用户名: 密码: 验证码:
全电飞机电力系统谐波电流补偿方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为飞机设计制造的未来发展方向,全电飞机已成为各国航空界研究重点。全电化的推广提高了飞机电源的效率,改善飞机的可靠性、维修性、保障性,有效地提升飞机的综合性能。但是各种电工领域新技术的应用将大量的谐波电流引入全电飞机电力系统,严重影响全电飞机的经济性与安全性。针对这一实际情况,结合全电飞机电力系统的运行特点与陆地电网谐波补偿的最新成果,论文研究一种新型的动态谐波补偿方法,研究该方法技术实现的几个关键技术,为其实用化奠定了较好的基础。
     本文介绍全电飞机电力系统的构成和特点,系统地分析其谐波电流的产生及危害,研究传统补偿方法,指出传统方法的缺点与不足,应用有源电力滤波器对全电飞机电力系统谐波电流进行补偿,并对有源电力滤波器的研究现状、发展趋势以及在全电飞机上的应用进行了介绍。
     介绍有源电力滤波器的分类,指出并联型谐波补偿有源电力滤波器的补偿作用可适用于全电飞机非线性负载谐波电流的补偿,在全面详细地分析并联型有源电力滤波器基本构成与工作原理的基础上,建立并联型有源电力滤波器的数学模型。
     在运用并联有源电力滤波器对全电飞机电力系统谐波电流补偿时,首先需要明确补偿的目标,以便有目的地、有针对性地进行控制和补偿。文中首先介绍几种常见的谐波电流检测方法,结合全电飞机的技术要求与运行工况,将自适应谐波电流检测法引入到全电飞机谐波电流检测中,全面论述基于噪声对消原理的自适应谐波电流检测技术,以及在并联型有源电力滤波器中的应用。针对固定步长自适应检测法的不足,采用一种变步长自适应谐波电流检测方法。该方法根据负载电流的变化动态地调整步长,兼顾了检测的响应速度与检测精度。通过计算机仿真,得到很好的仿真结果。
     本文分析总结常用的有源电力滤波器控制方法,并在此基础上采用单周控制法实现补偿电流的产生,通过理论分析,建立单周控制模型。并进行仿真分析,仿真结果验证了理论分析的正确性和可行性。
     文中通过对采用单周控制的有源电力滤波器的工作过程研究和分析,给出各参数的计算公式以及选取标准。
     在前几章所做工作基础上,设计一台容量为15KVA的并联有源电力滤波器实验样机,该样机根据全电飞机电力系统的特点将检测、控制与管理分由DSP与ADμC812完成,有效地提高补偿与管理的效率,实验结果表明该方案能够快速准确地检测出谐波电流并对之进行补偿。
All Electirc Aircraft, as a direction of future-deciding aircraft design, has been on the top list of aviation development among nations. The popularization of All Electrics enhanced the efficiency of aircraft power supply, improved its reliability, maintainability and supportability, which all contribute to the comprehensive performance of airplane. But the application of various kinds of new electrical technology generating a wealth of harmonic current greatly harms the economy and security of All Electric Aircraft. Aiming to the real situation, the thesis, integrating the running feature of All Electirc Aircraft power system and the latest accomplishment of curbing land power network harmonics, studies a new dynamic method of harmonics compensation directing to a few key techniques, laying a good foundation for its feasibility.
     The paper introduces the structure and feature of the All Electirc Aircraft power system, analyzing systematically the cause and harm of its harmonic current, researching the traditional treatment, meanwhile pointing out the shortcome and deficiency of the traditional ones, proposing the employment of active power filter(APF) compensating the power system of All Electirc Aircraft harmonic current, presenting fully the current research situation, developing trendency of active power filter and its availability.
     Introduced the sorts of APF, pointing out the function of shunt harmonic compensation APF can adapt to all electric aircraft nonlinear load current restraint, on the basis of completely and detailedly analyzing shunt APF basic composing and working principle, to found shunt APF mathematical model.
     When exercising shunt active power filter making all electric aircraft power system compensated, firstly need definitude the compensation aim so as to control and compensate with purpose and contraposition. The text firslt introduced some familiar harmonic current detecting methods, combined all electric aircraft tochnology requests and running condition, imported adaptive harmonic current detecting methods to all electric aircraft harmonic current detecting, roundly discussed noise cancellation principle adaptive harmonic current detecting technology, and its used in shunt active power filter. Contraposed to the deficiency of fixation adaptive detecting methods, putting forward the way of changing adaptive harmonic current detecting methods. This method to adjust step size bases of load current diversification dynamic, giving attention to detecting response speed and detection precision. Via computer simulation, obtaining the good simulation effect.
     This text analyzes and summarizes the active power filter controlled methods, meanwhile, bring forward using one cycle control to achieve comettpensation current control, getting across principle analysis to found one cycle control(OCC) model, and processing simulation analysis. Simulation outcome validates the accuracy and possibility of principle analysis.
     Through working process research and analysis by adopting one cycle control on APF, the article presents every parameters calculation formula and its selection criteria.
     Based on the design and analysis of the previous chapters, setting up a shunt active power filter experimental prototype with capacity of 15KVA, this prototype according as the characteristic of all electric aircraft has detecting, control and management seperated to DSP&ADμC812 to accomplish, which effectively improved the compensation efficiency, the experiment result proves that this scheme can fleetly and exactly detect harmonic current and have it compensated.
引文
[1]沈颂华主编.航空航天器供电系统[M].北京:北京航空航天大学,2005.
    [2]王永,沈颂华.空间矢量和单周控制三相航空有源电力滤波器[J].北京航空航天大学学报,2007,33(1):90-93.
    [3]黄茜汀.飞机电源系统的建模与仿真研究[D].陕西:西北工业大学,2007.
    [4]于敦,王守芳,林侠.国外飞机供电系统手册[M].北京:中国航空信息中心,1997.
    [5]严仰光,谢少军.民航飞机供电系统[M].北京:航空工业出版社,1998.
    [6]严仰光.航空航天器供电系统[M].北京:航空工业出版社,1995.
    [7]朱普安.B737飞机变速恒频电源分析[J].中国民航学院学报,1997,15(1):43-50.
    [8]王兆安,杨君,刘进军.谐波抑制和无功功率补偿[M].北京:机械工业出版社,1999.
    [9]IEEE-519. IEEE Recommended Practices and Requirements for Harmonic Control in ElectricPower Systems[S].1992:
    [10]IEC 1000-3-2. Electromagnetic Compatibility-Part 3:Limits-Section 2:Limits for harmonic current emissions (equipment input current<16A per phase)[S].1995:
    [11]水利电力部.电力系统谐波管理暂行规定(SD126-84)[M].北京:水利电力出版社,1984.
    [12]中国国家标准GB12325-90,电能质量供电电压容许偏差[S].北京:中国标准出版社,1990:
    [13]中国国家标准GB12326-90,电能质量电压容许波动和闪变[S].北京:中国标准出版社,1990:
    [14]中国国家标准GB/T14549-93,电能质量公用电网谐波[S].北京:中国标准出版社,1994:
    [15]中国国家军用标准GJB181A-2003,飞机供电特性[S].北京:中国标准出版社,1997.
    [16]Anghel C, Ayala R. Design and analysis of a variable speed constant frequency power system for commercial aircraft[C]. IEEE IECEC'98,1998:542-548.
    [17]谢少军,韩军,张勇等.阶梯波合成逆变器的单脉宽调制调压技术研究[J].中国电机工程学报,2003,23(5):62-65.
    [18]谢少军.某型飞机交流电源系统改造研究[J].南京航空航天大学学报,2004,36(5):560-564.
    [19]Emadi A, Ehsani M. Aircraft power systems:technology, state of the art, and future trends[J]. IEEE Aerospace and Electronic Systems Magazine,2000,15(1):28-32.
    [20]谢少军,陈万,李飞.一种新型航空静止变流器的研究[J].航空学报,2003,24(6):546-550.
    [21]Akagi.H. New trends in active filters for power conditioning[C]. IEEE Trans. on Industry Application,Vol.32,No.6,1996:PP.1312-1322.
    [22]楼珍丽,李淳,张仲超.有源电力滤波器的新型拓扑结构和控制策略[J].高电压技术,2005,31(2):21-23.
    [23]顾建军,徐殿国,刘汉奎等.有源滤波技术现状及其发展[J].电机与控制学报,2003,7(2):126-131.
    [24]时丽君,赵建国.有源电力滤波器在电能质量控制中的应用[J].电力系统及其自动化学报,
    2002,14(1):67-71.
    [25]程浩忠,艾芊,张志刚等.电能质量[M].北京:清华大学出版社,2006.
    [26]R.C.Dodson, P.D.Evans, H.tabatabaei Yazdi, etc. Compensating for dead time degradation of PWM inverter waveforms[J]. IEEE Proceedings,Vol.137,Pt.B,No.2,March 1990:73-81.
    [27]Dongsheng Zhou, Didier GRouaud. Dead-time effect and compensations of three-level neutral point clamp inverters fof high-performance drive applications[J]. IEEE Transactions on Power Electronics, VOL.14, No.4, July 1999:782-788.
    [28]Alfredo R.Munoz, Thomas A.Lipo. On-line dead-time compensation technique for open-loop PWM-VSI drives. IEEE Transactions on Power Electronics, VOL.14, No.4, July 1999:683-689.
    [29]Akagi H, Kanazawa Y, Nabae A. Generalized theory of the instantaneous reactive power in three-phase circuits[C]. In:IEEE&JIEE. Proceedings IPEC. Tokyo:IEEE,1983:1375-1386.
    [30]Depenbrock M. The FBD-method, a Generally Applicable Tool for Analyzing Power Relations[J]. IEEE Trans on Power Systems,1993,8 (2):381~387.
    [31]孙卓,姜新建,朱东起.FBD法及其在牵引供电系统中的应用[J].清华大学学报:自然科学版,2003,43(3):361-365.
    [32]毛筱,肖雁鸿,龚理专.FFT应用于谐波测量中频谱泄露的分析与处理[J].电工技术杂志,2001,2:3-4,7.
    [33]张伏生,耿中行,葛耀中.电力系统谐波分析的高精度FFT算法[J].中国电机工程学报,1999,3:63-66.
    [34]Depenbrock M, Staudt V, Wrede H. A concise assessment of original and modified instantaneous power theory applide to four-wire systems[C]. Power Conversion Conference,2002.10 saka:PCC, 2002:60~67.
    [35]周洪亮.有源电力滤波器控制技术的研究及应用[D].浙江大学博士学位论文,2002.
    [36]B Widrow, S P Sterns. Adaptive Signal Processing[M]. Englewood Cliffs. NJ:Prentice-Hall, Inc., 1985.
    [37]龚耀寰.自适应滤波[M].北京:电子工业出版社,1981.
    [38]何振亚.自适应信号处理[M].北京:科学出版社,2002.
    [39]李乔,吴捷.自适应谐波电流检测方法用于有源电力滤波器的仿真研究[J].电工技术学报,2004,19(12):86-90.
    [40]陈秋明.一种在线检测基波无功电流和谐波电流的简便方法[J].中国电机工程学报,2006,26(7):71-74.
    [41]Wang Qun, Wu Ning, Wang Zhaoan. A neuron adaptive detecting approach of harmonic current for APF and its realization of analog circuit[C]. IEEE Trans on Instru. and Measure,2001,1.
    [42]王群,谢品房,吴宁等.模拟电路实现的神经元自适应谐波电流检测方法[J].中国电机工程学报,1999,6:42-46.
    [43]王群,吴宁,苏向丰.有源电力滤波器谐波电流检测的一种新方法[J].电工技术学报,1997,1.
    [44]高鹰,谢胜利.一种变步长LMS自适应滤波算法及分析[J].电子学报,2001,29(8):1094-1097.
    [45]覃景繁,欧阳景正.一种新的变步长LMS自适应滤波算法[J].数据采集与处理,1997,12(3):171-174.
    [46]李辉,吴正国,邹云屏.变步长自适应算法在有源电力滤波器谐波检测中的应用[J].中国电机工程学报,2006,26(9):99-103.
    [47]李辉,李亦斌,邹云屏.一种新的变步长自适应谐波检测算法[J].电力系统自动化,2005,29(2):69-73.
    [48]Kwong R H, Johnston E W. A Variable Step-size LMS Algorithm[J]. IEEE Trans on Signal Processing,1992,40(7):1633-1642.
    [49]C. Chiarelli, L. Malesani. Single-phase three-level constant frequency current hystersis control for UPS applications[C]. Proc. of European Conf. Power Electronics and applications U.K.,1993, pp: 180-185.
    [50]Q.Yao, D. G. Holmes. A simple, novel method for variable-switching frequency[C]. Conf. Recordings IEEE-IAS Annual Meeting, Canada 1993, pp:1122-1129.
    [51]贾红芳,高学军,程翔.一种改进的电流控制方法在有源电力滤波器中的应用[J].高压电器,2006,42(1):70-72.
    [52]Simone Buso, Luigi Malesani. Comparison of Current Control Techniques for Active Filter Applications[J]. IEEE Trans on Industrial Electronics,1998,41(5).
    [53]周雒维.有源电力滤波器谐波电流检测和控制新方法的研究[D].重庆:重庆大学,2001.
    [54]K. M. Smedley, S. Cuk. One cycle control of switching converters[J]. IEEE PESC,1991 Record, 1173-1180.
    [55]Zheren Lai, K.M Smedley. A general PWM modulator and its applications. IEEE Transactoins On circuits and systems I:Fundamental theory and application,1998,45(4).
    [56]Z.Lai, M. Smedley. A family of Power-Factor-Correction controllers based on the general PWM modulator. IEEE Transactions On Power Electronics,1998,13(3).
    [57]Zhou L., Smedley K.M. Unified constant-frequency integration control of active power filters[C]. Applied Power Electronics Conference and Exposition,2000. APEC 2000. Fifteenth Annual IEEE, Vol:1, Feb.2000:406-412.
    [58]Serena S, Chongming Qiao, Smedley K.M. A single-phase active power filter with double-edge integration control[C]. Industrial Electronics Society,2001. IECON'01. The 27th Annual Conference of the IEEE,2001:949-953.
    [59]Semdley K.M., Zhou L, Qiao C. Unified constant-frequency integration control of active power filters-steady-state and dynamics. Power Electronics, IEEE Transactions on, Volume:16, Issue:3, May 2001,:428-436.
    [60]Hsu C Y, Wu H Y. A new single-phase active power filter with reduced energy-storage capacity[J].IEE Proceedings-Electric Power Applications,1996,143(1):25-30.
    [61]杨君,王兆安,邱关源.并联型电力有源电力滤波器直流侧电压的控制[J].电力电子技术,1996,4:48-50.
    [62]解大,张延迟,吴非等.并联型电力有源滤波器的直流侧电压控制和补偿电流反馈控制[J].电网技术,2006,30(3):18-21.
    [63]杜雄,周雒维,谢品芳等.一种改进的单周控制直流侧有源电力滤波器及其稳态和动态研究[J].中国电机工程学报,2003,23(7):12-17.
    [64]李承.基于单周控制理论的有源电力滤波器与动态电压恢复器研究[D].湖北:华中科技大学,2005.
    [65]高大威.电力系统谐波、无功和负序电流综合补偿的研究[D].河北:华北电力大学,2001.
    [66]王良.三相不平衡有源无功与高次谐波补偿器的研究[D].北京:北方交通大学,1991.
    [67]罗世国.有源电力滤波器的研究[D].重庆:重庆大学,1993.
    [68]苏奎峰,吕强,耿庆锋.TMS320F2812原理与开发[M].北京:电子工业出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700