用户名: 密码: 验证码:
考虑晶界离散分布的多晶硅薄膜晶体管模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多晶硅薄膜晶体管(Poly-Si TFTs)制造工艺简单、成本低廉,且具有较好的电学特性,在有源液晶显示器、三维立体集成电路、大容量存储器等方面得到广泛应用。然而,由于多晶硅材料中存在大量晶粒间界以及陷阱态,特别是沟道中晶界离散分布,导致poly-Si TFTs沟道多种物理效应相交叠,导电机制比较复杂,给poly-Si TFTs模型建模带来一定的困难。至今工业界尚未有国际上公认的标准模型。因此,以多晶硅薄膜导电机理为基础,建立既可以准确描述poly-Si TFTs电特性,又能适用于电路仿真的模型具有重要意义。
     本文以多晶硅薄膜和poly-Si TFTs的导电机理和电特性为基础,开展并完成以下研究工作。
     第一,根据多晶硅薄膜晶粒与晶界能带不连续的物理结构以及晶界势垒主导载流子物理行为的电学特性,引用扩散-漂移、热电子发射和隧穿等三种载流子输运机制,描述载流子在薄膜中的运动行为,建立多晶硅薄膜电导模型。该模型根据温度、杂质掺杂浓度、晶界陷阱浓度、载流子自由程以及附加势垒高度等因素自动调节各输运机制的作用,因此能表征宽掺杂浓度范围和温度变化范围的多晶硅薄膜电导特性。而且模型表达形式较简单,可用于poly-Si TFTs解析模型建模。
     第二,以多晶硅薄膜电学特性以及上述电导模型为基础,结合晶界陷阱高斯分布以及晶界离散分布的特点,考虑表面散射、栅电压对晶界势垒调制效应、漏致晶界势垒降低效应以及漏致晶界势垒不均匀分布效应等影响载流子迁移率的主要因素,建立poly-Si TFTs有效迁移率模型。该模型较充分考虑poly-Si TFTs有效迁移率与栅电压和漏电压的关系,因此能较全面地描述了器件有效迁移率的特性。
     第三,针对基于阈值电压的poly-Si TFTs模型需要引用无物理意义的光滑函数连接各工作区的电流方程,而基于表面势的poly-Si TFTs模型无法体现晶粒间界离散分布对器件电特性的影响等缺点,采用基于表面势模型的建模思路,将poly-Si TFTs沟道按晶粒的个数分成若干个小TFT,同时将影响沟道中晶粒内部表面势的晶界陷阱电荷单独考虑,解决晶界势垒不利于沟道表面势求解问题,结合各小TFT电流相等的原理,建立poly-Si TFTs的直流电流模型。本模型较充分考虑了晶界势垒对poly-Si TFTs伏安特性的影响,实现单一解析方程描述poly-Si TFTs的亚阈值区、线性区和饱和区电流的目标。
     第四,根据对称双栅(Double Gate)MOSFETs建模思路,结合双栅DG poly-Si TFTs中沟道晶界离散分布以及沟道耦合电流效应等电学特性,考虑载流子在沟道中分布情况和输运特点,建立DG-poly-Si TFTs的漏电流模型。该模型能体现晶界离散分布特性,可以描述不同晶粒大小、晶界陷阱浓度和沟道电荷分布下的DG-poly-Si TFTs电特性。
     综上所述,本文以多晶硅薄膜物理特性为基础,考虑沟道中晶界离散分布的特点,采用基于表面势的建模方法,提出多晶硅薄膜电导模型、poly-Si TFTs有效迁移率模型和漏电流模型以及双栅poly-Si TFTs电流模型。这些模型能较准确地反映器件的电学特性,并且具有解析形式,模型的有效性均得到实验数据的验证。
Due to the low production cost and favourable electrical property, the applications of polysilicon thin film transistors (poly-Si TFTs) have been increasing in the active matrix liquid crystal display (AMLCD), three-dimensional (3D) integration, high-capacity memories, and so on. However, resulting from the existing of discrete grain boundaries and trap states in the polysilicon film, several physical effects are coupled together in poly-Si TFTs and the conduction mechanisms become complicated. As a result,it is difficult to correctly model poly-Si TFTs, and so far there is no industrial standard model. Thus it is important to propose a physics-based model for poly-Si TFTs, which can not only describe the electrical characteristics, but also be suitable for circuit simulation.
     According to the analysis of the conduction mechanisms of polysilicon and poly-Si TFTs, analytical and physics-based models for polysilicon and poly-Si TFTs have been developed in the present thesis,including the following issues:
     Firstly, based on the discontinuous energy structure and the grain-boundary dominating behavior, a conduction model for polysilicon has been proposed. Three primary conduction mechanisms, such as diffusion-drift, thermionic-emission and tunneling, have been invoked to depict the carrier characteristics of polysilicon. The effects of three mechanisms can be adjusted according to the temperature, doping level, density of the trap states, density of free carriers and the addition potential barriers. Thus, the proposed model can be interpret the conduction characteristics of polysilicon thin films over a wide range of doping levels with temperature. The expression of the conduction model is simple enough to be introduced into the model of poly-Si TFTs.
     Secondly, based on the proposed conduction model of polysilicon, Gaussian energy distribution model in the grain boundary and discrete grain boundaries in the channel, an effective mobility expression for poly-Si TFTs has been proposed by considering several important factors for mobility, such as the surface scattering effect, gate modulating effect, drain-induced-grain boundary barriers lowering effect and drain-caused grain-boundary-barrier asymmetrically distributing effect. Therefore, the present model can analytically and accurately describe the effective mobility of poly-Si TFTs. The calculated results are compared with the available experimental data and a good agreement is obtained.
     Thirdly, the threshold-voltage-based model must use unphysical smooth function, while the surface-potential-based model is not capable to consider the particular effects of grain boundaries. To solve the limitations of the two models, a drain direct current model for poly-Si TFTs has been presented by using the surface-potential-based approach and dividing the channel into several small TFTs according to the number of the grain boundaries. In the developed model, the discrete distribution of grain boundaries has been taken into account, the drain currents of the subthreshold, linear and saturated regimes can be analytically explained by a single expression, and the validity is verified by the experimental data.
     Fourthly, based on the model approach of double-gate (DG) MOSFET, a drain current model for DG poly-Si TFTs has been developed, which includes the discrete grain boundaries in the channel and the special conduction characteristics of DG-poly-Si TFTs. The drain current of DG poly-Si TFTs for different grain sizes, density of the trap states and carrier density can be described by the proposed model.
     In conclusion, the models for polysilicon, single-gate and DG poly-Si TFTs are developed by basing on the physics property of polysilicon, considering the discrete distribution of grain boundaries, using the surface-potential approaches. Therefore, they can interpret the electrical characteristics of polysilicon and poly-Si TFTs, and be suitable for circuit simulators, which have been fully verified by the experimental data.
引文
[1] Meng Z and Wong M. Active-matrix organic light-emitting diode display realized using metal-induced unilaterally crystallized polycrystalline silicon thin-film transistors [J]. IEEE Trans. Electron Devices, 2002, 14(6):991-996.
    [2] Lih J., Sung C.,Li C.,et al. Comparison of a-Si and poly-Si for AMOLED displays [J]. Journal of the Society for Information Display, 2004, 12(4):367-371.
    [3] Gibbons J F and Lee K F. One-gate-wide CMOS inverter on laser-recrystallized polysilicon [J]. IEEE Electron Device Letters, 1980, EDL-1(6):117-118.
    [4] Zhang S D, Zhu CX and Sin J K O. Ultra-thin elevated channel poly-Si TFT technology for fully-integrated AMLCD system on glass [J]. IEEE Transactions on Electron Devices, 2000, 47(3):569-575
    [5] Malhi S. D. S., Shichijo H., Banerjee S. K., et al. Characteristics and three-dimensional integration of MOSFET's in small-grain LPCVD polycrystalline silicon [J]. IEEE Transaction on Electron Devices, 1985, ED-32(2):258-281.
    [6] Kaneko T., Hosokawa Y.,Tadauchi M., et al. 400 dpi integrated contact type linear image sensors with poly-Si TFT's analog readout circuits and dynamic shift registers [J] IEEE Transaction on Electron Devices, 1991, 38(5):1086-1093.
    [7] Sekine H., Asada H.,Fujieda I., et al. High-speed linear image sensor with a single-phase-clock poly-Si TFT driver. NEC Research and Development, 1996, 37(2): 226-224.
    [8] Sato A, et al., A 0.5μm EEPROM cell using poly-Si TFT technology, in IEEE 51st Annual Device Research Conference 1993, IEEE Transaction on Electron Devices:2126.
    [9] Hawkins W G. Polycrystalline-silicon device technology for large-area electronics [J]. IEEE Transactions on Electron Devices, 1986, ED-33 (4):477-481.
    [10] Walker A.J., Nallamothu S.,Chen E H.,et al. et al. 3D TFT-SONOS memory cell for ultra-high density file storage applications in 2003 Symposium on VLSI Technology [A]. 2003 Symposium on VLSI Technology. Digest of Technical Papers:29-30.
    [11] Stewart M., Howell RS., Pires L., et al. Polysilicon TFT technology for active matrix OLED displays [J]. IEEE Transactions on Electron Devices, 2001, 48(5): 845-851.
    [12] Kimura M., Yudasaka., Kanbe S., et al. Low-temperature polysilicon thin-film transistor driving with integrated driver for high-resolution light emitting polymer display [J]. IEEE Transactions on Electron Devices, 1999, 46(12):2282-2288.
    [13] Kamins T I. Hall mobility in chemically deposited polycrystalline silicon [J]. J. Appl Phys, 1971, 42(11):4357-4365.
    [14] Tarng M L. Carrier transport in oxygen-rich polycrystalline-silicon films [J]. J. Appl Phys, 1978, 49(7):4069-4076.
    [15] Korsh G J and Muller R S. Conduction properties of lightly doped, polycrystalline silicon [J]. Solid-State Electronics, 1978, 21(8):1045-1051.
    [16] Martinez J and Piqueras J. On the mobility of polycrystalline semiconductors [J]. Solid-State Electrons, 1980, 23(4):297-303.
    [17] Seto J Y W. The electrical properties of polycrystalline silicon films. J. Appl Phys, 1975, 46(12):5247-5254.
    [18] Mandurah M M, Saraswat K C and Helms C R. Dopant segregation in polycrystalline silicon [J]. J. Appl Phys, 1980, 51(11): 5755-5763
    [19]Cowher M E and Sedgwick T O. Chemical vapor deposited polycrystalline silicon [J]. Journal of the Electrochemical Society, 1972, 119(11): 1561-64
    [20] Baccarani G., Ricco B., and S. G., Transport properties of polycrystalline silicon films. Journal of Applied Physics, 1978, 49(11): 5565-5570.
    [21] Upreti N K and Singh S. Grain boundary effect on the electrical properties of boron-doped polysilicon films [J]. Bull. Mater. Sci., 1991, 14(6): 1331-1341
    [22] Card H.C. and Hwang W. On the transport theory of Schottky barriers to polycrystalline silicon thin films [J]. IEEE Transactions on Electron Devices, 1980, ED-27 (4): 700-705.
    [23] Hirose M, Taniguchi M, and Osaka Y., Electronic properties of chemically deposited polycrystalline silicon. Journal of Applied Physics, 1978, 50(1): 337-382.
    [24] De Groot A. W., et al., Thermionic-filed emission from interface states at grain boundaries in silicon. Journal of Applied Physics, 1983, 55(2): 312-317.
    [25] Kim D.M., Khondker A.N., Shah R.R., et al., Conduction in polycrystalline silicon: diffusion theory and extended state mobility model [J]. IEEE Electron Device Letters, 1982, EDL-3 (5):141-143.
    [26] Khondker A.N., Kim D.M., Ahmed S.S., et al. Theory of conduction in polysilicon: drift-diffusion approach in crystalline-amorphous-crystalline semiconductor system. II. General I - V theory [J]. IEEE Transactions on Electron Devices, 1984, ED-31 (4): 493-500.
    [27] Khondker A.N., Kim D.M.,Ahmed S.S., et al. Theory of conduction in polysilicon: drift-diffusion approach in crystalline-amorphous-crystalline semiconductor systems. I. Small signal theory [J]. IEEE Trans. Electron Devices, 1984, ED-31(4): 480-493.
    [28] Raman M S., et al. Physical Model for the Resistivity and Temperature Coefficient of Resistivity in Heavily Doped Polysilicon [J]. IIEEE Transactions on Electron Devices, 2006, ED-53(8):1885-1892.
    [29] Lu. N.C.C., Gerzberg L., Lu C.Y., et al. Modeling and optimization of monolithic polycrystalline silicon resistors [J]. IEEE Transactions on Electron Devices, 1981, ED-28(7):818-830.
    [30] Lu. N.C.C., Gerzberg L., Lu C.Y., et al. A new conduction model for polycrystalline silicon films [J]. IEEE Electron Device Letters, 1981, EDL-2(4): 95-98.
    [31] Lu N C C., Gerzberg L., Lu C.Y., et al. A conduction model for semiconductor-grain boundary-semiconductor barriers in polycrystalline-silicon films [J]. IEEE Trans. Electron Devices, 1983, ED-30(2): 137-149.
    [32] Mandurah M M, Saraswat K C and Kamins T I. A model for conduction in polycrystalline silicon. I. Theory [J]. IEEE Transactions on Electron Devices, 1981, ED-28 (10):1163-1171
    [33] Mandurah M M, Saraswat K C and Kamins T I. A model for conduction in polycrystalline silicon. II. Comparison of theory and experiment [J]. IIEEE Transactions on Electron Devices, 1981, ED-28 (10): 1171-1176.
    [34] Das S and Lahiri S K. A Large-Bias Conduction Model of Polycrystalline Silicon Films [J]. IEEE Trans. Electron Devices. 41(4): 524-532.
    [35] Sharma K and Joshi D P. A model of electrical conduction across the grain boundaries inpolycrystalline-silicon thin film transistors and metal oxide semiconductor field effect transistors [J]. J. Appl. Phys, 2009, 106(2): 024504.
    [36] Das S and Lahiri S K. A Large-Bias Conduction Model of Polycrystalline Silicon Films [J]. IEEE Transactions on Electron Devices,,1994, 41(4): 524-532.
    [37] De Groot A W and Card H C. Charge emission from interface states at silicon grain boundaries by thermal emission and thermionic-field emission. I. Theory [J]. IEEE Transactions on Electron Devices, 1984, ED-31(10): 1365-1369.
    [38] De Groot A.W. and Card H.C., Charge emission from interface states at silicon grain boundaries by thermal emission and thermionic-field emission. II. Experiment [J]. IEEE Transactions on Electron Devices, 1984, ED-31(10): 1370-1376.
    [39] Singh S.N., Kishor R., and Singh P.K., Thermionic emission diffusion model of current conduction in polycrystalline silicon and temperature dependence of mobility [J]. J. Applied Physics, 1985, 57(8): 2793-2801.
    [40] Evans P V and Nelson S F. Determination of grain-boundary defect-state densities from transport measurements [J]. Journal of Applied Physics, 1991, 69(6): 3605-3611.
    [41] Joshi D P and Srivastava R S. A Model of Electrical Conduction in Polycrystalline Silicon [J]. IEEE Trans. Electron Devices, 1984, ED-31(7): 920-927.
    [42]王阳元,卡明斯T. I.,赵宝瑛.多晶硅薄膜及其在集成电路中的应用[M].第二版.北京:科学出版社,2001:690-701.
    [43] Kubo N., Kusumoto N., Inushima T., et al. Characteristics of polycrystalline-Si thin film transistors fabricated by excimer laser annealing method [J]. IEEE Trans. Electron Devices, 1994, 41(10): 1876-1879.
    [44] Yang G Y, Hur S H and Han C. H. A physical-based analytical turn-on model of polysilicon thin-film transistors for circuit simulation [J]. IEEE Trans. Electron Devices, 1999, 46(1): 165-172.
    [45] Chen H. L., Wu C. Y. A new I-V model considering the impact-ionization effect initiated by the DIGBL current for the intrinsic n-channel poly-Si TFT’s [J]. IEEE Trans. Electron Devices, 1999, 46(4): 722-727.
    [46] Farmakis FV., Brini J., Kamarinos G., et al. On-current modeling of large-grain polycrystalline silicon thin-film transistors [J]. IEEE Transactions on Electron Devices,2001, 48(4): 701-706.
    [47] Ahmed S S, Kim D M and Shichijo H. A comprehensive analytic model of accumulation-mode MOSFETs in polysilicon thin films [J]. IEEE Transactions on Electron Devices, 1986, ED-33(7): 973-985.
    [48] Lin P, Guo J and Wu C. A quasi-two-dimensional analytical model for the turn-on characteristics of polysilicon thin-film transistors [J] IEEE Transactions on Electron Devices, 1990, 37(3): 666-674.
    [49] Dimitriadis C. A. and T.D. H., Output characteristics of short-channel polycrystalline silicon thin-film transistors [J]. Journal of Applied Physics, 1995, 77(5): 2177-2183.
    [50] Pao H. C. and Sah C. T., Effects of diffusion current on characteristics of metal-oxide (insulator) -semiconductor transistors [J]. Solid-State Electronics 1966, 9: 927-937.
    [51] Brews J. R., A charge-sheet model of the MOSFET Solid-State Electron [J]. 1978, 21(2): 345-355.
    [52] Liu W., Jin X., Xi X., et al. BSIM3v3.3 MOSFET model users’manual [M]. Berkeley: University of California, 1995: 3-1-3-15.
    [53] Dunga M. V., Yang W., Xi X., et al. BSIM4v4.6.1 MOSFET model users’manual [M]. Berkeley: University of California, 2007: 1-70.
    [54] Velghe R. M. D. A., Klaassen D. B. M., Klaassen F. M. Compact MOSFET modeling for analog circuit simulation [A]. Anon. Proceedings of the 1993 IEEE International Electron Devices Meeting [C]. Piscataway: IEEE, 1993: 485-488.
    [55] Chen T. L., Gildenblat G. Analytical approximation for the MOSFET surface potential [J]. Solid-State Electron., 2001, 45(2): 335-339.
    [56] Wang H L, Chen T L and Gildenblat G. Quasi-static and nonquasi-static compact MOSFET models based on symmetric linearization of the bulk and inversion charges [J]. IEEE Transactions on Electron Devices, 2003, 50(11): 2262-2272
    [57] Gildenblat G., Li X., Wu W., et al. PSP: an advanced surface-potential-based MOSFET model for circuit simulation [J]. IEEE Trans. Electron Devices, 2006, 53(9): 1979-1993.
    [58] Miura-Mattausch M., Ucno H., Tanaka M., et al. HiSIM: a MOSFET model for circuit simulation connecting circuit performance with technology [A]. Anon. 2002 IEEE International Electron Devices Meeting [C]. San Francisco: IEEE, 2002: 109-112.
    [59] He J., Xi X., Wan H., et al. BSIM5: An advanced charge-based MOSFET model for nanoscale VLSI circuit simulation [J]. Solid-State Electron., 2007, 51(3): 433-444.
    [60] Gouveia-Filho O. C, Cunha A. I. A., Schneider M. C., et al. Advanced compact model for short-channel MOS transistors [A]. Proceedings of the Custom Integrated Circuits Conference [C]. Piscataway: Institute of Electrical and Electronics Engineers Inc., 2000: 209-212.
    [61] Enz C, Bucher M, Porret A S, et al. The foundations of the EKV MOS transistor charge-based model [A]. Laudon M. 2002 International Conference on Modeling and Simulation of Microsystems - MSM 2002 [C]. Cambridge US: Computational Publications, 2002: 666-669.
    [62] Fossum J. G. and Ortiz-Conde A. Effects of grain boundaries on the channel conductance of SOI MOSFET’s [J]. IEEE Trans. Electron Devices., 1983, 30(8): p. 933-940.
    [63] Guerrieri R., Clampolini P., Gnudi A., et al. Numerical simulation of polycrystalline-silicon MOSFET’s [J]. IEEE Trans. Electron Devices, 1986, 33(8): 1201-1206.
    [64] Fortunato G. and Migliorato P. Model for the above-threshold characteristics and threshold voltage in polycrystalline silicon transistors. Journal of Applied Physics, 1990, 68(5): 2463-2467.
    [65] Ono K., Aoyama T., Konishi N., et al. Analysis of current-voltage characteristics of low-temperature-processed polysilicon thin-film transistors [J]. IEEE Trans. Electron Devices, 1992, 39(4): 792-802.
    [66] Kong H. S. and Lee C. Two-dimensional simulation study of field-effect operation in undoped poly-Si thin-film transistors [J]. Journal of Applied Physics, 1995, 78(10): 6122-6131.
    [67] Siddiqui M. J., Qureshi S. Empirical model for leakage current in poly-Silicon thin film transistor [J]. Solid-State Electron, 2000, 44(11): 2015-2019.
    [68] Chopra S. and Gupta R. S., An analytical model for current-voltage characteristics of small-geometry poly-Si thin-film transistor Semicond [J]. Sci. Techinol, 2000, 15(11): p. 1065-1070.
    [69] Dimitriadis C.A. and Tassis D.H., On the threshold voltage and channel conductance ofpolycrystalline silicon thin-film transistors [J]. Journal of Applied Physics, 1996, 79(8): 4431-4437.
    [70] Qian F., Kim D. M., Park H. K., et al. Inversion-mode MOSFET's in polycrystalline silicon thin films: characterization and modeling [J]. IEEE Trans. Electron Devices, ED-34(12): 2439-2449.
    [71] Chen S, Shone F C and Kuo J B. A closed-form inversion-type polysilicon thin-film transistor dc/ac model considering the kink effect [J]. Journal of Applied Physics, 1995, 77(4): 1776-1784.
    [72] Ahmed S S, Kim D M and Shichijo H. Modeling of accumulation-mode MOSFET’s in polysilicon thin films [J]. IEEE Electron Device Letters, 1985, EDL-6(6): 313-315.
    [73] Serikawa T., Shirai S., Okamoto A., et al. A model of current-voltage characteristics in polycrystalline silicon thin-film transistors [J]. IEEE Trans. Electron Devices, 1987, ED-34(2): 321-324.
    [74] Faughnan B. Subthreshold model of a polycrystalline silicon thin film field effect transistor [J]. Appl. Physics Letter., 1987, 50(5): 290-292.
    [75] Proano R. E., Misage R. S., and Ast D. G., Development and electrical properties of undoped polycrystalline silicon thin-film transistors [J]. IEEE Trans. Electron Devices, 1989, 36(9): 1915-1922.
    [76] Chern H N. An analytical model for the above-threshold characteristics of polysilicon thin-film transistor [J]. IEEE Transactions on Electron Devices, 1995, 42(7): 1240-1246.
    [77] Chung S. S., Chen D. C., Cheng C. T., et al., A physically-based built-in spice poly-Si TFT model for circuit simulation and reliability evaluation [A]. Anon. Proceedings of the 1996 IEEE International Electron Devices Meeting [C], 1996, Piscataway, IEEE:139-142.
    [78] Jacunski M D, Shur M. S., Owusu A. A., et al. A short-channel DC SPICE model for polysilicon thin-film transistors including temperature effects [J]. IEEE Transactions on Electron Devices, 1999, 46(6): 1146-1157.
    [79] Chen S S and Kuo J B. An analytical moderate inversion drain current model for polycrystalline silicon thin-film transistors considering deep and tail states in the grainboundary [J]. Journal of Applied Physics, 1996, 79(4): 1961-1967
    [80] Angelis CT., Dimitriadis CA., Farmakis FV., et al., Transconductance of large grain excimer laser-annealed polycrystalline silicon thin film transistors Solid-State Electrons. 44(6): 1081-1087
    [81] Estrada M., Cerdeira A., Ortiz-Conde A., et al. Extraction method for polycrystalline TFT above and below threshold model parameters [J]. Solid-State Electrons, 2002, 46(12): 2295-2300
    [82] Benzarti W., Plais F., De Luca A., et al. Compact analytical physical-based model of UPS TFT for active matrix displays addressing circuits simulation and design [J]. IEEE Transactions on Electron Devices, 2004, 51(3): 345-350
    [83] Deen A J., Kazemeini MH.,Haddlara Y. M., et al. Electrical characterization of polymer-based FETs fabricated by spin-coating poly(3-alkylthiophene)s [J]. IEEE Transactions on Electron Devices,2004, 51(11): 1892-1901
    [84] Hatzopoulos AT., Tassis DH., Hastas NA., et al. On-state drain current modeling of large-grain poly-Si TFTs based on carrier transport through latitudinal and longitudinal grain boundaries [J]. IEEE Transactions on Electron Devices, 2005, 52(8): 1727-1733
    [85] Sehgal A., Mangla T.,Gupta M., et al. Temperature dependence on electrical characteristics of short geometry poly-crystalline silicon thin film transistor [J]. Solid-State Electronics, 2005, 49(3): 301-309
    [86] Hatzopoulos A. T., Tassis DH.,Dimitriadis CA., et al. Analytical on-state current model of polycrystalline silicon thin-film transistors including the kink effect [J]. Applied Physics Letter, 2005, 87(6): 063501.
    [87] Wang. M. and Wong M. An effective channel mobility-based analytical on-current model for polycrystalline silicon thin-film transistors [J]. IEEE Transactions on Electron Devices, 2007, 54(4): 869-874.
    [88] Hao H., Wang M., Zhang Bo., et al. A comprehensive analytical on-current model for polycrystalline silicon thin film transistors based on effective channel mobility [J]. Journal of Applied Physics, 2008, 103(9): 094513.
    [89] Wong M., Chow T., Wong C. C., et al. A quasi two-dimensional conduction model for polycrystalline silicon thin-film transistor based on discrete grains [J]. IEEETransactions on Electron Devices,2008. 55(8): 2148-2156.
    [90] Wu W and Yao R. An Analytical Subthreshold Model for Polysilicon Thin-Film Transistors by a Quasi-Two-Dimensional Solution [J]. IEEE Transactions on Electron Devices, 2011, 58(9): 3230-3235.
    [91] Siddiqui M J and Qureshi S. Surface-potential-based charge sheet model for the polysilicon thin film transistors without considering kink effect [J]. Microelectronics Journal, 2001, 32(3): p. 235-240.
    [92] Qureshi S and Siddiqui M J. A dc charge sheet turn-on model for the I-V characteristics of doped polysilicon thin film transistors [J]. Semicond. Sci. Techinol, 2002. 17(6): 526-533.
    [93] Bindra S., Haldar S., and Gupta RS. Charge sheet model of a polysilicon thin-film transistor [J]. Microelectronic Engineering, 2002, 60(3-4): 381-393
    [94] Chen R., Zheng ., Deng W., et al., A physics-based analytical solution to the surface potential of polysilicon thin film transistors using the Lambert W function [J]. Solid-State Electrons, 2007, 51(6): 975-98.
    [95] Deng W., Zheng X., Chen R., et al. Subthreshold characteristics of polysilicon TFTs [J]. Solid-State Electrons, 2008, 52(5): 695-703
    [96] Tsuji H., Kamakura Y and Taniguchi K. Drain current model for thin-film transistors with interface trap states [J]. Journal of Applied Physics, 2010, 107(3): 034502(5).
    [97] Hoffman R L. A closed-form DC model for long-channel thin-film transistors with gate voltage-dependent mobility characteristics [J]. Solid-State Electronics, 2005, 49(4): 648-653.
    [98] Anwar A. F. M and Khondker A. N. A model for polysilicon MOSFET’s [J]. IEEE Transactions on Electron Devices, 1987, 34(6): 1323-1330.
    [99] Jagar S., Cheng CF., Zhang SD., et al. A SPICE model for thin-film transistors fabricated on grain-enhanced polysilicon film[J]. IEEE Transactions on Electron Devices, 2003, 50(4): 1103-1108
    [100] Bindra S., Haldar S and Gupta R S. A semi-empirical approach to study a high performance Poly-Si TFT with selectively floating a : Si layer [J]. Solid-State Electronics, 2005, 49(4): 558-561
    [101] Pappas I, Hatzopoulos A T and T D H. A simple and continuous polycrystalline silicon thin-film transistor model for SPICE implementation [J]. Journal of Applied Physics, 2006, 100(6): 064506.
    [102] Izzard M. J., Migliorato P and Milne W. I. Approximate analytical model for the poly-silicon thin film transistor [J]. IEEE Electron Device Letters, 1990, 26(16): 1284-1286
    [103] I?iguez B., Zheng X., Tor A.F., et al. Unified model for short-channel poly-Si TFTs [J]. Solid-State Electronics, 1999, 43(10): 1821-1831.
    [104] Yang G.Y and Kim T.S. S-TFT: an analytical model of polysilicon thin-film transistors for circuit simulation [A]. IEEE 2000 Custom Integrated Circuits Conference[C], 2000: 213-216.
    [105] Wu. W., Yao. H and Zheng. X. A new analytical threshold voltage model for the doped polysilicon thin-film transistors [J]. Solid-State Electronics,2009, 52(6): 607-612
    [106] Huang J., Deng W and Zheng X. A Compact Model for Undoped Symmetric Double-Gate Polysilicon Thin-Film Transistors [J]. IEEE Transactions on Electron Devices, 2010, 57(10): 2607-2615.
    [107] Oh S. H., Monroe D and Hergenrother J. M. Analytic description of short-channel effects in fully-depleted double-gate and cylindrical, surrounding-gate MOSFETs [J]. IEEE Electron Device Lett, 2000, 21(9): 445-447
    [108] Ortiz-Conde A., Sanchez F. J. G and Muci J. Rigorous analytic solution for the drain current of undoped symmetric dual-gate MOSFETs [J]. Solid-State Electronics,2005, 49(4): 640-647.
    [109] Lu H. X and Taur Y. An analytic potential model for symmetric and asymmetric DG MOSFETs [J]. IEEE Transactions on Electron Devices, 2006, 53(5): 1161-1168
    [110] Ortiz-Conde A., Garcia-Sanchez Francisco J and Muci J. A review of core compact models for undoped double-gate SOI MOSFETs [J]. IEEE Transactions on Electron Devices, 2007, 54(1): 131-140.
    [111] Lu H. X and Taur Y. An analytic potential model for symmetric and asymmetric DG MOSFETs [J]. IEEE Transactions on Electron Devices, 2006, 53(5): 1161-1168.
    [112] Wong M. and Shi X J., Analytical I-V relationship incorporating field-dependentmobility for a symmetrical DG MOSFET with an undoped body [J]. IEEE Transactions on Electron Devices, 2006, 53(6): 1389-1397.
    [113] Taur Y., Liang X P and Wang W. A continuous, analytic drain-current model for DG MOSFETs [J]. IEEE Electron Device Letters, 2004, 25(2): 107-109.
    [114] Taur Y. Analytic solutions of charge and capacitance in symmetric and asymmetric double-gate MOSFETs [J]. IEEE Transactions on Electron Devices, 2001, 48(12): 2861-2869.
    [115] M. Wong and X. S., On the Threshold Voltage of Symmetrical DG MOS Capacitor With Intrinsic Silicon Body [J]. IEEE Transactions on Electron Devices,2004, 51(10): 1600-1604.
    [116] Pao H. C. and Sah C. T. Effects of diffusion current on characteristics of metal-oxide (insulator) -semiconductor transistors [J]. Solid-State Electronics, 1966, 9: 927-937.
    [117] Fortunato G., Meakin D. B and Migliorato P. The Sub-Threshold characteristics of polysilicon thin-film-transistors [J]. Jpn. Journal of Applied Physics, 1988, 27(11): 2124-2127.
    [118] de Graaff H. C. D. and H. M. Grain boundary states and the characteristics of lateral polysilicon diodes [J]. Solid-State Electronics,1982, 25(1): 67-71.
    [119] Dimitriadis C. A., Tassis D. H., Economou N. A., et al. Determination of bulk states and interface states distributions in polycrystalline silicon thin-film transistors [J]. Journal of Applied Physics, 1993, 74(4): 2919-2924.
    [120] Pearson. G. L. and Bardeen. J. Electrical Properties of Pure Silicon and Silicon Alloys Containing Boron and Phosphorus [J]. Physics Reviews, 1949, 75(5): 865-883.
    [121] Card. H. C and R.E. H. Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes [J]. J. PhyS. D: Appl. Phy, 1971, 4: 1589-1601.
    [122] Sze. S. M., Physical of Semiconductor Devices Third Edition ed. New York, Wiley. 2007:573-780.
    [123] Sze S. M. Physics of Semiconductor Devices. 2nd Edition ed. 1981, New York, Wiley-Interscience, 1981: 513-565.
    [124]Crowell.C. R. and Sze.S. M. Current Transport in Metal-Semiconductor Structures [J]. Solid-State Electronics, 1966, 9(11): 1035-1048.
    [125] Lu. N. C. C., Gerzberg L and M. J.D. A Quantitative Model of The Effect of Grain Size On The Resistivity of Polycrysatlline silicon Resistors [J]. IEEE Electron Device Letters, 1980, EDL-1(3): 38-41.
    [126] Jacunski M. D., Shur M.S and Hack M. Threshold Voltage, Field Effect Mobility and Gate-to-Channel Capacitance in Polysilicon TFT's [J]. IEEE Transaction on Electron Devices, 1996, 43(9): 1433-1440.
    [127] Voutsas A. Assessment of the Performance of Large-Based Lateral-Crystallization Technology via Analysis and Modeling of Polysilicon Thin-Film-Transistor Mobility [J]. IEEE Transactions on Electron Devices, 2003, 50(6): 1494-1500.
    [128] Arora N. D. MOSFET models for VLSI circuit simulation [M]. 1993, New York: Springer-Verlag.
    [129] Wu W J and Yao R H. A Simple Model of DIGBL Effect for Polysilicon Films and Polysilicon Thin-Film Transistors [J]. IEEE Electron Device Letters, 2008, 29(10): 1128- 1131.
    [130] Fortunato G. Polycrystalline silicon thin-film transistors: a continuous evolving technology [J]. Thin Solid Films, 1997, 296(1-2): 82-90.
    [131] Voutsas A and Hatalis M. Structure of as-deposited LPCVD silicon films at low deposition temperatures and pressures [J]. Journal Electrochemical Society, 1992, 139(9): 2659-2665.
    [132] Voutsas A. and Hatalis M., Deposition and crystallization of a-Si low pressure chemically vapor deposited films obtained by low-temperature phrolysis of disilane [J]. Journal Electrochemical Society, 1993, 140: 282-288.
    [133] Hatalis M. K. and Greve D. W., Large grain polycrystalline silicon by low-temperature annealing of low-pressure chemical vapor deposited amorphous silicon films [J]. Journal of Applied Physics, 1988, 63: 2260-2266.
    [134] Song I. H. and H.M. K., Low temperature poly-Si TFTs for display application Current [J]. Journal of Applied Physics, 2003, 3(4): 363-366. .
    [135] Corless R. M., Gonnet G. H., Hare D. E. G., et al.On Lambert’s W function [J]. Adv. Comput. Math., 1996, 5: 329-359.
    [136] Valletta A., Gaucci P., Mariucci L., et al. Kink effect in short-channel polycrystallinesilicon thin-film transistors [J]. Applied. Physics Letters, 2004, 85(15): p. 3113-3115.
    [137] Valdinoci M., Colalongo L., Baccarani G., et al. Floating body effects in ploysilicon thin-film transistors [J]. IEEE Transaction on Electron Devices, 1997, 44(12): 2234-2241.
    [138] Zhang S. D., Zhu C. X and Sin J. K. O. A novel self-aligned double-gate TFT technology [J]. IEEE Electron Device Letters, 2001, 22(11): 530-532
    [139]Tsai C. C., Wei K. F., Lee Y.J., et al. High-Performance Short-Channel Double-Gate Low-Temperature Polysilicon Thin-Film Transistors Using Excimer Laser Crystallization [J]. IEEE Electron Device Letters, 2007, 28(11): 1010 - 1013
    [140] Tsaia C. C., Lee Y. J., Wang J. L., et al. High-performance top and bottom double-gate low-temperature poly-silicon thin film transistors fabricated by excimer laser crystallization [J]. Solid-State Electronics, 2008, 52(3): 365-371.
    [141] Harrison W A. Tunneling from an Independent-Particle Point of View [J]. Phys Rev., 1961, 123(1): 85-89.
    [142] Gray P V. Tunneling from metal to Semiconductors [J]. Phys Rev. 1965, 140(1A): 179-186.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700