthesis of La-K-Mn-O Perovskite-Type Oxides and Their Catalytic Property for Simultaneous Removal of NOx and Diesel Soot Particulates. Applied Catalysis B: Environmental, 2001, 34 (1): 73-78
    [8] Teraoka Y, Nakano K, Kagawa S etc. Simultaneous Removal of Nitrogen Oxides and Diesel Soot Particulates Catalyzed by Perovskite-Type Oxides. Applied Catalysis B: Environmental, 1995, 5 (3): L181-L185
    [9] Teraoka Y, Nakano K, Shangguan W F etc. Simultaneous Catalytic Removal of Nitrogen Oxides and Diesel soot Particulate over Perovskite-Related Oxides. Catalysis Today, 1996, 27 (1-2): 107-113
    [10] 彭小圣, 林赫, 黄震等. 采用钙钛矿型催化剂(La0.8K0.2Cu0.05Mn0.95O3)同时催化去除 NOx和碳烟的研究. 环境科学学报, 2006, 26 (5): 779-784
    [11] 运新华, 陈铭夏, 施建伟等. 含钼氧化物对碳烟和 NOx 的催化去除特性. 上海交通大学学报, 2005, 39 (11): 1886-1890
    [12] Matsuoka K, Orikasa H, Itoh Y etc. Reaction of NO with Soot over Pt-Loaded Catalyst in the Presence of Oxygen. Applied Catalysis B: Environmental, 2000, 26 (1): 89-99
    [13] 刘光辉, 黄震, 上官文峰等. 同时催化去除柴油机微粒和 NOx 的试验研究(1). 内燃机学报, 2003, 21 (1): 40-44
    [14] 刘光辉, 黄震, 上官文峰等. 同时催化去除柴油机微粒和 NOx 的试验研究(2). 内燃机学报, 2003, 21 (1): 111-114
    [15] 裴梅香, 林赫, 上官文峰等. 等离子体在同时去除 NOx 和碳烟催化反应中的作用. 物理化学学报, 2005, 21 (3): 255-260
    [16] 王虹, 赵震, 徐春明等. 纳米 La-Mn-O 钙钛矿型氧化物催化剂上柴油机尾气碳颗粒催化燃烧性能的研究. 科学通报, 2005, 50 (4): 336-339
    [17] 李新刚, 孟命, 林培等. NOx 储存催化剂 Pt/BaAl2O4-Al2O3 的 XAFS 研究. 物理化学学报, 2001, 17 (12): 1072-1076
    [18] Graham G W, Jen H W, Theis J R etc., Leaching of Ba2+ in NOx Traps. Catalysis Letters, 2004, 93 (1-2): 3-6
    [19] Balle P, Bockhorn H, Geiger B etc. A novel Laboratory Bench for Practical Evaluation of Catalysts Useful for Simultaneous Conversion of NOx and Soot in Diesel Exhaust. ChemicalEngineering and Processing, 2006, 45 (12): 1065-1073
    [20] 裴梅香. 等离子体/催化同时去除氮氧化物和微粒的基础研究, [学位论文]. 上海: 上海交通大学, 2004
    [21] Li K B, Li X J, Zhu K G etc. Infrared Absorption Spectra of Manganese Oxides La1-x-yRyCaxMnO3-δ. Journal of Applied Physics, 1997, 81 (10): 6943-6947
    [22] Neeft J P A, Nijhuis T, Xander Smakman E etc. Kinetics of the Oxidation of Diesel Soot. Fuel, 1997, 76 (12): 1129-1136
    [23] Fino D, Fino P, Saracco G etc. Studies on Kinetics and Reactions Mechanism of La2?xKxCu1?yVyO4 Layered Perovskites for the Combined Removal of Diesel Particulate and NOx. Applied Catalysis B: Environmental, 2003, 43 (3): 243-259
    [24] Shangguan W F, Teraoka Y, Kagawa S. Kinetics of Soot-O2, Soot-NO and Soot-O2-NO Reactions over Spinel-Type CuFe2O4 Catalyst. Applied Catalysis B: Environmental, 1997, 12 (2-3): 237-247
    [25] Stanmore B R, Tschamber V, Brilhac J F. Oxidation of Carbon by NOx, with Particular Reference to NO2 and N2O. Fuel, 2008, 87 (2): 131-146
    [26] Molina A, Eddings E G, Pershing D W etc. Nitric Oxide Destruction during Coal and Char Oxidation under Pulverized-Coal Combustion Conditions. Combustion and Flame, 2004, 136 (3): 303-312
    [27] Zhu Z H, Radovic L R, Lu G Q. Effects of Acid Treatments of Carbon on N2O and NO Reduction by Carbon-Supported Copper Catalysts. Carbon, 2000, 38 (3): 451-464
    [28] Furusawa T, Kunii D, Oguma A etc. Rate of Reduction of Nitric Oxide by Char. International Chemical Engineering, 1980, 20 (2): 239-244
    [29] Nakamura T, Kaiya K, Takahashi N etc. EPR Investigations on Europium(II)-Doped Barium Aluminate. Physical Chemistry Chemical Physics, 1999 (1): 4011-4014
    [30] Rodehorst U, Carpenter M A, Marion S etc. Structural Phase Transitions and Mixing Behaviour of the Ba-Aluminate(BaAl2O4)-Sr-Aluninate(SrAl2O4) Solid Solution. Mineralogical Magazine, 2003, 67 (5): 989-1013
    [31] Henderson C M B, Taylor D. The Structural Behaviour of the Nepheline Family: Sr and Ba Aluminate (MAl2O4). Mineralogical Magazine, 1982, 45 (1): 111-127
    [32] Hodjati S, Bernhardt P, Petit C etc. Removal of NOx: Part I. Sorption/Desorption Processes on Barium Aluminate. Applied Catalysis B: Environmental, 1998, 19 (3-4): 209-219
    [33] Hodjati S, Bernhardt P, Petit C etc. Removal of NOx: Part II. Species Formed During theSorption/Desorption Processes on Barium Aluminates. Applied Catalysis B: Environmental, 1998, 19 (3-4): 221-232
    [34] H?rker W, Müller-Buschbaum H K. About the Crystal Structure of BaAl2O4. Zeitschrift fur Anorganische und Allgemeine Chemie, 1979, 451 (1): 41-44
    [35] Arlett R, White H J G, Robbins M. Single Crystals of BaAl2O4. Acta Crystallographica, 1967, 22 (2): 315
    [1] 赵光, 邓启刚. 工业催化基础. 哈尔滨: 哈尔滨工程大学出版社, 1999
    [2] Fino D, Fino P, Saracco G. etc. Studies on Kinetics and Reactions Mechanism of La2?xKxCu1?yVyO4 Layered Perovskites for the Combined Removal of Diesel Particulate and NOx. Applied Catalysis B: Environmental, 2003, 43 (3): 243-259
    [3] Milt V G, Ulla M A, Miro E E, NOx Trapping and Soot Combustion on BaCoO3?y Perovskite: LRS and FTIR Characterization. Applied Catalysis B: Environmental, 2005, 57 (1): 13-21
    [4] 余运波. 富氧条件下Ag/Al2O3选择性催化还原NOx反应机理研究, [学位论文]. 北京: 中国科学院生态研究中心, 2004
    [5] 陈耀强, 陈豫, 辛勤. TP-IR 方法研究 Rh 簇高分散催化剂上 CO 吸附态的动态行为. 催化研究中的原位技术, 1993, 1 (1): 94-100
    [6] 朱起明, 李晋鲁, 刘崇微等. 由合成气合成醇反应动态动力学的原位红外光谱研究. 催化研究中的原位技术, 1993, 1 (1): 66-68
    [7] 张平. 多相催化中的原位漫反射红外光谱研究, [学位论文]. 广州: 华南理工大学, 2002
    [8] 张平, 王乐夫, 李雪辉等. 高温漫反射红外光谱及探针分子识别分子筛中的羟基. 分析化学, 2002, 30 (9): 1096-1098
    [9] Hadjiivanov K, Klissurske D, Ramins G etc. Fourier Transform IR Study of NOx Adsorptionon a CuZSM-5 DeNOx Catalyst. Applied Catalysis B: Environmental, 1996, 7 (3-4): 251-267
    [10] Long R Q, Yang R T, Characterization of Fe-ZSM-5 Catalyst for Selective Catalytic Reduction of Nitric Oxide by Ammonia. Journal of Catalysis, 2000, 194 (1): 80-90
    [11] 连晨舟, 吕子安, 徐旭常. 典型毒害气体的 FTIR 吸收光谱分析. 中国环境监测, 2004, 20 (2): 17-20
    [12] 陈建钧. 钙钛矿型复合氧化物催化剂应用研究, [学位论文]. 兰州: 兰州大学, 2003
    [13] Coronado J M, Anderson James A. FTIR Study of the Interaction of NO2 and Propene with Pt/BaCl2/SiO2. Journal of Molecular Catalysis A: Chemical, 1999, 138 (1): 83-96
    [14] Laane J, Ohlsen J R. Characterization of Nitrogen Oxides by Vibrational Spectroscopy Progress in Inorganic Chemistry, 1980, 27: 465-472
    [15] Nightingale R E, Downie A R, Rotenberg D L etc. The Preparation and Infrared Spectra of the Oxides of Nitrogen. The Journal of Physical Chemistry, 1954, 58 (11): 1047-1050
    [16] 何凤娇, 无机化学. 北京: 科学出版社, 2001
    [17] Mahzoul H, Brilhac J F, Gilot P. Experimental and Mechanistic Study of NOx Adsorption over NOx Trap Catalysts. Applied Catalysis B: Environmental, 1999, 20 (1): 47-55
    [18] Fanson P T, Horton M R, Delgass W N etc. FTIR Analysis of Storage Behavior and Sulfur Tolerance in Barium-Based NOx Storage and Reduction (NSR) Catalysts. Applied Catalysis B: Environmental, 2003, 46 (2): 393-413
    [19] Baird R J, Schmitz P J. NO and NO2 Adsorption on Barium Oxide: Model Study of the Trapping Stage of NOx Conversion via Lean NOx Traps The Journal of Physical Chemistry B, 2002, 106 (16): 4172-4180
    [20] Prinetto F, Ghiotti G. Nova I etc. In situ FT-IR and reactivity study of NOx storage over Pt–Ba/Al2O3 catalysts. Phyical Chemistry Chemical Physics, 2003, 5 (20): 4428-4434
    [21] Schneider. Qualitative Differences in the Adsorption Chemistry of Acidic (CO2, SOx) and Amphiphilic (NOx) Species on the Alkaline Earth Oxides. The Journal of Physical Chemistry B, 2004, 108 (1): 273-282
    [22] Branda M M, Di Valentin C, Pacchioni G. NO and NO2 Adsorption on Terrace, Step, and Corner Sites of the BaO Surface from DFT Calculations. The Journal of Physical Chemistry B, 2004, 108 (15): 4752-4758
    [23] Tutuianu M, Inderwildi O R, Bessler W G etc. Competitive Adsorption of NO, NO2, CO2 and H2O on Ba(100): A Quantum Chemical. The Journal of Physical Chemistry B, 2006. 110 (35): 17484-17492
    [24] Prinetto F, Ghiotti G. Nova I. FT-IR and TPD Investigation of the NOx Storage Properties of BaO/Al2O3 and Pt-BaO/Al2O3 Catalysts. The Journal of Physical Chemistry B, 2001, 105 (51): 12732-12745
    [25] Broqvist P, Gr?nbeck H, Fridell E. Characterization of NOx Species Adsorbed on BaO: Experiment and Theory. The Journal of Physical Chemistry B, 2004,108 (11): 3253-3530
    [26] Sedlmair Ch, Seshan K, Jentys A etc. Elementary Steps of NOx Adsorption and Surface Reaction on a Commercial Storage–Reduction Catalyst. Journal of Catalysis, 2003, 214 (2): 308-316
    [27] Paul T F, Margaret R H, Delgass W N etc. FTIR Analysis of Storage Behavior and Sulfur Tolerance in Barium-Based NOx Storage and Reduction (NSR) Catalysts. Applied Catalysis B: Environmental, 2003, 46 (2): 393-413
    [28] Li C, Sakata Y, Arai T etc. Carbon Monoxide and Carbon Dioxide Adsorption on Cerium Oxide Studied by Fourier-Transform Infrared Spectroscopy. Part 1.-Formation of Carbonate Species on Dehydroxylated CeO2, at Room Temperature. Journal of the Chemical Society, Faraday Transactions, 1989, 85 (4): 929-940
    [29] Gopal P G, Schneider R L, Watters K L. Evidence for Production of Surface Formate Upon Direct Reaction of CO with Alumina and Magnesia. Journal of Catalysis, 1987, 105 (2): 366-372
    [30] Hodjati S, Petit C, Pitchon V etc. Absorption/Desorption of NOx Process on Perovskites Nature and Stability of the Species Formed on BaSnO3. Applied Catalysis B: Environmental, 2000, 27 (2): 117-126
    [31] Ramis G, Busca G, Lorenzelli V. Low-Temperature CO2 Adsorption on Metal Oxides: Spectroscopic Characterization of Some Weakly Adsorbed Species. Materials Chemistry and Physics, 1991, 29 (1-4): 425-435
    [32] Binet C, Lavalley J C. IR Study of Carbon Dioxide and Carbon Monoxide Adsorption onto Ceria: Effect of the Reduction State of Ceria. Journal de Chimie Physique et de Physico-Chimie Biologique, 1992, 89 (9): 1779-1797
    [33] Chi Y, Chuang S S C. Infrared and TPD Studies of Nitrates Adsorbed on Tb4O7, La2O3, BaO, and MgO/γ-Al2O3. The Journal of Physical Chemistry B, 2000, 104 (19): 4073-4083
    [34] Huang H Y, Long R Q, Yang R T. The Promoting Role of Noble metals on NOx Storage Catalyst Under Lean Burn Conditions. Energy & Fuels, 2001, 15 (1): 205-213
    [35] Fridell E, Skoglundh M, Westerberg B etc. NOx Storage in Barium-Containing Catalysts.Journal of Catalysis, 1999, 183 (2): 196-209
    [36] Lietti L, Forzatti P, Nova I etc. NOx Storage Reduction over Pt-Ba/γ-Al2O3 Catalyst. Journal of Catalysis, 2001, 204 (1): 175-191
    [37] 刘旦初. 多相催化原理. 上海: 复旦大学出版社, 1997
    [38] Wang X Y, Wan Y, Lu G Z etc. In-Situ FTIR Study on Effect of Lathanum on Oxidation Mechanism of Methanol Automobile Exhaust on Supported Palladium Catalyst. Journal of Rare Earhts, 2002, 20 (4): 268-272
    [39] Aylor A W, Lobree L J, Reimer J A etc. NO Adsorption, Desorption, and Reduction by CH4 over Mn-ZSM-5. Journal of Catalysis, 1997, 170 (2): 390-401
    [40] Li Y J, Lin H, Shangguan W F etc. The Effect of Oxygen Concentration on the Reaction of NOx with Soot over BaAl2O4. Chemical Engineering & Technology, 2007, 31 (1): 138-142
    [41] Chi Y, Chuang S S C, The Effect of Oxygen Concentration on the Reduction of NO with Propylene over CuO/γ-Al2O3. Catalysis Today, 2000, 62 (4): 303-318
    [42] 刘坚, 赵震, 许春明. 柴油车排放碳黑颗粒消除催化剂的研究进展. 催化学报, 2004, 25 (8): 673-680
    [43] Liu J, Zhao Z, Xu C M etc. Simultaneous Removal of NOx and Diesel Soot over Nanometer Ln-Na-Cu-O Perovskite-like Complex Oxide Catalysts. Applied Catalysis B: Environmental, 2008, 78 (1-2): 61-72
    [44] Shangguan W F, Teraoka Y, Kagawa S. Kinetics of Soot-O2, Soot-NO and Soot-O2-NO Reactions over Spinel-Type CuFe2O4 Catalyst. Applied Catalysis B: Environmental, 1997, 12 (2-3): 237-247
    [45] Shangguan W F, Teraoka Y, Kagawa S. Simultaneous Catalytic Removal of NOx and Diesel Soot Particulates over Ternary AB2O4 Spinel-Type Oxides. Applied Catalysis B: Environmental, 1996, 2 (2): 217-227
    [46] Broqvist P, Panas I, Fridell E etc. NOx Storage on BaO(100) Surface from First Principles: a Two Channel Scenario. The Journal of Physical Chemistry B, 2002, 106 (1): 137-145
    [47] Broqvist P, Panas I, Gr?nbeck H etc. The Nature of NOx Species on Ba(100): An Ab Inition Molecular Dynamics Study. The Journal of Physical Chemistry B, 2005, 109 (32): 15410-15416
    [48] Olsson L, Persson H, Fridell E etc. A Kinetic Study of NO Oxidation and NOx Storage on Pt/Al2O3 and Pt/BaO/Al2O3. The Journal of Physical Chemistry B, 2001, 105 (29): 6895-6906
    [49] Fridell E, Presson H, Westerberg B etc. The Mechanism for NOx Storage. Catalysis Letters, 2000, 66 (1): 71-74
    [1] Setiabudi A, Makkee M, Moulijn J A etc. The Role of NO2 and O2 in the Accelerated Combustion of Soot in Diesel Exhaust Gases. Applied Catalysis B: Environmental, 2004, 50 (3): 185-194
    [2] Mul G, Neeft J P A, Kapteijn F etc. The Formation of Carbon Surface Oxygen Complexes by Oxygen and Ozone. The Effect of Transition Metal Oxides. Carbon, 1998, 36 (9): 1269-1276
    [3] Shangguan W F, Teraoka Y, Kagawa S. Kinetics of Soot-O2, Soot-NO and Soot-O2-NO Reactions over Spinel-Type CuFe2O4 Catalyst. Applied Catalysis B: Environmental, 1997, 12 (2-3): 237-247
    [4] 陈弟虎, 魏爱香, 周友国. 非晶金刚石薄膜的拉曼光谱研究. 无机材料学报, 2002, 15 (1): 179-182
    [5] 李中杨, 葛祖荣, 柯福祥等. 以微波辅助加热纯化纳米碳管. 奈米通讯, 2002, 11 (2): 24-28
    [6] Stanmore B R, Tschamber V, Brilhac J F, Oxidation of Carbon by NOx, with Particular Reference to NO2 and N2O. Fuel, 2008, 87 (2): 131-146
    [7] Li C, Sakata Y, Arai T etc. Carbon Monoxide and Carbon Dioxide Adsorption on Cerium Oxide Studied by Fourier-Transform Infrared Spectroscopy. Part 1.—Formation of Carbonate Species on Dehydroxylated CeO2, at Room Temperature. Journal of the Chemical Society, Faraday Transactions, 1989, 85 (4): 929-940
    [8] Prinetto F, Ghiotti G, Nova I. FT-IR and TPD Investigation of the NOx Storage Properties of BaO/Al2O3 and Pt-BaO/Al2O3 Catalysts. The Journal of Physical Chemistry B, 2001, 105 (51): 12732-12745
    [9] Sedlmair Ch, Seshan K, Jentys A etc. Elementary Steps of NOx Adsorption and Surface Reaction on a Commercial Storage-Reduction Catalyst. Journal of Catalysis, 2003, 214 (2): 308-316
    [10] Zhou G, Luo T, Gorte R J. An Investigation of NOx Storage on Pt-BaO-Al2O3. Applied Catalysis B: Environmental, 2006, 64 (1-2): 88-95
    [11] Paul T F, Margaret R H, Delgass W N etc. FTIR Analysis of Storage Behavior and Sulfur Tolerance in Barium-Based NOx Storage and Reduction (NSR) Catalysts. Applied Catalysis B: Environmental, 2003, 46 (2): 393-413
    [12] Hodjati S, Petit C, Pitchon V etc. Absorption/Desorption of NOx Process on Perovskites Nature and Stability of the Species Formed on BaSnO3. Applied Catalysis B: Environmental, 2000, 27 (2): 117-126
    [13] Hodjati S, Bernhardt P, Petit C etc. Removal of NOx: Part I. Sorption/Desorption Processes on Barium Aluminate. Applied Catalysis B: Environmental, 1998, 19 (3-4): 209-219
    [14] Hodjati S, Bernhardt P, Petit C etc. Removal of NOx: Part II. Species Formed During the Sorption/Desorption Processes on Barium Aluminates. Applied Catalysis B: Environmental, 1998, 19 (3-4): 221-232
    [15] Fanning P E, Mannice A V. A DRIFTS Study of the Formation of Surface Groups on Carbon by Oxidation. Carbon, 1993, 31 (5): 721-730
    [16] Mul G. Catalytic Diesel Exhaust Purification-A Mechanistic Study of Soot Oxidation, [Dissertation]. Delft: Delft University of Technology, 1997
    [17] Neeft J P A, Nijhuis T X, Smakman E etc. Kinetics of the Oxidation of Diesel Soot. Fuel, 1997, 76 (12): 1129-1136
    [18] Jelles S J, Van Setten B A A L, Makkee M etc. Molten Salts as Promising Catalysts forOxidation of Diesel Soot: Importance of Experimental Conditions in Testing Procedures. Applied Catalysis B: Environmental, 1999, 21 (1): 35-49
    [19] Molina A, Eddings E G, Pershing D W etc. Nitric Oxide Destruction during Coal and Char Oxidation under Pulverized-Coal Combustion Conditions. Combustion and Flame, 2004, 136 (3): 303-312
    [20] Furusawa T, Kunii D, Oguma A etc. Rate of Reduction of Nitric Oxide by Char. International Chemical Engineering, 1980, 20 (2): 239-244
    [21] Zhu Zh, Radovic L R, Lu G.Q. Effects of Acid Treatments of Carbon on N2O and NO Reduction by Carbon-Supported Copper Catalysts. Carbon, 2000, 38 (3): 451-464.
    [22] Li Y J, Lin H, Shangguan W F etc. The Effect of Oxygen Concentration on the Reaction of NOx with Soot over BaAl2O4. Chemical Engineering & Technology, 2008, 31 (1): 138-142
    [23] Fino D, Fino P, Saracco G. etc. Studies on Kinetics and Reactions Mechanism of La2?xKxCu1?yVyO4 Layered Perovskites for the Combined Removal of Diesel Particulate and NOx. Applied Catalysis B: Environmental, 2003, 43 (3): 243-259
    [24] 林赫, 富氧环境中氮氧化物和碳烟同时催化去除的微观机理, [博士后出站报告].上海:上海交通大学, 2004
    [25] Shangguan W F. Simultaneous Catalytic Removal of NOx and Diesel Soot Particulate by Mixed Metal Oxides, [Dissertation]. Nagasaki: Nagasaki University, 1995
    [26] Yoshida K, Makino S, Sumiya S etc. Simultaneous Reduction of NOx and Particulate Emissions from Diesel Engine Exhaust. SAE paper No.892046, 1989
    [27] Milt V G, Ulla M A, Miro E E, NOx Trapping and Soot Combustion on BaCoO3?y Perovskite: LRS and FTIR Characterization. Applied Catalysis B: Environmental, 2005, 57 (1): 13-21
    [28] Muckenhuber H, Grothe H. The Heterogeneous Reaction between Soot and NO2 at Elevated Temperature. Carbon, 2006, 44 (3): 546-559
    [29] 彭小圣, 林赫, 黄震等. 采用钙钛矿型催化剂(La0.8K0.2Cu0.05Mn0.95O3 )同时催化去除 NOx和碳烟的研究. 环境科学学报, 2006, 26 (5): 779-784
    [1] 余运波. 富氧条件下 Ag/Al2O3 选择性催化还原 NOx 反应机理研究, [学位论文]. 北京:中国科学院生态研究中心, 2004
    [2] Bergero P, Pastor V, Irurzun I M etc. The heterogeneous catalytic reaction 2A + B2 → 2AB exactly solved on a small lattice. Chemical Physics Letters, 2007, 449 (1-3): 115-119
    [3] 周鲁, 陈小全, 徐苏明. NO 催化还原反应的 Monte Carlo 模拟. 四川大学学报, 2000, 32 (4): 62-64
    [4] 曹伟平, 罗孟波. Monte Carlo 模拟 Pt 表面催化氧化 A+B→O 反应. 浙江大学学报, 2007, 34 (3): 286-289
    [5] Ciftci Y O, ?olakoglu K, Deligoz E etc. The first-principles study on the LaN. Materials Chemistry and Physics, 2008, 108 (1): 120-123
    [6] Branda M M, Di Valentin C, Pacchioni G. NO and NO2 Adsorption on Terrace, Step, and Corner Sites of the BaO Surface from DFT Calculations. The Journal of Physical Chemistry B, 2004, 108 (15): 4752-4758
    [7] Broqvist P, Gr?nbeck H, Fridell E. Characterization of NOx Species Adsorbed on BaO: Experiment and Theory. The Journal of Physical Chemistry B, 2004, 108 (11): 3253-3530
    [8] Broqvist P, Panas I, Fridell E etc. NOx Storage on BaO(100) Surface from First Principles: a Two Channel Scenario. The Journal of Physical Chemistry B, 2002, 106 (1): 137-145
    [9] Pei K M, Li H Y. Ab Initio and Kinetic Calculations for the Reaction of H with (CH3CH2)2SiH2. Chemical Physics Letters, 2004, 387 (1-3): 70-75
    [10] 傅钢, 吕鑫, 徐昕. CO2在金属表面活化的UBI-QEP方法研究. 高等学校化学学报, 2002, 23 (8): 1570-1573
    [11] Abramova L A, Zeigarnik A V, Baranov S P etc. A Kinetic Monte Carlo/UBI-QEP Model of O2 Adsorption on Fcc (1 1 1) Metal Surfaces. Surface Science, 2004, 565 (1): 45-56
    [12] Mishra D, Naskar S, Drew M G B etc. Synthesis, Spectroscopic and Redox Properties of Some Ruthenium(II) Thiosemicarbazone Complexes: Structural Description of Four of These Complexes. Inorganica Chimica Acta, 2006, 359 (2): 585-592
    [13] Lamaita L, Peluso M A, Sambeth J E etc. A Theoretical and Experimental Study ofManganese Oxides Used as Catalysts for VOCs Emission Reduction. Catalysis Today, 2006, 107-108 (1): 133-138
    [14] 吴静怡, 郭玉华, 刘亚辉等. Zn(OH)64-和 Zn(H2O)62+系列配合物的电子机构. 北京化工大学学报, 2007, 34 (6): 584-588
    [15] 崔玉亭. EHMO 方法对 KI 晶体电子结构的研究. 河南科学, 1998, 16 (1): 40-44
    [16] 曹阳, 薛万川, 吴文渊等. LaNi5 晶体吸附氢的 EHMO 研究. 催化化学学报, 1988, 9 (1): 99-102
    [17] 郭保章. 20 世纪化学史. 南昌: 江西教育出版社, 1998
    [18] 刘靖疆. 应用量子化学. 北京: 高等教育出版社, 1994
    [19] Nakamura T, Kaiya K, Takahashi N etc. EPR Investigations on Europium(II)-Doped Barium Aluminate. Physical Chemistry Chemical Physics 1999 (1): 4011-4014
    [20] Tutuianu M, Inderwildi O R, Bessler W G etc. Competitive Adsorption of NO, NO2, CO2 and H2O on Ba(100): A Quantum Chemical. The Journal of Physical Chemistry B, 2006, 110 (35): 17484-17492

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700