用户名: 密码: 验证码:
大蒜种质资源评价与愈伤组织的物理化学诱变技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大蒜(Allium sativum L.)可作为蔬菜、调味品和药物,是一种十分重要的作物。中国和埃及是全世界大蒜的主要生产国。然而,有限的自然变异并不能满足遗传改良的要求,同时由于大蒜不能进行有性繁殖,因此至今在选育高产、优质和抗生物和非生物逆境品种方面开展的工作十分有限。另外,通过传统的方法很难准确测定次生代谢组分含量和评价遗传变异。因此,挖掘优异种质、创造新的变异型显得十分重要。超高效液相色谱(UPLC)是测定大蒜素的一种十分有效的方法。SSR标记是一种共显性标记,在鉴定基因变异方面具有很多优势。基于组织培养技术的无性系诱变是无性繁殖植物遗传改良的一种十分有效的方法。基于以上原因,我们进行了下面三方面的研究:首先,评估遗传和环境因素对埃及和中国大蒜种质大蒜蒜素含量的影响;第二,利用形态学和新的SSR标记评价大蒜种质资源的遗传多样性;最后,基于大蒜愈伤组织的伽玛辐射和甲基磺酸乙酯(EMS)处理诱变技术研究。试验结果总结如下:
     1.遗传和环境因素对大蒜种质大蒜辣素含量的影响
     利用超高效液相色谱测定了104份大蒜种质(83份来源于中国,21份来源于埃及)的大蒜辣素含量。根据大蒜辣素含量高低,将所有种质分成4组。大蒜辣素含量最高的种质分在A组,包含埃及和中国种质各一个。聚类分析表明在这些大蒜种质间大蒜辣素含量的变异范围广,可以在育种中通过选择利用这些优选种质来改良大蒜品质。我们还发现选择获得的无性系的大蒜辣素含量高于其亲本,这表明从自然群体中筛选变异无性系不失为大蒜遗传改良的有效途径。基因型、地理位置及其交互作用对埃及大蒜种质的大蒜辣素含量影响均达极显著水平(P<0.001)。种植在中国的埃及大蒜比种植在埃及的同样的大蒜种质有较低的大蒜辣素含量。在这两个不同的地理位置种植的相同大蒜种质中,其大蒜辣素含量的降低幅度为16%-63.7%。这一发现证实了对于大蒜产业来说,大蒜种植区的选择对提高大蒜辣素含量是至关重要的。
     2.基于形态性状和SSR标记的大蒜遗传多样性分析
     利用19个表型性状和基于转录组测序结果开发的16对SSR引物分析了中国(83份)和埃及(21份)104份大蒜种质资源的遗传多样性。这16对SSR引物在所有材料中共检测出了44个等位基因,每对引物检测到1-4个等位基因,平均每个基因座有2.75个多态性位点。在104份种质中,等位基因频率在0.5048-0.9615之间,基因多样性为0.0740-0.5000,遗传杂合度为0.0481-0.9904,平均多态信息含量(PIC)为0.2225。基于形态学标记获得的聚类树将104份大蒜种质资源分为2个主要类群,而以16对SSR标记构建的104份大蒜种质系统发育树将其分为3个主要类群,但两种方法构建的系统树与大蒜的地理分布基本一致。利用12对SSR引物比较选择的无性系及其亲本,证实选择的大蒜无性系后代和亲本之间存在遗传变异,说γ明无性系选择在大蒜品种改良中仍是一种有效的方法。
     3.利用γ射线处理大蒜愈伤组织的诱变技术研究
     对2个中国大蒜品种(‘永年’和‘中牟’)的愈伤组织分别用1,3,5,7戈瑞(Gray)的γ射线进行诱变处理,发现‘永年’大蒜对高剂量的γ射线敏感,而‘中牟’大蒜在高剂量射线处理后各项生长指标表现相对较好。具体表现为:用1Gray的γ射线处理‘永年’大蒜的愈伤组织,其生芽愈伤组织的平均数、每个愈伤组织的生芽数、总芽数、成苗芽数和株高分别为33.33,2.37,296.00,170.00和13.32cm,均高于其他剂量处理。然而,对于‘中牟’大蒜的愈伤组织,用7Gray的剂量处理,上述指标高于其他剂量处理,分别为10.33,3.92,78和17.10cm。此外,‘中牟’大蒜的愈伤组织在4Gray的辐射处理下出芽所需时间最短,为154d;而‘永年’大蒜的愈伤组织在1Gray的辐射处理下,出芽需129.7d。利用16对SSR引物检测诱变材料,其中2对引物检测到了遗传变异,即分别在经过5Gray和7Gray剂量Y射线辐照处理的‘永年’和‘中牟’大蒜愈伤组织产生的组培苗中获得了2个和1个突变体。4.EMS处理对大蒜愈伤组织、再生芽和再生植株的影响
     调查结果显示,不同大蒜基因型对EMS的反应不同。一定浓度的EMS处理一段时间后,可促使ZM基因型大蒜愈伤组织分化出芽并促进芽生长。而YN基因型大蒜愈伤组织在所有的处理组及对照组中都未能成功诱导出芽,且处理组中的愈伤组织发生褐化。ZM基因型大蒜愈伤组织诱变研究的主要结果显示,随着EMS浓度的提高和处理时间的延长,平均每个愈伤组织产生的芽数、总芽数和由芽形成的植株数、植株长度和根数会减少。具体来讲,以0.2%的EMS处理1h,平均每个愈伤组织产生的再生芽数、总芽数和由芽形成的再生植株数、植株长度和根数达最大值,而后随着EMS浓度和处理时间的增加而减少。但是,再生植株的最大根长出现是在EMS为0.2%和处理时间为2h的处理中;0.4%和2h的EMS处理叶片数最多;在0.5%和3h的EMS处理条件下,形成的鳞茎最大。从表型看,存在潜在的遗传变异。
Garlic (Allium sativum) is one of the most important plants used as vegetable, spice and flavoring agent for foods and medicine. China is the main producer of garlic in the world, with the production accounting for77.4%of the world. Additionally, Egypt is the fourth producers with the highest average yield of25.287ton/ha recorded. However, limited natural variation can not meet the requirement for genetic improvement and little breeding work for higher yield, good quality and resistance to biotic and a biotic stress has been done so far since garlic does not reproduce sexually. In addition, it is difficult to measure the secondary metabolic components and characterize the genetic variation accurately by conventional methods. So, it was important to discover elite germplasm and create new variants. UPLC as an effective method has developed for allicin quantification. SSR markers as a co-dominant marker have many advantages in identifying genetic variation. Mutagenesis based on tissue culture techniques may offer an effective method in improving vegetative propagated plants. For these reasons, three experiments were carried out:Firstly, assessment of impact of genetic and environment factors on allicin content in garlic germplasm from Egypt and China, Secondly, estimation of genetic diversity among garlic germplasms based on morphological traits and new SSR primers, lastly, somaclonal mutagenesis technology by gamma radiation and ethyl methane sulphonate (EMS) treatment on garlic callus. The main results are summarized as follows:
     1. Impact of genetic and environment factors on allicin content of garlic germplasm
     Allicin contents were quantified among104garlic germplasms (83accessions from China and21from Egypt) by UPLC. All germplasm were clustered into four groups based on allicin content. The germplasms with the highest allicin content clustered into Group A, which comprises one germplasm from Egypt and one from China. Cluster analysis revealed a wide range of variation in allicin content among these garlic germplasms, which can be exploited by selection in garlic breeding programs to improve garlic quality. It was found that some selected clones had higher allicin content than their parents, which shows that clone selection from a natural population can be effective for genetic improvement in garlic. The effects of germplasm, geographical location, and the interaction between germplasm and geographical location on allicin content (P<0.001) of Egyptian garlic germplasm were all highly significant. Egyptian garlic germplasms grown in China had lower allicin content than that grown in Egypt. The reduction in allicin content of the same germplasm grown in these two locations ranged from16%to63.7%. This finding confirmed that the choice of garlic growing region is of critical importance for improving allicin content for the garlic industry.
     2. Estimation of garlic genetic diversity based on morphological traits and new microsatellite markers
     Genetic diversity of Chinese (83accession) and Egyptians (21accession) garlic germplasms have been analyzed using19morphological characters and16new microsatellites (SSR) primers developed upon transcriptome sequencing. These designed16new microsatellites primers generated44alleles among all accessions and the numbers of alleles per primers pair ranged from1to4with average polymorphic alleles per locus were2.75. The allele frequency ranged from0.5048to0.9615. The gene diversity ranged from0.0740to0.5000. Moreover, the hetrozygosity ranged from0.0481to0.9904and the average of PIC was0.2225. The obtained cluster tree based on morphological characters separated the germplasms into two major groups. However, dendrogram constructed based on SSR data using16novel microsatellites, divided the104garlic germplasm into three main clusters. Furthermore, there is a notice that both of dendrograms were almost in accordance with geographical location. In addition,12primers of16novel SSR primers confirmed the genetic variation between the clonal offspring selected and its parent, which proved that clonal selection could be effective method for garlic improvement.
     3. Study of mutation induction technology from garlic callus by gamma rays
     Callus of two Chinese garlic varieties ('Yong Nian' and 'Zhong Mou') were exposed to1,3,5and7Gray of gamma radiation. The obtained results revealed that YN was sensitive to high dose of gamma ray, while the variety ZM was the better performing variety for all growth parameters at higher gamma ray doses. More specifically, the average number of callus producing sprouts, sprout number per callus, total number of sprouts, the number of sprouts forming plantlets and plantlet's length (which were33.33,2.37,296.00,170.00and13.32cm, respectively) were higher when callus was treated with1Gy in variety YN compared with other dosages. Whereas, in the former phenotype,10.33,3.00,92.00,78.00and17.10cm for the same parameters, respectively were higher in variety ZM at7Gy. Furthermore, days for bud emergence in ZM were shorter (154d) at4Gy irradiation treatment. However,129.7days were needed for variety YN callus treated with1Gy. SSR analysis showed that two primers out of16novel primers detected out genetic variation among treated materials. Two mutants were obtained from 'Yong Nian'when callus were treated with5Gray while one mutant was created in 'Zhong Mou'callus treated with7Gray of gamma rays. It could be found5-7gray of gamma ray could be the effective dosage for induction of genetic variations (mutation).
     4. Effect of EMS treatments on performance of garlic callus, regenerated sprouts and formed plantlets.
     In this investigation, it was observed that different genotypes responded to EMS in different ways. Certain concentration and exposure time of EMS were effective to initiate the callus to differentiate and enhance the sprout to growth only on ZM callus. However, all treatment combinations even control failed to induce sprouts in YN callus and the treated callus turned to browning.
     The main results from ZM showed that the reduction in the average number of sprouts per callus, total number of sprouts, number of sprouts forming plantlets, plantlet length and root number were observed with the increase in the concentration of EMS and its exposure duration. More specifically, the maximum value for previous most parameters above were recorded when the callus was treated with lowest EMS concentration (0.2%) for short duration (1h). However, the maximum root length was observed in the plantlet formed from callus subjected to0.2%of EMS for2h. Moreover, the most leave number was obtained from0.4%of EMS for2hour. Additionally, the treated callus with0.5%for3h gave the biggest bulblet diameter. From phenotypes, there are potential genetic variations.
引文
1. Ackermann R.T., Mulrow C.D., Ramirez G, Gardner C.D., Morbidoni L., Lawrene V.A., Garlic shows promise for improving some cardiovascular risk factors. Archives of Internal Medicine 2001, 161:813-824.
    2. Agrawal M.K., Fageria M.S., Dhaka R.S., Garlic breeding-A Review. Agricultural Review.2003, 24(1):70-74.
    3. Ahloowalia B.S., Maluszynski M., Induced mutations-A new paradigm in plant breeding. Euphytica 2001,118:167-173.
    4. Ahloowalia B.S., Maluszynski M., Nichterlein K., Global impact of mutation derived varieties. Euphytica 2004,135:187-204.
    5. Alcantara T.P., Bosland P.W., Smith D.W., Ethyl methane sulfonate induced seed mutagenesis of Capsicum annuum. Journal of Heredity 1996,87 (3):239-241
    6. Ali B.T., Amin B.T., Behzad S. Ethyl methane sulphonate (EMS) induced mutagenesis in Malaysian rice (cv. MR219) for lethal dose. American Journal of Plant Sciences 2012,3: 1661-1665.
    7. Ali M., Al-Qattan K.K., Al-Enezi F., Khanafer R.M., Mustafa T., Effect of allicin from garlic powder on serum lipids and blood pressure in rats fed with a high cholesterol diet. Prostaglandins Leukotrienes and Essential Fatty Acids 2000,62:253-259.
    8. Al-Otayk S., El-Shinawy M.Z., Motawei M.I., Variation in productive characteristics and diversity assessment of garlic cultivars and lines using DNA markers. Journal of King Abdulaziz University-Meteorology, Environment and Arid Land Agriculture Sciences 2009,20 (1):63-79.
    9. Al-Safadi B., Ali N.M., Arabi I.E., Improvement of garlic (Allium sativum L.) resistance to white rot and storability using gamma irradiation induced mutations. Journal of Genetics and Breeding 2000,54(3):175-181.
    10. Al-Safadi B., Sharabi N.E., Nabulsi I., Evaluation of tissue culture and growth assays to identify irradiated from non-irradiated vegetables. Journal of vegetable crop production 2002,8(1): 109-121.
    11. Al-Zahim M., Ford-Lioyd B.V., Newbury H.J., Detection of somaclonal variation in garlic (Allium sativum L.) using RAPD and cytological analysis. Plant Cell Reports 1999,18:473-477.
    12. Al-Zahim M., Newbury H.J., Ford-Lioyd B.V., Classification of genetic variation in garlic (Allium sativum L.) revealed by RAPD. Hort Science 1997,32(6):1102-1104.
    13. Anil K., Banerjee K., Jadhav M.R., Lawande K.E., Evaluation of garlic ecotypes for allicin and other allyl thiosulphinates. Food Chemistry 2011,128:988-996.
    14. Asili A., Behravan J., Naghavi M.R. Asili J., Genetic diversity of Persian shallot (Allium hirtifolium) ecotypes based on morphological traits, allicin content and RAPD markers. Open Access Journal of Medicinal and Aromatic Plants 2010,1(1):1-6.
    15. Baghalian K., Naghavi M.R., Ziai S.A., Badi H.N., Post-planting evaluation of morphological characters and allicin content in Iranian garlic (Allium sativum L.) ecotypes. Scientia Horticulturae 2006, 107:405-410.
    16. Baghalian K., Ziai S.A., Naghavi M.R., Badi H.N., Khalighi A., Evaluation of allicin content and botanical traits in Iranian garlic (Allium Sativum L.) ecotypes. Scientia Horticulturae 2005,103: 155-166.
    17. Behera M., Panigrahi J., Mishra R.R. Rath S.P., Analysis of EMS induced in vitro mutants of Asteracantha longifolia (L.) Nees using RAPD markers. Indian Journal of Biotechnology 2012,11: 39-47.
    18. Block E., Garlic and other Alliums:The lore and the science. Royal Society of Chemistry 2010, ISBN 0-85404-190-7.
    19. Bradley K.F., Rieger M.A. Collins GG, Classification of Australian garlic cultivars by DNA fingerprinting. Australian Journal of Experimental Agriculture 1996,36 (5):613-618.
    20. Brewer S., Sounding off about cholesterol. World of Food Ingredients 2001,8:30-31.
    21. Buiatti E., Blott W., A case-control study of gastric cancer and diet in Italy. International Journal of Cancer 1989,44:611.
    22. Burba J.L., Production de'Semilla'de Ajo. Asociacion Cooperadora EEA, La Consulta, Argentina 1993.
    23. Camargo A.B., Masuelli R., Burba J., Characterization of Argentine garlic cultivars for their allicin content. Acta Horticulturae 2005,688:309-312.
    24. Carol B.J., Mc-Neil D.L., Gresshoff P.M., Mutagenesis of soybean (Glycine max (L.) Merr) and the isolation on non-nodulating mutants. Plant Science.1986,47:109-114.
    25. Cavalitto C., Bailey J.H., Allicin, the antibacterial principle of Allium sativum. Isolation, physical properties and antibacterial action, Journal of the American Chemical Society 1944,66 (11): 1950-1951.
    26. Cemalettin Y.U., AslY D.T., Khalid M.K., Mehmet A., Sebahattin O., Use of gamma rays to induce mutations in four pea (Pisum sativum L.) cultivars. Turkish Journal of Biology 2006,30:29-37.
    27. Conci V.C., Canavelli A., Lunello P., Yield losses associated with virus-infected garlic plants during five successive years. Plant Disease 2003,87:1411-1415.
    28. Cunha C.P., Hoogerhride E.S.S., Zucchi M.I., Monteiro M., Pinheiro J.B., New microsatellite markers for garlic, Allium sativum (Alliaceae). American Journal of Botany 2012, e17-e19. doi: 10.3732/ajb.1100278.
    29. Datta S.K., Debasis C., Arvind K.V., Biresh K.B., Gamma ray induced chromosomal aberrations and enzyme related defence mechanism in Allium cepa L. Caryologia 2011,64 (4):388-397.
    30. De La Cruz Medina J., Garcfa H.S., Garlic:Post-harvest operations. Food and Agriculture Organization. (Edited by:Danilo M.) Agricultural and Food Engineering Technologies Service (AGST) 2007. http://www.fao.org/fileadmin/user_upload/inpho/docs/Post_Harvest_Compendium_-_Garlic.pdf
    31. Emanuelli F., Lorenzi S., Grzeskowiak L., Catalano V., Stefanini M., Troggio M., Myles S., Martinez-Zapater J.M., Zyprian E., Moreira F.M., Grando M.S., Genetic diversity and population structure assessed by SSR and SNP markers in a large germplasm collection of grape. BMC Plant Biology 2013,13-39.
    32. Engeland R.L., Growing great garlic:The definitive guide for organic gardeners and small farmers. Filaree Production, Okanogan, Washington, USA 1991, pp.213
    33. Eom E., Lee D., Characterization of chromosomal DNA polymorphism in Korean cultivars of Allium sativum L. Journal of Plant Biology 1999,42 (2):159-167.
    34. Ercan C., Ali K., Mustafa O., Environmental Effects on Quality Parameters of Plant Products. International Conference on Biology, Environment and Chemistry IPCBEE 2011,24, IACSIT Press, Singapoore.
    35. Etoh T., Simon P.W. Diversity, fertility and seed production of garlic, p.101-117. In:H.D. Rabinowitch and L. Currah (eds.). Allium crop science:Recent advances. CAB International, New York 2002.
    36. F.A.O., Food and Agricultural Organization of United Nations:Economic and Social Department: The Statistical Division 2012.
    37. Fatemeh K.A., Abdolreza B., Nasrin M., Ahmad N., The effect of gamma radiation on freezing tolerance of chickpea (Cicer aretinum L.) at in vitro culture. Journal of Biology and Environmental Sciences.2011,5(14):63-70.
    38. Figliuolo G, Candido V., Logozzo G, Miccolis V., Spagnoletti Zeuli P.L., Genetic evaluation of cultivated garlic germplasm(Allium sativum L. and A. ampeloprasum L.). Euphytica 2001,121: 325-334.
    39. Frank M.Y., Naxin H., Yong Q.G, Ming-Cheng L., Yaqin M., Dave H., Gerard R.L., Jan D., Olin D., BatchPrimer3:A high throughput web application for PCR and sequencing primer design. BMC Bioinformatics 2008,9:253
    40. Fritsch R.M., Friesen N., Evolution, Domestication and Taxonomy. In:Allium Crop Sciences: Recent Advances. Rabinowitch H.D., Currah L., Eds.,2002,5-30, CAB International, ISBN 0-35199-510-1, Wallingford, U. K.
    41. Gamborg O.L., Miller R.A., Ojima K., Nutrient requirements of suspension cultures of soyabean root cells. Experimental. Cell Research 1968,50:151-158.
    42. Gonzalez R.E., Soto V.C., Sance M.M., Camargo A.B., Galmarini C.R., Variability of solids, organosulfur compounds, pungency and health enhancing traits in garlic (Allium sativum L.) cultivars belonging to different ecophysiological groups. Journal of Agricultural Food Chemistry 2009,57:10282-10288.
    43. Gopalakrishnan R., Selvanarayanan V., Preliminary evaluation of mutant tomato accessions for resistance against whitefly Bemisia tabaci gennadius (Aleyrodidae:Hemiptera). Advances in Biological Research 2009,3 (5-6):159-161.
    44. Goyal S., Khan S., Induced mutagenesis in plants by ionizing radiations. Brookhaven Symposium Biology.2010,6:252-279.
    45. Greene S.L., Gritsenko M., Vandemark G, Relating morphologic and RAPD marker variation to collection site environment in wild populations of red clover (Trifolium pratense L.). Genetic Resources and Crop Evolution 2004,51(6):643-653.
    46. Gvozdanovic V.J., Vasic M., Cervenski J., Bugarski D., Genotype and environment effects on yield and quality of winter garlic. Genetika 2004,36:161-170
    47. Hoffmann N.E., Raja R., Nelson R.L., Korban S.S., Mutagenesis of embryogenic cultures of soybean and detecting polymorphisms using RAPD markers. Biologia Plantarum 2004,48: 173-177.
    48. Humera A., Javed I., Genetic analysis of somaclonal variants and induced mutants of potato (Solarium tuberosum L.) cv. diamante using RAPD markers. Pakistan Journal of Botany 2012, 44(1):215-220.
    49. Ipek M., Ipek A., Simon P.W., Comparaison of AFLPs, RAPD markers and isozymes for diversity assessment of garlic and detection of putative duplicates in germplasm collections. Journal of the American Society for Horticultural Science 2003,128 (2):246-252.
    50. Ipek M., Ipek A., Simon P.W., Genetic characterization of Allium tuncelianum:An endemic edible Allium species with garlic odor. Scientia Horticulturae 2008,115:409-415.
    51. Ipek M., Philipp A.I., Simon P.W., Molecular characterization of Kastamonu garlic:an economically important garlic clone in Turkey. Scientia Horticulturae 2008a,115:203-208.
    52. Ipek M., Simon P.W. Evaluation of genetic diversity among garlic clones using molecular markers: comparison of AFLPS, RAPDS and ISOZYMES. Plant and Animal Genome 2002. X Meeting, January 12-16. http://www.intl-pag.org/. Accessed 15 April 2013.
    53. IPGRI, ECP/GR, AVRDC, Descriptor for Allium (Allium ssp.). International Plant Genetic Institute, Rome, Italy; European Cooperatine Programme for Crop Resources Netuorks (ECP/GR), Asian Vegetable Research and Development Center, Taiwan 2001.
    54. Jabbes N., Arnault I., Auger J., Dridi B.A.M. Hannachi C., Agro-morphological markers and organo-sulphur compounds to assess diversity in Tunisian garlic landraces. Scientia Horticulturae 2012,148:47-54.
    55. Jabeen N., Mirza B., Ethyl methane sulfonate enhances genetic variability in Capsicum annuum. Asian Journal of Plant Sciences 2002,1 (4):425-428.
    56. JO M.H., Ham I.K., Moe K.T., Kwon S.W., Lu F.H., Park Y.J., Kim W.S., Won M.K., Kim T.I., Lee E.M., Classification of genetic variation in garlic (Allium sativum L) using SSR markers. Australian Journal of Crop Science 2012,6 (4):625-631.
    57. Joshi N., Ravindran A., Mahajan V., Investigations on chemical mutagen sensitivity in onion (Allium cepa L.). International Journal of Botany 2011,7 (3):243-248.
    58. Kamenetsky R., London S.I., Khassanov F., Kik C., Van Heusden A.W., Vrielink-Van GM., Burger-Meijer K., Auger J., Arnault I., Rabinowitch H.D., Diversity in fertility potential and organo-sulfur compounds among garlics from Central Asia. Biodiversity and Conservation 2005, 14:281-295.
    59. Karthika R., Subba L.B., Effect of gamma rays and EMS on two varieties of soybean. Asian Journal of Plant Sciences 2006,5(4):721-724.
    60. Karuri H.W., Ateka E.M., Amata R., Nyende A.B., Muigai A.W.T., Mwasame E., Gichuki S.T., Evaluating diversity among Kenyan sweet potato genotypes using morphological and SSR markers. International Journal of Agriculture and Biology 2010,12:33-38
    61. Kelly W.C., Minimal use of synthetic fertilizers in vegetable production. Hort Science 1990,25 (2): 168-169.
    62. Khai T.H., Lang N.T., Using SSR marker to identify allele variation of somaclonal mutants in indica rice. Omonrice 2005,13:121-125.
    63. Khan S., Goyal S., Improvement of mungbean variety through induced mutation. African Journal of Plant Science 2009,3:174-180.
    64. Kik C.K.R., Gebhardt R., Garlic and health. Nutrition, Metabolism and Cardiovasccular Diseases 2001,11:57-65.
    65. Kim J.H., Baek M.H., Chung B.Y., Wi S.G, Kim J.S. Alterations in the photosynthetic pigments and antioxidant machineries of red pepper(Capsicum annum L.) seedlings from gamma-irradiated seeds. Journal of Plant Biology 2004,47(4):314-321.
    66. Kiong A.L.P., Lai A.G, Hussein S., Harun A.R., Physiological responses of Orthosiphon stamineus plantles to gamma irradiation. American-Eurasian Journal of Sustainable Agriculture 2008,2(2): 135-149.
    67. Kondo T., Hasegawa H., Suzuki M., Transformation and regeneration of garlic (Allium sativum L) by Agrobacteriummediated gene transfer. Plant Cell Reports 2000,19:989-993.
    68. Kostov K., Batchvarova R., Slavov S., Application of chemical mutagenesis to increase the resistance of tomato to Orobanche ramose L. Bulgarian Journal of Agricultural Science 2007,13: 505-513.
    69. Krest I., Gender may affect the action of garlic oil on plasma cholesterol and glucose levels of normal subjects. Journal of Nutrition 2001,131:1471-1478.
    70. Lammerink J., Wallace A.R., Effect of clonal selection and planted clove weight on yield of garlic. In:Proceeding of Annual Conference. Agronomy Society of Newzeland 1987,17:7-10.
    71. Lampasona GS., Martinez L., Burba J.L., Genetic diversity among selected Argentinean garli clones (Allium sativum L) using AFLP (Amplified Fragment Length Polymorphism). Euphytica 2003,132:115-119.
    72. Lawande K.E., Khar A., Mahajan V., Srinivas P.S., Sankar V., Singh R.P., Onion and garlic research in India. Journal of Horticultural Sciences 2009,4 (2):91-119.
    73. Lawson L.D., Garlic:a review of its medicinal effects and indicated active compounds. In: Phytomedicines of Europe. Chemistry and Biological Activity. Series 691 (Edited by:Lawson LD and Bauer R) American Chemical Society, Washington, DC 1998,176-209.
    74. Lawson L.D., Wang Z.J., Papadimitriou D., Allicin release under simulated gastrointestinal conditions from garlic powder tablets employed in clinical trials on serum cholesterol. Planta Medica 2001,67:13-18.
    75. Lee GA., Kwon S.J., Park Y.J., Lee M.C., Kim H.H., Lee J.S., Lee S.Y., Gwag J.G, Kim C.K., Ma K.H., Cross-amplification of SSR markers developed from Allium sativum to other Allium species. Scientia Horticulturae 2011,128:401-407.
    76. Ling A.P.K., Ung Y.C., Hussein S., Harun A.R., Tanaka A., Yoshihiro H., Morphological and biochemical responses of Oryza sativa L. (cultivar MR219) to ion beam irradiation. Journal of Zhejiang University-Science 2013, B 14(12):1132-1143.
    77. Lot H., Chovelon V., Souche S., Delecolle B., Effects of Onion yellow dwarf and Leek yellow stripe viruses on symptomatology and yield loss of three French garlic cultivars. Plant Disease 1998,82:1381-1385.
    78. Ma K.H., Kwag J.G, Zhao W., Dixit A., Lee GA., Kim H.H., Chung I.M., Kim N.S., Lee J.S., Ji J.J., Kim T.S., Park Y.J., Isolation and characteristics of eight novel polymorphic microsatellite loci from the genome of garlic (Allium sativum L.). Scientia Horticulturae 2009,122:355-361.
    79. Marcu D., Cristea V., Daraban L. Dose-dependent effects of gamma radiation on lettuce (Lactuca sativa var. capitata) seedlings. International Journal of Radiation Biology.2013,89(3):219-23.
    80. Mario PC., Viviana B.V., Mand I.A., Low genetic diversity among garlic accessions detected using RAPD. Chilean Journal of Agricultural Research 2008,68:3-12.
    81. Mass H.I., Kaas M., Intraspecific differentiation of garlic (Allium sativum L.) by isozyme and RAPD markers. Theoretical Applications in Genetics 1995,91:89-97.
    82. Maynard D.N., Barker A.V., Minotti P.J. Peck N.H., Nitrate accumulation in vegetables. Advances in Agronomy 1976,28:71-118.
    83. Michael W.B., Adeyemi O.A., Johannes V.S., somaclonal variation in plants:causes and detection methods. Plant Growth Regulation 2011,63:147-173.
    84. Mirzaei R., Liaghati H., Mahdavi D.A., Evaluating yield quality and quantity of garlic as affected by different farming systems and garlic clones. Pakistan Journal of Biological Sciences 2007,10: 2219-2224.
    85. Mohammad S.R., Qassim H.A., Gunnar B.B., Shyam S.S., Ahmed A., Drying kinetics and allicin potential in garlic slices during different methods of drying. Drying Technology 2009,27:467-477.
    86. Moyers S., Garlic in health, history and world cuisine. Sun coast Press, St. Petersburg 1996,1-36.
    87. Muller H.J., The problem of genetic modification, fifth Int. Genetics Congress, Berlin. Z. Ind. Abst. Vererb. Lehre,1927,1 (suppl.),234-260.
    88. Murashige T., Skoog F., A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia. Plantarum 1962,15:473-497.
    89. Murray J.M., Thompson W., Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research 1980,8:4321-4325.
    90. Nagakubo T., Nagasawa A., Ohkawa H., Micropropagation of garlic through in vitro bulblet formation. Plant Cell, Tissue and Organ Culture 1993,32:175-183.
    91. Natarajan A.T., Chemical mutagenesis:from plants to human. Current Science 2005,89 (2): 312-317.
    92. Novak F.J., Afza R., Duren M., Omar M.S., Mutation induction by gamma irradiation of in vitro cultured shoot tips of banana and planting (Musa cvs.). Tropical Agriculture (Trinidad) 1990,25: 21-28.
    93. Novak F.J., Allium tissue culture. In:Rabinowotch HD and Brewster JL (eds), Onions and Allied Crops. CRC press, Boca Raton, Florida 1990,1:233-250.
    94. Nymbom N., The use of induced mutations for the improvement of vegetatively propagated plants. In:Mutations and Plant Breeding IAEA 1961,:661-678.
    95. Olech Z., Zaborska W., A Spectrophotometric Assay for Total Garlic Thiosulfi nates Content: Kinetic Aspects of Reaction with Chromogenic Thiols. Polish Journal of Food and Nutrition Sciences 2012,62:23-29.
    96. Pardo A., Hernandez A., Mendez N., Caracterizacion molecular de siete clones de ajo (Allium sativum L.) mediante la tecnica RAPD. Bioagro 2009,21 (2):81-86.
    97. Paredes C.M., Becerra V., Gonzalez A.M.I., Low genetic diversity among garlic (Allium sativum L.) accessions detected using random amplified polymorphic DNA (RAPD). Chilean Journal of Agricultural Research 2008,68 (1):3-12.
    98. Park S.J., Buttery B.R., Ethyl methane sulphonate (EMS) induced nodulation mutants of common bean (Phaseolus vulgaris L.) lacking effective nodules. Plant and Soil 1992,139:295-298.
    99. Paudyal K.P., Effect of ethylmethane sulphonate (EMS) on in vitro culture of garlic (Allium sativum L.), Batangas strain 1992. http://agris.fao.org/?query=%2Bsubject:%22F62%22.
    100. Peiwen X.u., Huisheng S., Yuanjun Y, Hengying L., Shouyi S., A primary study on mutation induction of in-vitro cultured garlic shoots by 60 Co y-ray irradiation. Acta Agricultural Nucleate Science 1999,13 (3):142:146.
    101. Phillips N.C., Larson S.R., Drost D.T., Detection of genetic variation in wild populations of three Allium species using amplified fragment length polymorphisms. Hort Science 2008,43 (3): 637-643.
    102. Pooler M.R., Simon P.W., Characterization and classification of isozyme and morphological variation in a diverse collection of garlic clones. Euphytica 1993,68:121-130.
    103. Porter K.S., Nitrogen and phosphorus-food production, waste and the environment. Ann Arbor Science 1975, Ann Arbor, Mich. (C.F. Kelly 1990).
    104. Predieri S., Divrgilio N., In vitro mutagenesis and mutant multiplication. Chapter 30. Jain S.M., Haggman H., (eds.), protocols for micropropagation of woody trees and fruits,323-333. Springer 2007.
    105. Preussa S.B., Britta A.B., A DNA-damage-induced cell cycle checkpoing in Arabidopsis. Genetics 2003,164:323-334.
    106. Rahman M.S., Allicin and other functional active components in garlic:health benefits and bioavailability. International Journal of Food Properties 2007,10 (2):245-268.
    107. Rakoczy-Trojanowska, M., Bolibok H., Characteristics and acomparison of three classes of microsatellite-based markers and their application in plants. Cellular and Molecular Biology Letters 2004,9:221-238
    108. Ramachandra K.M., Srinivasappa K.N., Farooqi A.A., Mutagenic effect of ethyl methane sulphonate on growth, yield and composition of oil in patchouli (Pogostemon patchouli Pellet.). Biomed 2008,2 (4):341-344.
    109. Richard S.R., Historical perspective on the use of garlic. Journal of Nutrition 2001,131: 9515-9545.
    110. Rivlin R.S. Patient with hyperlipidemia who received garlic supplements. Lipid management. Report from the Lipid Education Council 1998,3:6-7.
    111. Robinson R.A., Self-Organizing Agro-ecosystems. Sharebook Publishing 2007, ISBN 698-0-9783634-1-3, Available:Sharebooks e-book.
    112. Ross Z.M., O'Gara E.A., Hill D.J., Sleightholme H.V., Maslin D.J. Antimicrobial properties of garlic oil against human enteric bacteria:evaluation of methodologies and comparisons with garlic oil sulfides and garlic powder. Applied and Environmental Microbiology 2001,67:475-480.
    113. Rubatzky V.E., Yamaguchi M., World vegetable; Principles, production and mutritive values.2nd Ed. Chapman and hall, International Thomson publishing, New York, USA 1997, pp.843.
    114. Rudi H.M., Hwa Y.K., Young R.Y., Effectiveness of gamma ray irradiation and ethyl methane sulphonate on in vitro mutagenesis of strawberry. African Journal of Biotechnology 2013,12(30): 4803-4812.
    115. SAS Institute, The SAS system for windows, releases 8.0. Carry, NC:Statistical Analysis Systems Institute 2000.
    116. Schulz V., Hansel R., Tyler V.E., Rational phytotherapy. Aphysicians' Guide to Herba Medicine. Springer 1998, Pp.107-127.
    117. Shimpei M., Atsushi T., Masayoshi K., Part I:Induced mutations, physically induced mutation:ion beam mutagenesis, the handbook of plant mutation screening. Edited by Gunter Kahl and Khalid Meksem, Wiley-Vch Verlag GmbH and KGaA, Weinheim 2010, ISBN:978-3-527-32604-4. Pp 1-16.
    118. Smith J.S.C., Smith O.S., The description and assessment of distances between inbred lines of maize:the utility of morphological, biochemical and genetic descriptors and a scheme for the testing of distinctiveness between inbred lines. Maydica 1989,34:151-161.
    119. Soto V.C., Gonzalez R.E., Sance M.M., Burba J.L., Camargo A.B. Genotype environment interaction on the expression of allicin and pyruvic acid in garlic (Allium sativum L.). J. revista de la facultad de Ciencias Agrarias, Universidad Nacional de Cuyo 2010,42:15-22.
    120. Stadler L.J., Genetic effects of X-rays in maize. Proc. Natl. Acad. Sci. USA 1928,14:69-75.
    121. Steinmetz K.A., Kushi L.H., Bostick R.M., Folsom A.R., Potter J.D., Vegetables, fruit, and colon cancer in the Iowa Women's Health Study. American Journal Epidemiology 1994,139:1-15.
    122. Sterling S.J., Eagling R.D., Agronomic and allicin yield of Australian grown garlic. Acta Horticulturae 2001,555:63-73.
    123. Svetleva D.L., Crino P., Effect of ethyl methane sulfonate (EMS) and N-nitrose-N- ethyl urea (ENU) on callus growth of common bean. Journal of Central European Agriculture 2005,6 (1): 59-64.
    124. Takagi H., Garlic (Allium sativum L.). In:Brewster, J.L., Rabinowitch, H.D. (Eds.), Onions and Allied Crops. CRC Press, USA 1990,3 (6):109-146.
    125. Van Harten A.M., Mutation breeding-theory and practical applications. Cambridge University Press, London, UK 1998.
    126. Vavilov N.I., The origin, variation, immunity and breeding of cultivated plants. Chron Bot 1951, 13(1-6):1-364.
    127. Vazquez-Tello A., Uozumi T., Hidaka M., Kobayashi Y., Wanatabe H., Effect of 12C+5 ion beam irradiation on cell viability and plant regeneration in callus, protoplasts and cell suspensions of Lavatera thuringiaca. Plant Cell Reports 1996,16(1-2):46-49.
    128. Venkateshwarlu M., Effect of gamma rays on different explants of callus treatment of multiple shoots in Cucumis melo cv. Bathasa. Journal of Environmental Biology 2008,29 (5):789-792.
    129. Vijayanand V, Senthil N., Vellaikumar S., Paramathma M., Genetic diversity of Indian jatropha species as revealed by morphological and ISSR marker. Journal of Crop Science and Biotechnology 2009,12(3):115-120.
    130. Virginia L., Review the analysis of onion and garlic. Journal of Chromatography A 2006,1112: 3-22.
    131. Volk GM., Henk A.D., Richards C.M., Genetic diversity among U.S. garlic clones detected using AFLP methods., Journal of American Society for Horticultural Science 2004,129 (4):559-569.
    132. Volk GM., Stern D., Phenotypic characteristics of ten garlic cultivars grown at different North American locations. Hort Science 2009,44 (5):1238-1247.
    133. Wang H., Li X., Liu S., Jin S., Quantitative determination of Allicin in Allium sativum L. bulbs by UPLC. Chromatographia 2010,71:159-161.
    134. Wani M.R., Khan S., Estimates of genetic variability in mutated populations and the scope of selection for yield attributes in Vigna radiate L. Wilczek. Egypt Journal of Biology 2006,8:1-6.
    135. Watanabe S.h., Mizoguchi T., Aoki K., Kubo Y, Mori H., Imanishi S.h., Yamazaki Y, Shibata D., Ezura H., Ethylmethanesulfonate (EMS) mutagenesis of Solanum lycopersicum cv. Micro-Tom for large-scale mutant screens. Plant Biotechnology 2007,24:33-38.
    136. Waterer D., Schmitz D., Influence of variety and cultural practices on garlic yields in Saskatchewan. Canadian Journal of Plant Science 1994,74:611-614.
    137. Weir B.S., Genetic data analysis Ⅱ.Sinauer, Sunderland 1996.
    138. Wi S.G, Chung B.Y., Kim J.S., Kim J.H., Baek M.H., Lee J.W., Kim Y.S., Effects of Gamma Irradiation on Morphological Changes and Biological Responses in Plants. Micron 2007,38: 553-564.
    139. Woodward P.W., Garlic and friends:The history, growth and use of edible Alliums. Hyland House, Melbourne, Australia 1996,2-22.
    140. Xu P., Sun H., Yang Y., Liu H., Sun S., a primary study on mutation induction of in-vitro cultured garlic shoots by 60Co y-ray irradiation. Acta Agriculturae Nucleatae Sinica 1999,13 (3):142-146.
    141. Yayeh Z., Michael J.H., James P.P., Maria M.J., The first genetic linkages among expressed regions of the garlic genome. Journal of American Society for Horticultural Science 2005,130 (4): 569-574.
    142. Yong-Jin P., Lee J.K., Kim N.S., Simple sequence repeat polymorphisms (SSRPs) for evaluation of molecular diversity and germplasm classification of minor crops. Molecules 2009,14,4546-4569.
    143. Yu L., Shi-ying X., Da-Wen S., Preparation of garlic powder with high allicin content by using combined microwave-vacuum and vacuum drying as well as microencapsulation. Journal of Food Engineering 2007,83:76-83.
    144. Zahedi B., kashi A.K., Zamani Z., Mosahebi GH., Hassani M., Evaluation of Iranian garlic (Allium sativum L.) genotypes using multivariate analysis methods based on morphological characteristics. Biotechnology 2007,6 (3):353-356.
    145. Zhao W.G, Chung J.W., Lee GA., Ma K.H., Kim H.H., Kim K.T., Chung I.M., Lee J.K., Kim N.S., Kim S.M., Park Y.J., Molecular genetic diversity and population structure of a selected core set in garlic and its relatives using novel SSR markers. Plant Breeding 2011,130:46-54.
    146. Zhen H.R., Yellow onion mutation seedling obtained through tissue culture combined with gamma ray radiation of onion flower head. Acta Agriculture Shanghai 1990,6 (4):93-95.
    147. Zhen, In vitro technique for selection of radiation induced mutant of garlic. Proceedings of a final Research Co-ordination Meeting organized (In vitro techniques for selection of radiation induced mutations adapted to adverse environmental conditions) by the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture and held in Shanghai, China,17-21 August 1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700