用户名: 密码: 验证码:
小麦高密度遗传图谱的构建和产量相关性状的QTL分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦是世界上重要的粮食作物,选育高产优质小麦品种是当前小麦育种的主要任务之一。构建高密度遗传图谱,将优异的种质资源转化为基因资源,从中发掘重要基因和QTL,对小麦分子标记辅助选择育种、分子聚合育种以及重要基因的图位克隆具有重要意义。本研究以“山农0431×鲁麦21”RIL(2010年F7)群体176个系为材料进行遗传连锁图谱的构建和产量相关性状的QTL分析。主要结果如下:
     利用SSR、DArT和SNP分子标记,构建了一张高密度遗传图谱。该图谱覆盖21条染色体,由42个连锁群组成,包含5916个位点,其中独立位点4530个(3605个DArT、850个SNP、75个SSR位点)。图谱全长2929.96cM,染色体平均长度为139.52cM,其中,3B染色体最长,为209.95cM;3D最短,为31.15cM。A、B、D基因组的长度分别是1065.36cM(36.4%)、1072.95cM(36.6%)和791.65cM(27.0%),标记数分别是1591(35.1%)、2278(50.3%)和661(14.6%)。该图谱的分子标记间的距离范围从6A的0.31cM到1D的2.18cM,图谱的总平均密度是0.65cM。
     将RIL群体在8个环境中种植:2011年菏泽(E1)、2010年泰安(E2)、2011年泰安(E3)、2011年泰安旱地(E4)、2011年烟台(E5)、2011年淄博(E6)、2012淄博旱地(E7)和2012年淄博(E8)。方差分析表明,8个环境下的14个产量相关性状在基因型和环境间均表现为极显著差异(p≤0.001)。粒长的遗传力最高,为76.9%;籽粒产量最低,为28.10%。相关分析表明:株高(PH)分别与每平方米穗数、千粒重、籽粒产量、穗长、基部不育小穗数、顶部不育小穗数和粒宽7个性状表现显著的正相关关系(p≤0.05)。对于产量性状,籽粒产量与每平方米穗数和穗粒数均表现为显著负相关,而产量三要素彼此之间均表现为显著负相关。对于穗部性状,穗长、总小穗数和可育小穗数彼此之间均表现为极显著正相关,基部不育小穗数与总小穗数表现为极显著正相关,而与可育小穗数表现为显著正相关。顶部不育小穗数和可育小穗数之间表现为显著负相关;对于籽粒大小性状,籽粒长宽比与粒长呈显著正相关,而与籽粒密度呈显著负相关。
     本研究共检测到204个QTL,分布于除3D外的20条染色体上,单个QTL解释平均表型变异的3.84%~33.31%。其中,123个QTL表现为正加性效应,其增效效应来源于山农0431,81个QTL表现为负加性效应,其增效效应来源于鲁麦21。E3环境下的株高QTL的LOD值最高,为17.03,解释表型变异的33.31%。控制产量及构成因素的的QTL有56(27.5%)个,分布于除3D、4B和6D外18条染色体上,单一QTL解释表型变异的5.26%~20.15%;控制株高及穗部的QTL有82(40.2%)个,分布于除3D外的20条染色体上,单一QTL解释表性变异的4.65%~33.31%;控制籽粒大小性状的QTL有66(32.4%)个,分布于除3D和6D外19条染色体上,单一QTL解释表型变异的3.84%~24.36%;
     204个QTL中,19个QTL在4个或以上环境中同时被检测到,是相对稳定的QTL(RHF-QTL)。这些QTL分布于9条染色体上:1A、2B、2D、3B、4B、4D、5A、5B和6A,涉及株高、千粒重、穗长、基部不育小穗数、总小穗数、粒长、籽粒长宽比和籽粒密度在内的8个性状,解释平均表型变异的6.59%~24.05%。其中3个RHF-QTL(QPh-2B,QTss-6A和QBsss.2-6A)在各环境中加性效应表现为负值,其增效效应来自于鲁麦21,其余16个RHF-QTL加性效应均表现为正值,其增效效应来自于山农0431。7个RHF-QTL(QPh-4D、QSl.2-1A、QTss-6A、QBsss.2-6A、QFfd-5B、QGl.2-5B和QGlw-5B)解释平均表型变异的百分比大于10%,分别为15.59%、11.38%、18.07%、24.05%、10.27%和13.74%,为稳定的主效QTL。
     检测到包含3个或3个以上QTL置信区间重叠的QTL簇21个(C1~C21),分布于10条染色体上:1A、1B、1D、2B、2D、3A、3B、4D、5B和6A,包含84个QTL(41.18%)。除4个RHF-QTL(QPh-2B、QTss-4B、QBsss.2-6A和QBsss-5A)外,其余15个RHF-QTL(15/19×100%=78.95%)集中分布于10个QTL簇(C2、C8、C10、C11、C15、C16、C17、C18、C20和C21)中,分布于7条染色体(1A、2B、2D、3B、4D、5B和6A)上,包含46个QTL,9个QTL加性效应为负值,表明其增效效应来自于鲁麦21,另有37个QTL加性效应为正值,其增效效应来自于山农0431。这10个QTL簇是重要的QTL簇。
A high genetic map was constructed of wheat (Triticum aestivumL.) and QTL analysis foryield traits was conducted using a population of176recombinant inbred lines (RILs) derivedfrom “Shannong0431×Lumai21”(F7in2010). The main results are as follows:
     A total of74500molecular markers were used to screen the polymorphism of RILs andtheir parents. A number of7955polymorphic loci (6237DArTs,1519SNPs and199SSRs)were identified and used to construct the genetic map. A genetic map with5916loci wasfinally constructed covering all the21chromosomes. In which,4530loci were unique loci,including3605DArTs,850SNP and75SSR loci; and the other1386loci showedco-segregation with other markers. The final map spanned a total length of2929.96cM across42linkage groups, with an average chromosome length of139.5cM. The largest chromosomewas3B (201.95cM), and the shortest was3D (31.15cM). The total number of mapped lociper chromosome ranged from30(3D) to447(3B) with an average of215.71loci perchromosome. The density ranged from0.31(6A) to2.18(1D) cM/marker with an averagedensity of0.65. The map length and locus number was unequally divided among the threegenomes:1065.36cM (36.4%),1072.95cM (36.6%) and791.65cM (27.0%) in lengths; and1591(35.1%),2278(50.3%) and661(14.6%) loci for the A, B and D genomes, respectively.The seven homologous groups also varied in locus number and map length: group7containedthe most loci and length (899loci covering471.16cM); whereas group4had the smallest lociand length (402loci covering245.25cM).
     The parents of the RILs displayed remarkable differences for the investigated traits in theeight environments and their average value (AV). For the RILs, the variance for genotypesand environments of all of the14investigated traits were significant at the P≤0.001level,indicating that the environments and genetic background were both important in explainingthe overall phenotypic variations. The for the investigated traits ranged from28.10(GY) to76.90%(GL), which were over50%for PH, TGW, SL, GL, GW, GLW, BSSS, TSSS andTSS; whereas lower than50%for GY, FSS, SN, FFD and GNS. The coefficients of variation(CVs) ranged from3.38%for GW in E4to197.53%for TSSS in E2. Transgressivesegregation was observed for all of the traits in the eight environments and AV.
     The Pearson correlation coefficients for PH appeared significant positive correlations with SN, TGW, GY, SL, BSSS, TSSS and GW; and negative correlation with GNS. The yieldcomponent traits, SN, GNS and TGW, showed extremely significant negative correlation. Thesignificant positive correlations were obtained between GY and SN/GNS. For spike traits, thestrong positive correlations were simultaneously obtained between SL, TSS and FSS. BSSSappeared significant positive correlations with TSS, and negative correlation with FSS.Significant negative correlations were found between TSSS and FSS. Some correlationcoefficients were significant between GNS/TGW/GY and spike traits. For the grain size traits,the significant positive correlations were obtained between the GL and GLW, and significantnegative correlations between the GLW and FFD. Some correlation coefficients weresignificant between yield traits and grain size traits.
     A total of204additive QTLs (370QTLs for trait-environment combinations) weredetected on20chromosomes except for3D for all of the investigated traits in the eightenvironments and their AV. An individual QTL in different environments explained3.84-33.31%of the phenotypic variations. Of which,123QTLs showed positive additiveeffects with Shannong0431increasing the effects of QTLs, whereas81QTLs were negativeeffects with Lumai21increasing the QTL effects. The highest LOD value for a single QTL inthe different environments was17.03for PH in E4. Fifty-six QTLs were identified for yieldcomponent on20chromosomes except for3D,4B and6D. An individual QTL in differentenvironments explained5.26-20.15%of the phenotypic variations. Eight-two QTLs wereidentified for PH and spike triats on20chromosomes except for3D. An individual QTL indifferent environments explained4.65-33.31%of the phenotypic variations. Sixty-six QTLswere identified for PH and spike triats on19chromosomes except for3D and6D. Anindividual QTL in different environments explained3.84-24.36%of the phenotypicvariations.
     Nineteen relatively high-frequency (RHF) or relatively stable QTLs (9.27%) expressing inmore than four environments and/or in AV were located, including eight traits (PH, TGW, SL,BSSS, TSS, GL, GLW and FFD) with the average contributions ranging from6.59%to24.05%. Of which, all the RHF-QTLs except for QPh-2B, QTss-6A and QBsss.2-6A showedpositive additive effects with Shannong0431increasing the effects of QTLs. SevenRHF-QTLs (QPh-4D, QSl.2-1A, QTss-6A, QBsss.2-6A, QFfd-5B, QGl.2-5B and QGlw-5B)were stably main effect QTLs with explaining more than10%of phenotypic variations.
     A number of21QTL clusters (C1-C21) with more than three traits were mapped on10chromosomes:1A,1B,1D,2B,2D,3A,3B,4D,5B and6A, which were related to all of theinvestigated traits and involved84QTLs (84/204×100%=41.18%) and15RHF-QTLs (16/19×100%=84.21%). Cluster C2, C8, C10, C11, C15, C16, C17, C18, C20and C21detected in at least one RHF-QTL and over nine trait-environments combinations, which wereconsidered the most important QTL clusters, and these QTL cluster interval should be usefulfor marker-assisted selection (MAS).
引文
吴新儒.小麦重要农艺性状单片段代换系的选育与抽穗期主效QTLs的精细定位[D].山东农业大学硕士毕业论文,2007
    席章营.基于水稻单片段代换系的QTL鉴定与定位;[(博士学位论文)][D].,2004.
    袁亮,丁冬,李卫华,等.玉米优良自交系单片段代换系的构建[J].玉米科学,2012,20:52-55
    曾瑞珍,施军琼,黄朝锋,等.籼稻背景的单片段代换系群体的构建[J].作物学报,2006,32(1):88-95
    田清震,周荣华,贾继增.小麦抗白粉病近等基因系遗传背景的分子标记检测[J].作物学报,2004,30(3):205-209
    陈海梅,李林志,卫宪云,李斯深,雷天东,胡海州,王洪刚,张宪省.小麦EST-SSR标记的开发、染色体定位和遗传作图.科学通报,2005,50:2208-2216
    方宣钧,吴为人,唐纪良.作物DNA标记辅助育种.北京:科学出版社,2001
    高用明,朱军,宋佑胜,何慈信,石春海,邢永忠.水稻永久F:群体抽穗期QTL的上位性及其与环境互作效应的分析.作物学报,2004,30:849-854
    惠大丰,姜长鉴,莫惠栋.数量性状基因图谱构建方法的比较.作物学报,1997,23(2):129-136
    刘刚,许盛宝,倪中福,等.小麦RIL群体SSR标记偏分离的遗传分析.农业生物技术学,2007,15(5):828-833
    李艳秋,苏志芳,王立新,季伟,姚骥,赵昌平.小麦分子遗传图谱的加密.作物学报,2009,35(5):861-866
    冒维维,高红胜,薄天岳,马金骏,徐东进,陈学好,贾志明,王永莉.菜蔓雄性不育相关基因的ISSR分子标记筛选[J].分子植物育种,2009,7(l):40-44
    朴红梅,李万良,穆楠,等. ISSR标记的研究与应用.吉林农业科学,2007,32(5):28-30
    石培春,王光利,张薇,等.小麦SSR连锁图谱的构建及多态性研究[J].新疆农业科学,2007,44(S3):71-76
    王辉,朱建楚,孙道杰.小麦西农1376籽粒干物质累积特点及调控途径.麦类作物学报,1996,24(5):31-34
    汤颋,任丽娟,蔡士宾,等.小麦ARz抗纹枯病的QTL定位研究[J].麦类作物学报,2004,24(4):11-16
    文传浩,王震洪,段昌群.植物抗污染分化进化研究进展及其分子生物学技术的应用.生态科学,1998,17(1):19-24
    薛勇彪,王道文,段子渊.分子设计育种研究进展.中国科学院院报,2007,22(6):486-490
    杨新泉,刘鹏,韩宗福,倪中福,刘旺清,孙其信.普通小麦Genomic-SSR和EST-SSR分子标记遗传差异及其与系谱遗传距离的比较研究.遗传学报,2005,32(4):406-416
    张坤普,徐宪斌,田纪春.小麦籽粒产量及穗部相关性状的QTL定位.作物学报,2009,35(2):270-278
    张立平.普通小麦品质性状遗传与QTL分析.中国农业科学院博士学位论文,2003
    张正斌编著.小麦遗传学.北京:中国农业出版社,2001
    周淼平,张旭,任丽娟,等.用JoinMap3.0初步构建小麦遗传连锁图[J].江苏农业学报,2003,19(3):133-138
    朱军.数量性状基因定位的混合线性模型分析方法遗传.1998,20(增刊):137-138
    庄巧生.中国小麦品种改良及系谱分析.北京:中国农业出版社,2003
    Akbari M, Wenzl P, Caig V, Carling J, Xia L, Yang S, Uszynski G,Mohler V, Lehmensiek A,Kuchel H, Hayden MJ, Howes N, Sharp P, Vaughan P, Rathmell B, Huttner E, Kilian A.Diversity arrays technology (DArT) for high-throughput profiling of the hexaploidwheat genome. Theor Appl Genet,2006,113:1409-1420
    Ammiraju J.S.S., Dholakia B.B., Santra D.K., Singh H.,Lagu M.D., Tamhankar S.A.,Dhaliwal H.S., Rao V.S.,Gupta V.S., Ranjekar P.K. Identification of inter simplesequence repeat(ISSR)markers associated with seed size in wheat.Theor Appl Genet,2001,102:726-732
    Ayala L, Henry M, van Ginkel M, Singh R, Keller B, Khairallah M (2002) Identification ofQTLs for BYDV tolerance in bread wheat. Euphytica128:249-259
    B rner A, Schumann E, Fürste A, C ster H, Leithold B, R der MS, Weber WE (2002)Mapping of quantitative trait loci determining agronomic important characters inhexaploid wheat (Triticum aestivum L.). Theor Appl Genet105:921-936
    Bernard M L, Sourdille P and Cadalen T. The Courtot×Chinese spring wheat population andits interest for QTL detection [A]. US Department of Agriculture. Plant and AnimalGenome Ⅷ Conference[C]. Town and Country Hotel, San Diego, C A, January,2000,232
    Bezant J, Laurie D, Pratchett N, Chojecki J, Kearsey M (1997) Mapping QTL controllingyield and yield components in a spring barley (Hordeum vulgare L.) cross using markerregression. Mol Breed3:29-38
    Blanco A, Mangini G, Giancaspro A, Giove S, Colasuonno P, Simeone R, Signorile A, DeVita P, Mastrangelo AM, Cattivelli L Relationships between grain protein content andgrain yield components through quantitative trait locus analyses in a recombinant inbredline population derived from two elite durum wheat cultivars. Mol Breed.2011,doi:10.1007/s11032-011-9600-z
    Blair C. Factor regression for interpreting genotype environment interaction in bread wheattrial. Theor Appl Genet,1992,83:1022-1026
    Botstein D., White R. L., Skolnick M., Davis R. W. Construction of a genetic linkage map inman using restriction fragment length polymorphisms. Am J Hum Genet,1980,32:314–331
    Botwright TL, Condon AG, Rebetzke GJ, Richards RA. Field evaluation of early vigour forgenetic improvement of grain yield in wheat. Aust J Agric Res,2002,53:1137-1145
    Breseghello F., Sorrells M. E. QTL analysis of kernel size and shape in two hexaploid wheatmapping populations. Field Crops Res,2007,101:172-179
    B rner A, Schumann E, Fürste A, C ster H, Leithold B, R der MS, Weber WE (2002)Mapping of quantitative trait loci determining agronomic important characters inhexaploid wheat (Triticum aestivum L.). Theor Appl Genet105:921-936
    Breseghello F, Sorrells ME. QTL analysis of kernel size and shape in two hexaploid wheatmapping populations. Field Crops Res,2007,101:172-179
    Broman K W, Wu H, Sen, et al. R/qtl: QTL mapping in experimental crosses[J].Bioinformatics,2003,19(7):889-890.
    Burr B, Burr F.A, Thompson K.H, Albertson M.C, Stuber C.W. Gene mapping withrecombinant inbreds in maize. Genetics,1988,118(3):519-526.
    Burr B, Burr F.A. Recombinant inbreds for molecular mapping in maize: Theoretical andpractical considerations. Trend in Genetics,1991,7(2):55-60
    Buckler E. S., Holland J. B., Acharya C. B., et al. The genetic architecture of maize floweringtime. Science,2009,325:714–718
    Campbell KG, Bergman CJ, Gualberto DG, Anderson JA, Giroux MJ, Hareland G, FulcherRG, Sorrells ME, Finney PL. Quantitative Trait Loci Associated with Kernel Traits in aSoft×Hard Wheat Cross. Crop Sci,1999,39:1184-1195
    Chastain TG, Ward KJ, Wysocki DJ. Stand establishment responses of soft white winterwheat to seedbed residue and seed size. Crop Sci,1995,35:213-218
    Chu C.G., Xu S.S., Friesen T.L., Faris J.D. Whole genome mapping in a wheat doubledhaploid population using SSRs and TRAPs and the identification of QTL for agronomictraits. Mol Breeding,2008,22:251-266
    Churchill G A, Doerge R W. Empirical threshold values for quantitative trait mapping.Genetics,1994,138:963-971
    Cuthbert J L, Somers D J, Br lé-Babel A L, Brown P D, Crow G H. Molecular mapping ofquantitative trait loci for yield and yield components in spring wheat (Triticumaestivum L.). Theor Appl Genet,2008,117:595-608
    Delaney D, Nasuda S, Endo T, Gill B, Hulbert S. Cytologically based physical maps of thegroup-2chromosomes of wheat. Theor Appl Genet,1995,91:568-573
    Dholakia B B, Ammiraju JSS, Singh H, Lagu M D, R der M S, Rao V S, Dhaliwal H S,Ranjekar P K, Gupta V S, Weber W E. Molecular marker analysis of kernel size andshape in bread wheat. Plant Breed,2003,122:392-395
    Dolores Vazquez M, James Peterson C, Riera-Lizarazu O, Chen X, Heesacker A, Ammar K,Crossa J, Mundt CC. Genetic analysis of adult plant, quantitative resistance to stripe rustin wheat cultivar ‘Stephens’ in multi-environment trials. Theor Appl Genet,2011,124:1-11
    Donis-Keller H, Green P, Helms C, Cartinhour S, Weiffenbach B, Stephens K, Keith T P,Bowden D W, Smith D R, Lander E S, Botstein D, Akots G, Rediker K Gravius T,Brown V A, Rising M B, Parker C, Powers J A, Watt D E, Kauffman E R, Brieker A,PhiPPs P, Muller-Kahle H, FultonT R, Ng S, Suhumm J W, Braman J C, Knowlton R F,Barker D F, Crooks S M, Lincoln S E, Daly M J, Abrahamson J. A genetic linkage mapof the human genome. Cell,1987,51:319-337
    Edwards M D, Stuber C W, Wendel J F. Molecular-marker-facilitated investigations ofQuantitative-trait loci in maize. I.Numbers, genomic distribution and types of geneaction [J].Geneties,1987,116:113-125
    Evers A, Cox R, Shaheedullah M, Withey R. Predicting milling extraction rate by imageanalysis of wheat grains. Asp Appl Biol,1990,25:417-426
    Francki M.G., Walker E., Crawford A.C., Broughton S., Ohm H. W., Barclay I., Wilson R. E.,McLean R. Comparison of genetic and cytogenetic maps of hexaploid wheat (Triticumaestivum L.) using SSR and DArT markers. Mol Genet Genomics,2009,281:181-191
    Ganal M. W., Young N. D., Tanksley S. D. Pulsed field gel electrophoresis and physicalmapping of large DNA fragments in the Tm-2a region of chromosome9in tomato. MolGen Genet,1989,215:395–400
    Gao L.F., Jing R.L., Huo N.X., Li Y., Li X.P., Zhou R.H., Chang X.P., Tang J.F., Ma Z.Y., JiaJ.Z.. One hundred and one new microsatellite loci derived from ESTs (EST-SSR) inbread wheat. Theor Appl Genet,2004,108:1392-1400
    Gegas VC, Nazari A, Griffiths S, Simmonds J, Fish L, Orford S, Sayers L, Doonan JH, SnapeJW. A genetic framework for grain size and shape variation in wheat. Plant Cell,2010,22:1046-1056
    Giura A, Saulescu N N. Chromosomal location of genes controlling grain size in a largegrained selection of wheat (Triticum aestivum L.). Euphytica,1996,89:77-80
    Groos C, Gay G, Perretant M R, et al. Study of the relationship between pre-harvest sproutingand grain color by quantitative trait loci analysis in a white×red grain bread-wheatcross[J]. Theoretical and Applied Genetics,2002,104(1):39-47.
    Guo W, Cai C, Wang C, Han Z, Song X, Wang K, Niu X, Lu K, Shi B. A microsatellite-based,gene-rich linkage map reveals genome structure, function and evolution in Gossypium.Genetics,2007,176:527-541
    Guo Y, Kong FM, Xu YF, Zhao Y, Liang X, Wang YY, An DG, Li SS. QTL mapping forseedling traits in wheat grown under varying concentrations of N, P and K nutrients.Theor Appl Genet,2011,124:851-865
    Gupta P. K., Mir R. R., Mohan A., Kumar J. Wheat genomics: present status and futureprospects. International Journal of Plant Genomics,2008
    Groos C, Robert N, Bervas E, Charmet G. Genetic analysis of grain protein-content, grainyield and thousand-kernel weight in bread wheat. Theor Appl Genet,2003,106:1032-1040
    Hai L., Guo H.J., Wagner C., Xiao S.H., Friedt W. Genomic regions for yield and yieldparameters in Chinese winter wheat (Triticum aestivum L.) genotypes tested undervarying environments correspond to QTL in widely different wheat materials. PlantScience,2008,175:226-232
    Heidari B, Sayed-Tabatabaei BE, Saeidi G, Kearsey M, Suenaga K, Gulick P. Mapping QTLfor grain yield, yield components, and spike features in a doubled haploid population ofbread wheat. Genome,2011,54:517-527
    Helentjaris T. A Genetic linkage map for maize based on RFLPs. Trends Genet,1987,3:217-221
    Hohmann U, Endo TR, Gill KS, Gill BS. Comparison of genetic and physical maps of group7chromosomes from Triticum aestivum L. Mol Gen Genet,1994,245:644-653
    Huang X.Q., Cloutier S.,Lycar L., Radovanovic N., Humphreys D.G., Noll J.S., Somers D.J., Brown P.D.Molecular detection of QTL for agronomic and quality traits in a doubled haploidpopulation derived from two Canadian wheats (Triticum aestivum L.). Theor ApplGenet,2006,113:753-766
    Huang X, C ster H, Ganal M, R der M. Advanced backcross QTL analysis for theidentification of quantitative trait loci alleles from wild relatives of wheat (Triticumaestivum L.). Theor Appl Genet,2003,106:1379-1389
    Huang X, Kempf H, Ganal M, R der M. Advanced backcross QTL analysis in progeniesderived from a cross between a German elite winter wheat variety and a synthetic wheat(Triticum aestivum L.). Theor Appl Genet,2004,109:933-943
    Jaccoud D., Peng K., Feinstein D., Kilian A.Diversity Arrays: a solid state technology forsequence information independent genotyping. Nucleic Acids Res,2001,29(4): e25
    Jaccoud D., Peng K., Feinstein D., Kilian A. Diversity Arrays: a solid state technology forsequence information independent genotyping. Nucleic Acids Res,2001,29(4): e25
    Keim P, Schupp J M, Travis S E, Clayton K, Zhu T, Shi L A, Ferreira A, Webb D M. AHigh-density soybean genetic map based on AFLP markers. Crop Sci,1997,37:537-543
    Kirigwi F.M., Ginkel M.V., Brown-Guedira G., Gill B.S., Paulsen G.M., Fritz A.K. Markersassociated with a QTL for grain yield in wheat under drought. Mol Breeding,2007,20:401-413
    Korzun V, R der M S, Wendehake K, et al. Integration of Dinucleo Tide Microsatellites fromHexaploid Bread Wheat into a Genetic Linkage Map of Durum Wheat [J]. TAGTheoretical and Applied Genetics,1999,98:1202-1207
    Korzun V, R der M S, Worland A J, Borner A. Intra-chromosomal mapping of genes fordwarfing (Rht12) and vernalization response (Vrn1) in wheat by using RFLP andmicrosatellite markers. Plant Breed,1997,116:227-232
    Kumar N, Kulwal P, Balyan H, Gupta P. QTL mapping for yield and yield contributing traitsin two mapping populations of bread wheat. Mol Breed,2007,19:163-177
    Lander E.S., Botstein D. Mapping Mendelian factors underlying quantitative traits usingRFLP linkage maps. Genetics,1989,121:185-199
    Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L.MAPMAKER: an interactive computer package for constructing primary genetic linkagemaps of experimental and natural populations. Genomics,1987,1:174-181
    Li S, Jia J, Wei X, Zhang X, Li L, Chen H, Fan Y, Sun H, Zhao X, Lei T, Xu Y, Jiang F, WangH, Li L. A intervarietal genetic map and QTL analysis for yield traits in wheat. MolBreed,2007,20:167-178
    Lincoln S., Daly M., ander E. Mapping genetic mapping with MAPMAKER/EXP3.0b.Cambridge: MA: Whitehead institute Technical Report,1992
    Liu Y G, Tsunewaki K. Restriction Fragment Length Polymorphism (RFLP) Analysis inWheat.Ⅱ. Linkage Maps of the RFLP Sites in Common Wheat [J]. The Japanese Journalof Genetics,1991,66:617-633
    Liu S, Anderson J A. Targeted molecular mapping of a major wheat QTL for Fusarium headblight resistance using wheat ESTs and synteny with rice. Genome,2003,46:817-823
    Liu, S., Zhou, R., Dong, Y., Li, P.,&Jia, J.(2006). Development, utilization of introgressionlines using a synthetic wheat as donor. Theoretical and Applied Genetics,112(7),1360-1373.
    Lotti C, Salvi S, Pasqualone A, et al Integration of AFLP Marker into an RFLP based Map ofDurum Wheat [J]. Plant Breeding,2000,119:393-401
    Lowe I, Jankuloski L, Chao S, Chen X, See D, Dubcovsky J. Mapping and validation of QTLwhich confer partial resistance to broadly virulent post-2000North American races ofstripe rust in hexaploid wheat. Theor Appl Genet,2011,123:143-157
    Mantovani P., Maccaferri M., Sanguineti, M. C., Tuberosa R., Catizone I., Wenzl P., ThomsonB., Carling J., Huttner E., Ambrogio E. D., Kilian A. An integrated DArT-SSR linkagemap of durum wheat.Mol Breeding,2008,22:629-648
    Marza F, Bai GH, Carver BF, Zhou WC. Quantitative trait loci for yield and related traits inthe wheat population Ning7840×Clark. Theor Appl Genet,2006,112:688-698
    McCartney CA, Somers DJ, Humphreys DG, Lukow O, Ames N, Noll J, Cloutier S,McCallum BD. Mapping quantitative trait loci controlling agronomic traits in the springwheat cross RL4452×'AC Domain'. Genome,2005,48:870-883
    McIntyre C, Mathews K, Rattey A, Chapman S, Drenth J, Ghaderi M, Reynolds M, Shorter R.Molecular detection of genomic regions associated with grain yield and yield-relatedcomponents in an elite bread wheat cross evaluated under irrigated and rainfedconditions. Theor Appl Genet,2010,120:527-541
    Mickelson-Young L, Endo T, Gill B. A cytogenetic ladder-map of the wheat homoeologousgroup-4chromosomes. Theor Appl Genet,1995,90:1007-1011
    Millar S, Whitworth M, Evers A. Image analysis: The prediction and assessment of wheatquality and milling properties.1997, pp141-151
    Miller J.C., Tanksley S. D. RFLP analysis of phylogenetic relationships and genetic variationin the genus Lycopersicon. Theor Appl Genet,1990,80:437–448
    Nachit M M, Elouafi I, Pagnotta A., et al. Molecular linkage map for an intraspecificrecombinant inbred population of durum wheat(Triticum turgidum L. var. durum)[J].Theor Appl Genet,2001,102:177-186
    Narasimhamoorthy B, Gill BS, Fritz AK, Nelson JC, Brown-Guedira GL (2006) Advancedbackcross QTL analysis of a hard winter wheat×synthetic wheat population. TheorAppl Genet112:787-796
    O'Brien S. J. Genetic Maps. Locus Maps of Complex Genomes.6th Ed.ColdSpringHarborLaboratory, ColdSpringHarbor, N. Y1993
    O lson M, Hood L, Cantor C, Botstein D. A common language for Physical mapping ofhuman Genome [J]. Science,1989,254:1434-1435
    ParanI., Michelmore R. W. Development of reliable PCR based markers linked to downmildew resistance genes inlettuce. Theor Appl Genet,1993,85:985–993
    Paillard S, Schnurbusch T, Winzeler M, Messmer M, Sourdille P, Abderhalden O, Keller B,Schachermayr G. An integrative genetic linkage map of winter wheat (Triticumaestivum L.). Theor Appl Genet,2003,107:1235-1242
    Paux E, Sourdille P, Salse J, Saintenac C, Choulet F, Leroy P, Korol A, Michalak M, KianianS, Spielmeyer W. A physical map of the1-gigabase bread wheat chromosome3B.Science,2008,322:101-104
    Peleg Z., Saranga Y., Suprunova T., Ronin Y.W., R der M.S., Kilian A., Korol A. B., FahimaT. High-density genetic map of durum wheat×wild emmer wheat based on SSR andDArT markers. Theor Appl Genet,2008,117:103-115
    Pestsova E, Ganal MW, R der MS. Isolation and mapping of microsatellite markers specificfor the D genome of bread wheat. Genome,2000,43:689-697
    Powell W, Machray G.C, Provan J. Polymorphism revealed by simple sequence repeats.Trends in Plant Science,1996, l (7):215-222
    Qi X, LindHou T P. Development of AFLP Markers in Barley [J]. Molecular and GeneralGenetics,1997,254(3):330-336
    Quarrie S A, Steed A, Calestani C, Semikhodskii A, Lebreton C, Chinoy C, Steele N,Pljevljakusic D, Waterman E, Weyen J, Schondelmaier J, Habash D Z, Farmer P, SakerL, Clarkson D T, Abugalieva A, Yessimbekova M, Turuspekov Y, Abugalieva S,Tuberosa R, Sanguineti M C, Hollington P A, Aragues R, Royo A, Dodig D. Ahigh-density genetic map of hexaploid wheat (Triticum aestivum L.) from the crossChinese Spring×SQ1and its use to compare QTLs for grain yield across a range ofenvironments. Theor Appl Genet,2005,110:865-880
    Raman H, Raman R, Nelson MN, Aslam M, Rajasekaran R, Wratten N, Cowling WA, KilianA, Sharpe AG, Schondelmaier J (2012) Diversity Array Technology Markers: GeneticDiversity Analyses and Linkage Map Construction in Rapeseed (Brassica napus L.).DNA Res19:51-65
    Ramya P., Chaubal A., Kulkarni K., Gupta L., Kadoo N., Dhaliwal H.S., Chhuneja P., LaguM., Gupta V. QTL mapping of1000-kernel weight, kernel length, and kernel width inbread wheat(Triticum aestivum L.). J Appl Genet,2010,51(4):421-429
    Resistance to Powdery Mildew in Wheat [A]. Plant and Animal GenomeⅤConference [C].Town and Country Hotel, San Diego, C A, January,1997,166
    Roder M S, Korzun V, Wendehake K, et al. A Microsatellite Map of Wheat [J]. Genetics,1998,149:2007-2023
    Rongwen J, Akkaysa M S, Bhagwat A A, Lavi U, Cregan P B. The use of microsatellite DNAmarkers for soybean genotype identification [J]. Theor Appl Genet,1995,90:43-48
    R der MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW. Amicrosatellite map of wheat. Genetics,1998,149:2007-2023
    R der MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) Amicrosatellite map of wheat. Genetics149:2007-2023
    Schuler G D, et al. A gene map of the human genome. Science,1996,274:540-567
    Sch n C. C., Utz H. F., Groh S., Truberg B., Openshaw S., Melchinger A. E. Quantitative traitlocus mapping based on resampling in a vast maize testcross experiment and itsrelevance to quantitative genetics for complex traits. Genetics,2004,167:485–498
    Semagn K, Bjomstad A, Skinnes H, Maroy A.G, Tarkegne Y, William M. Distribution ofDArT, AFLP, and SSR markers in a genetic linkage map of adoubled-haploid hexaploidwheat population. Genome,2006,49(5):545-555
    Snape JW, Foulkes MJ, Simmonds J, Leverington M, Fish LJ, Wang Y, Ciavarrella M (2007)Dissecting gene×environmental effects on wheat yields via QTL and physiologgicalanalysis. Euphytica154:401-408
    Somers DJ, Isaac P, Edwards K (2004). A high-density microsatellite consensus map forbread wheat (Triticum aestivum L.). Theore Appl Genet109:1105-1114
    Somers D.J., Isaac P., Edwards K. A high-density microsatellite consensus map for breadwheat (Triticum aestivum L.). Theor Appl Genet,2004,109:1105-1114
    Song QJ, Shi JR, Singh S, Fickus EW, Costa JM, Lewis J, Gill B, Ward R, Cregan P.Development and mapping of microsatellite (SSR) markers in wheat. Theor ApplGenet,2005,110:550-560
    Sosnowski O, Charcosset A, Joets J. BioMercator V3: an upgrade of genetic map compilationand quantitative trait loci meta-analysis algorithms[J]. Bioinformatics,2012,28(15):2082-2083.
    Sourdille P, Cadalen T, Guyomarc'h H, Snape JW, Perretant MR, Charmet G, Boeuf C,Bernard S, Bernard M. An update of the Courtot×Chinese Spring intervarietalmolecular marker linkage map for the QTL detection of agronomic traits in wheat.Theor Appl Genet,2003,106:530-538
    Sourdille P, Singh S, Cadalen T, Brown-Guedira GL, Gay G, Qi L, Gill BS, Dufour P,Murigneux A, Bernard M. Microsatellite-based deletion bin system for theestablishment of genetic-physical map relationships in wheat (Triticum aestivum L.).Funct Integr Genomic,2004,4:12-25
    Stephenson P, Bryan G, Kirby J, et al. Fifty New Microsatellite Loci for the Wheat GeneticMap [J]. Theorl Appl Genet,1998,97(5-6):946-949
    Stoll M, Kwitek-Black AE, Cowley AW, Harris EL, Harrap SB, Krieger JE, Printz MP,Provoost AP, Sassard J, Jacob HJ. New target regions for human hypertension viacomparative genomics. Genome Res,2000,10:473-482
    Sun XY, Wu K, Zhao Y, Kong FM, Han GZ, Jiang HM, Huang XJ, Li RJ, Wang HG, Li SS.QTL analysis of kernel shape and weight using recombinant inbred lines in wheat.Euphytica,2009,165:615-624
    TanksleyS.D., Ganal M.W., Martin G. B. Chromosome landing: A paradigm for map basedgene cloning in plants with large genomes.Trends Genet,1995,11:63–68
    Torada A, Koike M, Mochida K, Ogihara Y. SSR-based linkage map with new markers usingan intraspecific population of common wheat. Theor Appl Genet,2006,112:1042-1051
    Tsilo T, Hareland G, Simsek S, Chao S, Anderson J. Genome mapping of kernelcharacteristics in hard red spring wheat breeding lines. Theor Appl Genet,2010,121:717-730
    Varshney R.K., Prasad M., Roy J.K., Kumar N., Harjit-Singh Dhaliwal H.S., BalyanH.S.,Gupta P.K. Identification of eight chromosomes and a microsatellite marker on1AS associated with QTL for grain weight in bread wheat. Theor Appl Genet,2000,100:1290-1294
    Van der Beek JG, Verkerk R, Zabel P, Lindhout P. Mapping strategy for resistance genes intomato based on RFLPs between cultivars: Cf9(resistance to Cladosporium fulvum)on chromosome1. Theor Appl Genet,1992,84:106-112
    Vos P., Hogers R., Bleeker M., Reijans M., Van der Lee T., Hornes M., Frijters A., Pot J.,Peleman J., Kuiper M., Zabeau M. AFLP: a new techniques for DNA fingerprinting.Nucleic Acids Res,1995,23:4407-4414
    Wang J.S., Liu W.H., Wang H., Li L.H., Wu J., Yang X.M., Li X.Q., Gao A.N. QTL mappingof yield-related traits in the wheat germplasm3228. Euphytica,2010,177:277-292
    Wang R, Hai L, Zhang X, You G, Yan C, Xiao S. QTL mapping for grain filling rate andyield-related traits in RILs of the Chinese winter wheat population Heshangmai×Yu8679. Theor Appl Genet,2009,118:313-325
    Wang S.C., Basten C.J., Zeng Z.B. Windows QTL Cartographer V.2.5. Department ofStatistics. Raleigh, NC: North CarolinaState Univesity,2007
    Wang YY, Sun XY, Zhao Y, Kong FM, Guo Y, Zhang GZ, Pu YY, Wu K, Li SS. Enrichmentof a common wheat genetic map and QTL mapping for fatty acid content in grain. PlantSci,2011,181:65-75
    Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A, Kilian A. Diversity ArraysTechnology (DArT) for whole-genome profiling of barley. Proc Natl Acad Sci USA,2004,101:9915-9920
    White J, Law J, MacKay I, Chalmers K, Smith J, Kilian A, Powell W. The genetic diversityof UK, US and Australian cultivars of Triticum aestivum measured by DArT markersand considered by genome. Theor Appl Genet,2008,116:439-453
    William J. G., Kubelik A. R., Livak K.J., Rafalski J. A., Tingey S. V. DNA polymorismsamplified by arbitrary primers are useful as genetic markers. Nucleic Acid Research,1990,18:6531-6535
    Wittenberg AHJ, van der Lee T, Cayla C, Kilian A, Visser RGF, Schouten HJ (2005).Validation of the high-throughput marker technology DArT using the model plantArabidopsis thaliana. Mol Genet Genomics,2005,274:30-39
    Xie Y, McNally K, Li C.Y, Leung H, Zhu Y. Y. A High-throughput Genomic Tool: DiversityArray Technology Complementary for Rice GenotyPing. Journalof Integrative PlantBiology,2006,48(9):1069-1076.
    Yang SY, Saxena RK, Kulwal PL, Ash GJ, Dubey A, Harper JDI, Upadhyaya HD, GothalwalR, Kilian A, Varshney RK (2011) The first genetic map of pigeon pea based on diversityarrays technology (DArT) markers. J Genet90:103-109
    Young N, Tanksley S. RFLP analysis of size of chromosome segments retained around theTm-2locus of tomato during backcross breeding. Theoretical and Applied Genetics,1989,77(3):353-359
    Yu J K, Dake T M, Singh S, Benscher D, Li W, Gill B, Sorrells M E. Development andmapping of EST-derived simple sequence repeat markers for hexaploid wheat. Genome,2004,47:805-818
    Zabeau M., Vos P. Selective restriction fragment amplification: A general method for DNAfingerprints. European Patent Application. Pub,1993
    Zeng Z B. Precision mapping of quantitative trait loci [J]. Geneties,1994,136(4):1457-1468
    Zeng Z B Theoretical basis for separation of multiple linked gene effects in mappingquantitative trait loci. Proc Natl Acad Sci,1993,(90):10972-10976
    Zietkiewiez E, Patalski A, Labuda D. Genomic fingerprinting by simple sequence repeat(SSR)-anchored Polymerase ehain reaction amplification[J]. Genomics,1994,20:176-183
    Zou F., Gelfond J. A. L., Airey D. C., Lu L., Manly K.F., Williams R. W., Threadgill D. W.Quantitative trait locus analysis using ecombinant inbred intercross (RIX): theoreticaland empirical onsiderations. Genetics,2005,170:1299–131

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700