用户名: 密码: 验证码:
利用双向导入系解析水稻产量相关性状的遗传背景效应及环境互作效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以美国优质粳型水稻品种“Lemont”和我国高产籼稻品种“特青”为亲本,相互导入构建的遗传背景基本一致的双向高代回交导入系群体及Lemont/特青F_(13)重组自交系群体为实验材料,剖析双向导入系的遗传结构,解析株高、抽穗期、每穗粒数、粒重及其相关性状的主效QTL和互作QTL表达的遗传背景效应及环境互作效应。在此基础上,对稳定表达的影响水稻源库相关性状的主效QTL进行选择响应分析,并精细定位了影响水稻源库相关性状的重要主效QTL(SS1),主要研究结果如下:
     1双向导入系遗传结构分析
     利用分子标记分析双向导入系供体片段导入特征,比较来自相同亲本构建的双向导入系和重组自交系遗传连锁图谱,发现存在广泛的标记倒位现象,倒位区段的重组值存在明显的差异,表明籼粳亚种间存在一些隐蔽的基因组变异。籼粳相互导入具有不对称性,粳稻向籼稻背景的平均导入频率与期望值相仿,相反籼稻向粳稻背景的平均导入频率大大高于理论预期,位于第7染色体和一些其它染色体的特殊区段存在籼稻等位基因的超导入现象,在来自相同亲本的重组自交系和F_2群体中也观察到同样的导入趋势,表明粳稻基因组具有较大的遗传负荷,粳稻品种在人工驯化过程中曾经历过一个非常剧烈的遗传瓶颈。
     2水稻籽粒相关性状的主效和互作QTL表达的遗传背景效应
     利用Lemont和特青培育的双向导入系和重组自交系群体,在北京环境下定位影响千粒重及其相关性状如粒长、粒宽和粒厚的主效和互作QTL,分别在特青背景导入系、Lemont背景导入系和重组自交系下检测到影响千粒重及其相关性状的主效QTL分别为33个、27个和13个,互作QTL分别为4个、8个和23个,其中仅有6个主效QTL(QGwt5,QGl1,QGl3b,QGl4,QGw7和QGw8)在籼粳两个不同背景下共同表达,3个主效QTL(QGwt5,QGwt7a和QGt5)在导入系和重组自交系中共同表达,分别占检测到影响这些性状QTL总数的11.1%和4.3%,未检测到在3个背景下相同表达的互作QTL。表明多数主效QTL尤其是互作QTL的表达具有遗传背景特异性。许多染色体区段的主效QTL影响一个以上的籽粒相关性状,一因多效性可能是这些相关性状的遗传基础。
     3水稻抽穗期和株高QTL及与环境互作效应的分析
     利用Lemont和特青相互导入构建的遗传背景基本一致的双向回交导入系群体,分别在北京和海南环境定位影响抽穗期和株高的主效和互作QTL及其环境互作效应,分析同一性状表达的环境互作效应及环境互作与遗传背景的交互作用。两种背景下检测到影响抽穗期的3个主效QTL(QHd8a,QHd9和QHd10b)存在环境互作,其中QHd8a与海南点的互作在两种背景下提早抽穗2-3天,在北京点的互作则延迟抽穗2-3天,是影响抽穗期的一个重要主效QTL。通过与以往相同亲本来源的7个不同定位群体在不同环境下定位结果的比较,鉴定出一些在不同遗传背景和环境下稳定表达的主效QTL,如QHd3,QHd8a,QPh3和QPh4,适宜用作水稻抽穗期和株高的分子标记改良。基于QTL定位结果,对如何通过分子标记辅助改良品种在不同环境下的抽穗期进行了深入的探讨。
     4稳定表达的主效QTL对人工选择的响应
     利用粳稻Lemont导入籼稻特青背景构建的高代回交导入系和重组自交系群体,在北京和海南两地检测到影响千粒重、每穗粒数和剑叶宽的稳定表达的主效QTL,分析这些主效QTL在导入系和重组自交系群体在不同选择强度(5%、10%和20%)的极端群体中的等位基因偏离,研究不同性状的主效QTL对不同选择强度的响应及不同遗传结构群体对主效QTL人工选择响应的影响。结果表明,导入系的选择群体中所有主效QTL等位基因的偏离方向都使得供体等位基因频率增加,等位基因产生偏离的性状选择方向及供体等位基因的偏离方向与基因的加性效应方向完全一致,而重组自交系的选择群体中主效QTL等位基因的偏离既有供体等位基因增加的,也有等位基因降低的,两种群体中不同性状的主效QTL等位基因偏离与选择强度密切相关。通过比较不同群体结构的主效QTL定位及对选择响应的异同,发现一些假阳性QTL和在随机作图群体中漏检的QTL,强调作图群体QTL定位结果验证的重要性。鉴于不同群体、不同性状和不同主效QTL的选择响应特点,对不同主效QTL在基于常规表型选择和分子标记辅助选择回交育种中的利用价值及注意事项进行了探讨。
     5精细定位控制水稻源库相关性状基因SS1
     水稻库源性状如每穗粒数和剑叶大小都是受多基因控制的数量性状,其中小穗是光合产物积累的主要库性状,剑叶大小则是光合产物生产的主要源性状。特青和Lemont在源库性状上差异明显,前者每穗粒数多而剑叶窄,后者表现每穗粒数少而剑叶宽。利用特青和Lemont构建的双向导入系及重组自交系群体在不同环境下均在第4染色体RM317-RM255区间定位到1个影响每穗粒数和剑叶宽的主效QTL(SS1),其增效等位基因均来自Lemont。以特青背景的高代回交导入系GG52和GG253(剑叶宽和每穗粒数多)为目标株系,通过标记辅助选择构建了宽叶近等基因系及次级分离群体,对控制剑叶宽的SS1进行精细定位和高精确度连锁分析。该基因被定位在第4染色体Ww10-Fw6之间约100kb的区域,该区域包含14个候选基因。遗传分析表明SS1基因表现为不完全显性遗传,在幼苗发育的早期阶段就开始表达。本研究为进一步克隆该基因奠定了基础。
Lemont, a high grain quality japonica variety from US and Teqing, a high yielding indica variety from China were used to develop two sets of reciprocal introgression lines (TQ- and LT-ILs) and recombinant inbred lines (RILs), to analyze genetic constitution of the reciprocal introgression lines and effects of genetic background and environment interaction on QTL expressions of plant height (PH), heading date (HD), spikelet number per panicle (SNP), grain weight (GWT) and its related traits including grain length (GL), grain width (GW) and grain thickness (GT).. Further, deviation patterns of the alleles at the stably expressed main-effect QTLs (M-QTLs) was analyzed in the extreme populations selected from TQ-ILs and RILs, and an M-QTL (designated as SS1) affecting source and sink traits were fine-mapped. The main results are summarized as follows:
     1 Genetic constitution analysis of the reciprocal introgression lines
     Two large sets of reciprocal introgression lines (ILs) were analyzed using molecular markers to understand the transmission pattern of donor segments in reciprocal indica/japonica recipients of rice. Comparison of the linkage maps from the two ILs and RIL populations from the same cross revealed a high frequency and genomewide distribution of inverted marker orders, suggesting the widespread presence of intraspecific cryptic genomic variation presumably due to subspecific differentiation within O. sativa. The average introgression frequency of japonica genome into indica background was in agreement with the expected value while that of indica genome into japonica background was much higher than the expected. Asymmetric over-introgression of the indica alleles on chromosome 7 and many specific regions on other chromosomes in the japonica genetic background is consistent with the general trend observed in the RIL and F_2 populations of the same cross, suggesting a high genetic load in the japonica gene pool, and japonica genome experienced a very severe bottleneck by artificial domestication.
     2 Genetic background effect on QTL expression of grain weight and its related traits
     Genetic background effect on main-effect QTL (M-QTL) and digenic epistatic QTL (E-QTL) mapping for GWT and its related traits including GL, GW and GT was dissected by a large set of reciprocal introgression lines (ILs) and recombinant inbred lines (RILs) derived from Lemont and Teqing in Beijing environment. Total 33, 27 and 13 M-QTLs , 4, 8 and 23 E-QTLs were identified for GWT and its related traits in TQ-ILs、LT-ILs and RILs, respectively. Among them, only six M-QTLs (QGwt5, QGl1, QGl3b, QGl4,QGw7 and QGw8) were detected in the two ILs, and three M-QTLs (QGwt5, QGwt7a and QGt5) simultaneously detected in the three populations, accounting for 11.1% and 4.3% of total M-QTLs for these traits, and no common pair of E-QTL was detected under any two of the three populations, indicating expression of most M-QTLs, especially E-QTLs are specific to genetic background. Many M-QTLs affected multiple grain related traits with the same direction of gene effect, implying pleiotropic effect is the genetic base for grain related traits.
     3 Analysis of QTL by environment interaction of heading date and plant height
     Expression of quantitative variation is affected by genetic background and environment. QTL by environment interaction for heading date (HD) and plant height (PH) in Beijing and Hainan environments were dissected by a large set of reciprocal introgression lines (ILs) derived Lemont and Teqing. The two sets of ILs showed transgressive segregation for the two traits. Total 16 and 17 M-QTLs were identified for HD and PH in the two environments, respectively. Among them, three M-QTLs (QHd8a, QHd9 and QHd10b) by environment interactions for HD was significantly detected under the two backgrounds, of which the interaction of QHd8a had early heading for 2-3 days in Hainan, but delayed heading for 2-3 days in Beijing. Therefore, QHd8a could be considered as an important M-QTL for HD. By comparison with the QTL mapping results previously identified in the seven different mapping populations derived from the same parents in different environments, some stably expressed M-QTLs including QHd3, QHd8a, QPh3 and QPh4 were identified under different backgrounds and environments, suggesting these M-QTLs could be used in marker-assisted breeding for HD and PH. Based on the mapping information, marker-assisted improvement of HD for a rice variety under different environments was deeply discussed.
     4 Response of stably expressed M-QTL to artificial selection in rice
     Stably expressed M-QTL was identified from introgression lines in Teqing background (TQ-ILs) in Beijing and Hainan environments. Deviation of the alleles at the stably expressed M-QTLs in the extreme populations selected from TQ-ILs and Lemont/Teqing recombinant inbred lines (RILs) based on different selection intensities (5%, 10% and 20%) was detected, to analyze responses of M-QTL of different traits to different selection intensities and effect of different genetic structure on selection response of M-QTL. The results indicated that the deviation of all alleles at M-QTLs identified from TQ-ILs resulted in increase of donor's alleles in the extreme populations, and the directions of allele deviation and trait selection with allele deviation were consistent with the direction of additive effect of gene. However, donor's alleles at M-QTLs were distorted to either increase or decrease in extreme populations selected from the RILs. The deviation of alleles at M-QTLs for the two traits in the two kinds of populations was tightly associated with selection intensity. Some false positive and overlooked M-QTLs was found by comparison of M-QTL mapping results and their responses to selection in the populations with different genetic structures. Importance of confirmation was emphasized for the M-QTL identified from mapping populations. Considering characters of selective responses of different M-QTLs for different traits in different populations, utilization and caution of different M-QTLs in backcross breeding based on traditional phenotyping selection and marker-assisted selection were discussed.
     5 Fine mapping of an M-QTL (SS1) for source and sink related traits in rice
     Source-sink traits such as spikelet number per panicle (SNP) and flag leaf size are complex trait controlled by polygenes, in which spikelet is considered as a main sink trait of photosynthetic product while flag leaf size as a main source triat of photosynthesis. There are significant differences in source-sink traits between Teqing and Lemont. As compared with Lemont, Teqing had more SNP and small flag leaf width (FLW). A M-QTL, herein designated as SS1, affecting SNP and FLW was identified in the region of RM317-RM255 on chromosome 4 in the TQ- and LT-ILs and RILs derived from Lemont and Teqing under different environments. The Lemont allele increased SNP and FLW. Taking GG52 and GG253 selected from TQ-ILs with more SNP and narrow FLW as the target lines, the SS1 was confirmed and a pair of near-isogenic lines was developed by MAS, and its sub-mapping population was constructed for fine-mapping of SS1. Finally, the gene was delimited into the region of Ww10-Fw6 with genomic size of 100kb where around 14 open reading frame was predicted. Genetic analysis indicated that SS1 gene shows incomplete donminant and expresses at early developing stage. This study will establish a stable base for map-based cloning of SS1 gene.
引文
1.程桂平,冯九焕,梁国华,等.2006.栽培稻与普通野生稻BC2F2群体产量相关性状的QTL分析.中国水稻科学.20(5):553-556
    2.盖钧镒,章元明,王建康.2003.植物数量遗传体系.北京:科学出版社,224-265.
    3.姜长鉴,莫惠栋.1995.质量-数量性状的遗传分析TV极大似然法的应用.作物学报,21(6):641-648
    4.黎志康.2005.我国水稻分子育种计划的策略.分子植物育种3:603-608
    5.廖春燕、吴平、易可可等.2000.不同遗传背景及环境中水稻(Oryza saliva L.)穗长的QTLs和上位性分析.遗传学报,27(7):599-607
    6.罗利军、应存山、梅捍卫等.1993.14份美国水稻品种的研究和评价.中国水稻科学,7(3):179-182
    7.钱惠荣、沈波、林鸿宣等.水稻籼粳特异性RFLP标记及广亲和品种亲缘关系分析.中国水稻科,1994,8(2):65-71
    8.王丰,张国平,白朴.2005.水稻源库关系评价体系研究进展与展望.中国水稻科学,19(6):556-560
    9.王象坤、程侃声、黄威等.1987.亚洲栽培稻起源、演化中两个重要稻种类型的研究.遗传学报,14(4):262-270
    10.肖金华,袁隆平.1988.水稻籼粳亚种间杂种优势及其与亲本关系的研究.杂交水稻,1:5-9.
    11.谢学文,许美容,藏金萍,等.2008.水稻抗纹枯病QTL表达的遗传背景及环境效应.作物学报,34(11):1885-1893.
    12.邢永忠.1999.用分子标记剖析水稻重要农艺性状的遗传基础.[博士学位论文].武汉:华中农业大学图书馆
    13.徐建龙,高用明,傅彬英,等.2005.回交导入后代水稻种质有利基因的鉴定与筛选研究.分子植物育种,3(5):619-628
    14.薛庆中,张能义,熊兆飞,等.应用分子标记辅助选择培育抗白叶枯病水稻恢复系.浙江农业大学学报,1998,24(6):581-582.
    15.严建兵.2003.玉米杂种优势遗传基础及玉米与水稻比较基因组研究.[博士学位论文].武汉:华中农业大学图书馆
    16.杨建昌,张文虎,王志琴,等.2001.水稻新株型与梗/釉杂种源库特征与物质运转的研究.中国农业科学,34(5):511-518
    17.杨守仁,赵纪书.1962.籼粳稻杂交育种研究.作物学报,1(2):97-102.
    18.曾世雄,杨秀青,卢庄文.1980.栽培稻籼粳亚种内杂种一代优势的研究.作物学报,6(4):193-202
    19.朱立宏,周毓珍,陶世昌.1964.籼粳稻杂交育种研究..作物学报,3(1):6984.
    20.Ali A J,Xu J L,Ismail A M,et al.2006.Hidden diversity for abiotic and biotic stress tolerances in the primary gene pool of rice revealed by a large backcross breeding program.Field Crops Research ,97:66-76
    21.Ashikari M,Matsuoka M.2006.Identification,isolation and pyramiding of quantitative trait loci for rice breeding.Trends in Plant Science,11:344-350.
    22.Ashikari M,Sakakibara H,Lin S,et al.2005.Cytokinin oxidase regulates rice grain production.Science,309(5735):741-745
    23.Ashraf M,Akbar M,Salim M.1994.Genetic improvement in physiological traits of rice yield.In:Slafer GA (ed)Genetic improvement of field crops.Marcel Dekker Incorporates New York,pp413-455
    24.Barton N H .2000.Genetic hitchhiking.Philos Trans R Soc Lond B Biol Sci,355:1553-1562
    25.Barton NH .2000.Genetic hitchhiking.Philos Trans R Soc Lond B Biol Sci 355:1553-1562
    26.Bernacchi D,Beck-Bunn T,Emmatty D,et al.1998.Advanced backcross QTL analysis in tomato.II.Evaluation of near-isogenic lines carrying single-donor introgressions for desirable wild QTL-alleles derived from Lycopersicon hirsutum and L.pimpinellifolium.Theor Appl Genet,97:170-180
    27.Blanc,G,A.Charcosset,B.Mangin,A.Gallais and L.Moreau,2006 Connected populations for detecting quantitative trait loci and testing for epistasis:an application in maize.Theor.Appl.Genet,113:206-224.
    28.Brondani C,Range P,Brondani R,and Ferreira M.2002.QTL mapping and introgression of yield-related traits from Oryza glumaepatula to cultivated rice (Oryza sativa)using microsatellite markers.Theor Appl Genet,104(6-7):1192-1203
    29.Burr B,Burr F A.1991.Recombinant inbreds for molecular mapping in maize:theoretical and practical considerations.Trends Genet,7:55-60
    30.Carlborg,O.,L.Jacobsson,P.Ahgren,P.Siegel and L.Andersson,2006 Epistasis and the release of genetic variation during long-term selection.Nat.Genet,38:418-420
    31.Cause M A,Fulton T M,Cho Y Q,et al.1994.Saturated molecular map of the rice genome based on an interspecific backcross population.Genetics,138:1251-1274
    32.Causse M A,Fulton T M,Cho Y G,et al.l994.Saturated molecular map of the rice genome based on an interspecific backcross population.Genetics,138:1251-1274
    33.Chen S,Lin X H,Xu C G,et al.2000.Improvement of bacterial blight resistance of 'Minghui 63',an elite restorer line of hybrid rice,by molecular marker-assisted selection.Crop Science,40(1):239-244
    34.Chen S,Xu C G,Lin X H,et al.2001 .Improving bacterial blight resistance of '6078',an elite restorer line of hybrid rice,by molecular marker-assisted selection.Plant Breeding,120(2):133-137
    35.Chen Sheng,Zhang Qifa.Improvement of bacterial blight resistance of hybrid rice by molecular marker assisted selection.华中农业大学学报,2000,19(3):183-189.
    36.Chen X,Temnkh S,Xu Y,et al.1997.Development of a microsatellite framework map providing genome-wide coverage in rice (Oryza sativa L.).Theor Appl Genet,95:553-567.
    37.Chetelat R T,Meglic V.2000.Molecular mapping of chromosome segments introgressed from Solanum lycopersicoides into cultivated tomato (Lycopersicon esculentum).Theor Appl Genet, 100:232-241
    38.Chevin L M,Hospital F.2008.Selective sweep at a quantitative trait locus in the presence of background genetic variation.Genetics,180(3):1645-1660
    39.Cho Y I,Park C W,Kwon S W,et al.2004.Key DNA markers for predicting heterosis in F1 hybrids of japonica rice.Breeding Science,54(4),389-397
    40.Chris S,Shauna S.Plant functional genomics [J].Science.1999,285:380-383
    41.Churchill G A,Doerge R W.1994.Empirical threshold values for quantitative trait mapping.Genetics,138,963-971.
    42.Collard B Y,Cruz C V,McNally K L,et al.2008.Rice Molecular Breeding Laboratories in the Genomics Era:Current Status and Future Considerations.Int J Plant Genomics,2008:524847
    43.Coque M,Gallais A.2006.Genomic regions involved in response to grain yield selection at high and low nitrogen fertilization in maize.Theor Appl Genet,112:1205-1220.
    44.Coque M,Gallais A.2006.Genomic regions involved in response to grain yield selection at high and low nitrogen fertilization in maize.Theor Appl Genet,112:1205-1220.
    45.Cui K H,Peng S B,Xing Y Z,et al.2003.Molecular dissection of the genetic relationships of source,sink and transport tissue with yield traits in rice.Theor Appl Genet,106:649-658
    46.Darvasi A,Soller M.1994.Selective DNA pooling for determination of linkage between a molecular marker and a quantitative trait locus.Genetics,138:1365-1373.
    47.Davierwala A P,Reddy APK,Lagu M D,et al.2001.Marker assisted selection of bacterial blight resistance genes in rice.Biochemical Genetics,39 (7-8):261-278
    48.Doi K,Izawa T,Fuse T,et al.2004.Ehdl,a B-type response regulator in rice,confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1.Genes & ' Development,18(8):926-936
    49.Eduardo I,Ar(?)s P,Monforte A J.2005.Development of a genomic library of near isogenic lines (NILs)in melon (Cucumis melo L.)from the exotic accession PI161375.Theor Appl Genet,112(1):139-148
    50.Emebiri L,Michael P,Moody D B,et al.2009.Pyramiding QTLs to improve malting quality in barley:gains in phenotype and genetic diversity.Mol Breed,23:219-228
    51.Ertao Wang,Jianjun Wang,Xudong Zhu,et al.2008.Control of rice grain-filling and yield by a gene with a potential signature of domestication.Nature Genetics,40:1370-1374
    52.Eshed Y,Abu-Abied M,Saranga Y,et al.1992.Lycopersicon esculentum lines containing small overlapping introgressions from L.pennellii.Theor Appl Genet,83:1027-1034
    53.Eshed,Y,and D.Zamir,1996 Less-than-additive epistatic interactions of quantitative trait loci in tomato.Genetics 143:1807-1817
    54.Fan CC,Xing YZ,Mao HL,et al.2006.GS3,a major QTL for grain length and weight and minor QTL for grain width and thickness in rice,encodes a putative transmembrane protein.Theor Appl Genet,112(6):1164-1171
    55.Fasoula VA,Harris D K,Bailey M A,et al.2003.Identification,mapping,and confirmation of a soybean gene for bud blight resistance.Crop Sci,43:1754-1759.
    56.Feltus F A,Wan J,Schulze S R,et al .2004.An SNP resource for rice genetics and breeding based on subspecies indica and japonica genome alignments,Genome Research,14(9):1812-1819
    57.Feng,Q,Zhang Y,Hao P,et al.2002.Sequence and analysis of rice chromosome 4.Nature,420(6913):316-320.
    58.Fernandez-Silva I,Moreno E,Eduardo I,et al.2009.On the genetic control of heterosis for fruit shape in melon (Cucumis melo L.).J Hered,100(2):229-235
    59.Fjellstrom R,McClung A M,and Shank A R.,2006.SSR markers closely linked to the Pi-z locus are useful for selection of blast resistance in a broad array of rice germplasm,Molecular Breeding,17(2):149-157
    60.Foolad M R,Jones R A .1993.Mapping salt-tolerance genes in tomato (Lycopersicon esculentum)using trait-based marker analysis.Theor Appl Genet,87:184-192.
    61.Foolad M R,Jones R A .1993 .Mapping salt-tolerance genes in tomato (Lycopersicon esculentum)using trait-based marker analysis.Theor Appl Genet,87:184-192
    62.Foyer C H.1987.The basis for source-sink interaction in leaves.Plant Physiol Biochem,25:649-657
    63.Fulton T M,Nelson J C,Tanksley S D.1997.Introgression and DNA marker analysis of Lycopersicon peruvianum,a wild relative of the cultivated tomato,into Lycopersicon esculentum,followed through three successive backcross generations.Theor Appl Genet,95:895-902
    64.Gao L Z,Zhang C H,Li D Y,et al.2006.Genetic diversity within Oryza rufipogon germplasms preserved in Chinese field gene banks of wild rice as revealed by microsatellite markers.Biodiversity and Conservation,15 (13):4059-4077
    65.Ghosh S,Sahai V N,Saran S.1990.Role of flag leaf on grain yield and spikelet sterility in rice cultivars.Oryza,27:87-89
    66.Gladun I V,Karpov E A.1993.Distribution of assimilates from the flag leaf of rice during the reproductive period of development.Russ J Plant Physiol,40:215-219
    67.Glover K D,Wang D,Arelli P R,et al.2004.Near isogenic lines confirm a soybean cyst nematode resistance gene from PI 88788 on linkage group J.Crop Sci,44:936-941.
    68.Goff,S A,Ricke D,Lan T H,et al .2002.A draft sequence of the rice genome (Oryza sativa L.ssp.japonica).Science,296(5565):79-92.
    69.He G M,Luo X J,Tian F,et al.2006.Haplotype variation in structure and expression of a gene cluster associated with a quantitative trait locus for improved yield in rice.Genome Res,16(5):618-626
    70.Herzog H.1982.Relation of source and sink during the grain-filling period in wheat and some aspects of its regulation.Physiol Plant,56:155-160
    71.Herzog H.1982.Relation of source and sink during the grain-filling period in wheat and some aspects of its regulation.Physiol Plant,56:155-160
    72.Hirota O,Oka M,Takeda T.1990.Sink activity estimation by sink size and dry matter increase during the ripening stage of barley (Hordeum vulgare)and rice (Oryza sativa).Ann Bot,65:349-354
    73.Hittalmani S,Parco A,Mew T V,et al.2000.Fine mapping and DNA marker-assisted pyramiding of the three major genes for blast resistance in rice.Theoretical and Applied Genetics,100(7):1121-1128
    74. Holland J B.2007.Genetic architecture of complex of traits in plants.Current Opinion in Plant Biology,10:156-161
    75.Howell P M,Marshall D F,Lydiate D J.1996.Towards developing intervarietal substitution lines in Brassica napus using marker-assisted selection.Genome,39:348-358
    76.Hsu P,Walton P D.1971.Relationships between yield and its components and structures above the flag leaf node in spring wheat.Crop Sci,11:190-193
    77.Huang N,Angeles E R,Domingo J,et al.Pyramiding of bacterial blight resistance genes in rice:Marker-assisted selection using RFLP and PCR.Theor Appl Genet,1997,(95):313-320
    78.Huang N,Parco A,Mew T,et al.1997.RFLP mapping of isozymes,RAPD and QTLs for grain shape,brown planthopper resistance in a doubled haploid rice population.Molecular Breeding,3 (2),105-113
    79.Jain S,Jain R K,and McCouch S R..2004.Genetic analysis of Indian aromatic and quality rice (Oryza sativa L.)germplasm using panels of fluorescently-labeled microsatellite markers.Theoretical and Applied Genetics.109(5):965-977
    80.Jander G,Norris S R,Roundsley S D,et al.2002.Arabidopsis map-based cloning in the post-genome era.Plant Physiol,129:440-450
    81.Jansen R C,Ooijen J W,Stam P,et al.1995.Genotype-by-environment interaction in genetic mapping of multiple quantitative trait loci.Theor Appl Genet,91:33-37
    82.Jeong O Y,Song M T,Hong J H,et al.l999.Comparison of PCR-based DNA fingerprinting methods using random,microsatellite,and sequence tagged site (STS)primers for the classification of Korean rice (Oryza sativa L.)cultivars,” Korean Journal of Genetics.21(3):157-169
    83.Jeung J U,Heu S G,Shin M S,et al.2006.Dynamics of Xanthomonas oryzae pv.oryzae populations in Korea and their relationship to known bacterial blight resistance genes.Phytopathology,96 (8):867-875
    84.Jiang G H,Xu C G,Tu J M,et al.2004.Pyramiding of insect-and disease-resistance genes into an elite indica,cytoplasm male sterile restorer line of rice,'Minghui 63'.Plant Breeding,123 (2),112-116
    85.Keurentjes J J,Bentsink L,Alonso-Blanco C et al.2007.Development of a near-isogenic line population of Arabidopsis thaliana and comparison of mapping power with a recombinant inbred line population.Genetics,175(2):891-905
    86.Kojima S,Takahashi Y,Kobayashi Y,et al.2002.Hd3a,a rice ortholog of the Arabidopsis FT gene,promotes transition to flowering downstream of Hdl under short-day conditions.Plant Cell Physiol,43(10):1096-1105
    87.Kojima S,Takahashi Y,Kobayashi Y,et al.2002.Hd3a,a rice ortholog of the Arabidopsis FT gene,promotes transition to flowering downstream of Hdl under short-day conditions.Plant Cell Physiol,43(10):1096-1105
    88.Konishi S,Izawa T,Lin S Y,et al.2006.An SNP caused loss of seed shattering during rice domestication.Science 312,1392-1396.
    89.Konishi,S.,Izawa,T.,Lin,S.Y.,Ebana,K.,Fukuta,Y.,Sasaki,T.,and Yano,M.(2006).An SNP caused loss of seed shattering during rice domestication.Science 312,1392-1396.
    90.Kroymann,J.,and T.Mitchell-Olds,2005 Epistasis and balanced polymorphism influencing complex trait variation.Nature,435:95-98
    91.Kubo T,Yamagata Y,Eguchi M,A novel epistatic interaction at two loci causing hybrid male sterility in an inter-subspecific cross of rice (Oryza sativa L.).Genes Genet Syst.2008 Dec;83(6):443-53
    92.Kumar S,Gill B S,Faris J D.2007.Identification and characterization of segregation distortion loci along chromosome 5B in tetraploid wheat.Mol Genet Genomics,278(2):187-96
    93.Kurata N,Nagamura Y,Yamamoto K,et al.1994.300 kilobase interval genetic map of rice including 883 expressed sequences.Nature Genet,8:365-376
    94.Kurata N,Nagamura Y,Yamamoto K,et al.1994.A 300 kilobase interval genetic map of rice including 883 expressed sequences.Nat Genet,8:365-372
    95.Lafitte H R,Vijayakumar C H M,Gao Y M,et al.2006.Improvement of rice drought tolerance through backcross breeding:evaluation of donors and results from drought nurseries.Field Crops Research,97:77-86
    96.Lafitte HR,Travis RL.1984.Photosynthesis and assimilate partitioning in closely related lines of rice exhibiting different sink:source relationships.Crop Sci,24:447-452
    97.Lander E S,Bostein D.1989.Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps.Genetics.121:185-199
    98. Lander E S,Botstein D.1989.Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps.Genetics,121:185-199.
    99.Lander E S,Kruglyak L.1995.Genetic dissection of complex traits:Guidelines for interpreting and reporting linkage results.Nat Genet,11:241-247.
    100.Larsen R J,Marx M L.1981.Introduction to Mathematical Statistics and Its Applications Prentice-Hall,Inc.,Englewood Cliffs,New Jersey.335.
    101.Lebowita R J,Soller M,Beckmann S.1987.Trait-based analyses for the detection of linkage between marker loci and quantitative trait loci in crosses between inbred lines.Theor Appl Genet,73:556-562.
    102.Li C,Zhou A,and Sang T.2006b.Rice domestication by reducing shattering.Science,311:1936-1939.
    103.Li D J,Sun C Q,Fu Y C,et al.2002 Identification and mapping of genes for improving yield from Chinese common wild rice (O.rufipogon Griff.)using advanced backcross QTL analysis.Chin Sci Bull 47(18):1533-1537
    104.Li J X,Yu S B,Xu C G,et al.2000.Analyzing quantitative trait loci for yield using a vegetatively replicated F2 population from a cross between the parents of an elite rice hybrid.Theor Appl Genet,101:248-254.
    105.Li L,Lu K,Chen Z.2008.Dominance,overdominance and epistasis condition the heterosis in two heterotic rice hybrids.Genetics,180(3):1725-1742
    106.Li Z K,Arif M,Zhong D B,et al.2006.Complex genetic networks underlying the defensive system of rice (Oryza sativa L.)to Xanthomonas oryzae pv.Oryzae.Proc Natl Acad Sci USA,103 (21): 7994-7999
    107.Li Z K ,Pinson S R M,Stansel J W,et al.1995.Identification of QTL for heading date and plant height in rice using RFLP markers.Theor Appl Genet,91:374-381
    108.Li Z K,Fu B Y,Gao Y M,et al.2005.Genome-wide introgression lines and a forward genetics strategy for functional genomic research of complex phenotypes in rice.Plant Molecular Biology,59:33-52.
    109.Li Z K,Fu B Y,Gao Y M,et al.2005.Genome-wide introgression lines and a forward genetics strategy for functional genomic research of complex phenotypes in rice.Plant Molecular Biology,59:33-52
    110.Li Z K,Fu B Y,Gao Y M,et al.2005.Genome-wide introgression lines and a forward genetics strategy for genetic and molecular dissection of complex phenotypes in rice {Oryza sativa L.).Plant Mol.Biol,59:33-52.
    111.Li Z K,Luo L J,Mei H W,et al.2001.Overdominant epistatic loci are the primary genetic basis of Inbreeding Depression and Heterosis in Rice:I.Biomass and grain yield.Genetics,158:1737-1753.
    112.Li Z K,Luo L J,Mei H W,et al.2001.Overdominant Epistatic Loci are the Primary Genetic Basis of Inbreeding Depression and Heterosis in Rice.I.Biomass and Grain Yield.Genetics.158:1737-1753
    113.Li Z K,Pinson S R M,Park W D,et al.1997.Epistasis for three grain yield components in rice (Oryza sativa L.).Genetics,145:453-465
    114.Li Z K,Pinson SRM,Park W D,et al.1997.Epistasis for three grain yield components in rice (Oryza sativa L.).Genetics,145:453-465
    115.Li Z K,Pinson S R M,Paterson A H,et al.1997.Genetics of hybrid sterility and hybrid breakdown in an inter-subspecific rice (Oryza sativa L.)population.Genetics,145:1139-1148
    116.Li Z K,Pinson S R M,Paterson A H,et al.1997.Genetics of hybrid sterility and hybrid breakdown in an inter-subspecific rice (Oryza sativa L.)population.Genetics,145:1139-1148
    117.Li Z K,Pinson S R M,Paterson A H,et al.1997a .Epistasis for three grain yield components in rice (Oryza sativa L.)Genetics,145:453-465.
    118.Li Z K,Pinson S R M,Paterson A H,et al.1997a.Epistasis for three grain yield components in rice (Oryza sativa L.)Genetics,145:453-465
    119.Li Z K,Pinson S R M,Stansel J W,et al.1998.Genetic dissection of the source-sink relationship affecting fecundity and yield in rice {Oryza sativa L.).Molecular Breeding,4:419-426
    120.Li Z K,Yu S B,Lafitte H R,et al.2003.QTL × environment interactions in rice.I.Heading date and plant height.Theor Appl Genet,108:141-153
    121.Li Z,Jakkula L,Hussey R S,et al.2001.SSR mapping and confirmation of the QTL from PI96354 conditioning soybean resistance to southern root-knot nematode.Theor Appl Genet,103:1167-1173.
    122.Li ZK.2001.QTL mapping in rice:a few critical considerations.In:Khush GS,Brar DS,Hardy B (eds.)Rice Genetics IV. Science Publishers,Inc.,and International Rice Research Institute,New Delhi (India)and Los Banos (Philippines),pp 153-172
    123.Li,C,Zhou,A.,and Sang,T.2006b.Rice domestication by reducing shattering.Science,311:1936-1939
    124.Li,Z K and Rutger J N.2000.Geographic distribution and multilocus structure of isozyme variation in rice.Theor Appl Genet,101:379-387.
    125.Li,Z K,Pinson S R M,Stansel J W,et al.1995 .Identification of QTL for heading date and plant height in rice using RFLP markers.Theor Appl Genet 91:374-381.
    126.Lin,S Y,Ikehashi H,Yanagihara S,et al.1992.Segregation distortion via male gametes in hybrids between Indica and Japonica or wide-compatibility varieties in rice (Oryza sativa L).Theor Appl Genet,84:812-818.
    127.Liu B,Zhang S,Zhu X,et al.2004.Candidate defense genes predictors of quantitative blast resistance in rice.Molecular Plant-Microbe Interactions,17(10):1146-1152
    128.Liu G,Yang J,Xu H,et al.2007.Influence of epistasis and QTL x environment interaction on heading date of rice (Oryza sativa L.).J Genet Genomics,34(7):608-615
    129.Liu G,Zhang Z,Zhu H,et al.2008.Detection of QTLs with additive effects and additive-by-environment interaction effects on panicle number in rice (Oryza sativa L.)with single-segment substitution lines.Theor Appl Genet,116(7):923-31.
    130.Luo L J,Li Z K,Mei H W,et al.2001.Overdominant epistatic loci are the primary genetic basis of Inbreeding Depression and Heterosis in Rice:Ⅱ.Grain yield components.Genetics,158:1755-1771
    131.Luo Z W,Tao S H,Zeng Z B.2000.1nferring linkage disequilibrium between a polymorphic marker locus and a trait locus in natural populations.Genetics,156:457-467.
    132.Luo Z W,Tao S H,Zeng Z B.2000.Inferring linkage disequilibrium between a polymorphic marker locus and a trait locus in natural populations.Genetics,156:457-467
    133.Luo Z W,Wu C I,Kearsey M J.2002.Precision and high-resolution mapping of quantitative trait loci by use of recurrent selection,backcross or intercross schemes.Genetics,161:915-929.
    134.Lyttle,T W.1991.Segregation distorters.Annu Rev Genet 25:511-557.
    135.Manly K F,Olson J M .1999.0verview of QTL mapping software and introduction to Map Manager QT.Mammalian Genome,10:327-334
    136.Manly K F,Olson J M.1999.0verview of QTL mapping software and introduction to Map Manager QT.Mammalian Genome,10:327-334
    137.Martinez O,Curnow R N.1992.Estimating the locations and the sizes of the effects of quantitative trait loci using flanking markers.Theor Appl Genet,85:480-488.
    138.Mather,K.1979.Historical overview:Quantitative variation and polygenic systems,pp5-32 in Quntitative Genetic Variation,edited by N.James,J.R.Thompson and J.M.Thoday.New York,San Francisco London.
    139.Mather,K.and J.L.Jinks.1982.Biometrical Genetics.3~(rd)ed.chap.5.Chapman and Hall,London.
    140.McCouch S F,Teytelman L,Xu Y B,et al.2002.Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.).DNA Res,6:199-207
    141.McCouch S R,Kochert G,Yu Z H,et al.1988..Molecular mapping of rice chromosome.Theor Appl Genet,76:815-829
    142.Mei H W,Li Z K,Shu Q Y,et al.2005.Gene actions of QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two backcross populations.Theor Appl Genet, 110:649-659
    143.Mei H W,Luo L J,Ying C S,et al.2003.Gene actions of QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two testcross populations.Theor Appl Genet,107:89-101
    144.Mei H W,Luo L J,Ying C S,et al.2003.Gene actions of QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two testcross populations.Theor Appl Genet,107:89-101
    145.Michelmore R W,Paran I,Kesseli R V.1991.Identification of markers linked to disease-resistance genes by bulked sergeant analysis:a rapid method to detect markers in specific genomic regions by using segregating populations.Proc Natl Acad Sci USA,88:9828-9832.
    146.Moncada P,Martinez C P,Borrero J,et al.2001.Quantitative trait loci for yield and yield components in an Oryza sativa x Oryza rufipogon BC2F2 population evaluated in an upland environment.Theor Appl Genet,102:41-52.
    147.Mu P,Li Z C,Li C P,et al.2003.QTL mapping of the root traits and their correlation analysis with drought resistance using DH lines from paddy and upland rice cross.Chin Sci Bull,48(24):2718-2724
    148.Nakagahra,M.1996.Detection of segregation distortions in an indica-japonica rice cross using a high-resolution molecular map.Theor Appl Genet,92:145-150.
    149.Narayanan N N,Baisakh N,Vera Cruz C M,et al.2002.Molecular breeding for the development of blast and bacterial blight resistance in rice cv.IR50.Crop Science,42 (6):2072-2079
    150.Nas T M S,Sanchez D J,Diaz G Q,et al.2005.Pyramiding of thermosensitive genetic male
    151.Nasu S,Suzuki J,Ohta R,et al.2002.Search for and analysis of single nucleotide polymorphisms (SNPS)in rice {Oryza sativa,Oryza rufipogon)and establishment of SNP markers.DNA Research,9(5):163-171
    152.Nishimura A,Ashikari M,Lin S,et al.2005.Isolation of a rice regeneration quantitative trait loci gene and its application to transformation.Proc.Natl.Acad.Sci,102:11940-11944.
    153.Nishimura,A.,Ashikari,M.,Lin,S.,Takashi,T.,Angeles,E.R.,Yamamoto,T.,and Matsuoka,M.(2005).Isolation of a rice regeneration quantitative trait loci gene and its application to transformation.Proc.Natl.Acad.Sci.USA 102,11940-11944.
    154.Paterson A H,Damon S,Hewitt J D,et al.1991.Mendelian factors underlying quantitative traits in tomatoxomparison across species,generations and environments.Genetics,127:181-197
    155.Paterson A H,Damon S,Hewitt J D.1991.Mendelian factors underlying quantitative traits in tomato:comparison across species,generations and environments.Genetics,127:181-197
    156.Paterson A H,Lander E S,Hewitt J D,et al.1988.Resolution of quantitative traits into Mendelian factors,using a complete linkage map of resistance fragment length polymorphisms.Nature,335:721-726.
    157.Paterson A H,Lander E S,Hewitt J D.1988.Resolution of quantitative traits into Medelian factors by using a complete linkage map of restriction fragment length polymorphisms [J],nature,335:721-726
    158.Rahman ML,Chu SH,Choi MS,et al.2007.Identification of QTLs for some agronomic traits in rice using an introgression line from Oryza minuta.Mol Cells.24(1):16-26
    159.Ramsay L D,Jennings D E,Bohuon E J R et al.1996.The construction of a substitution library of recombinant backcross lines in Brassica oleracea for the precision mapping of quantitative trait loci.Genome,39:558-567
    160.Rangel P N,Brondani R P,Rangel P H,et al.2009.Agronomic and molecular characterization of introgression lines from the interspecific cross Oryza sativa (BG90-2)x Oryza glumaepatula (RS-16).Genet Mol Res,19;7(1):184-195
    161.Reddy J N,Baraoidan M R,Bernardo M A,et al.1997.Application of marker-assisted
    162.Ren Z H,Gao J P,Li L G,et al.2005.A rice quantitative trait locus for salt tolerance encodes asodium transporter.Nat Genet,37:1141-1146.
    163.Ren Z H,Gao J P,Li L G,et al.2005,A rice quantitative trait locus for salt tolerance encodes a sodium transporter.Nat Genet,37:1141-1146
    164.Reynolds M P,Rajaram S,Sayre K D.1999.Physiological and genetic changes of irrigated wheat in the post-green revolution period and approaches for meeting projected global demand.Crop Sci,39:1611-1621
    165.Riaz S,Tenscher AC,Rubin J.2008.Fine-scale genetic mapping of two Pierce's disease resistance loci and a major segregation distortion region on chromosome 14 of grape Theor Appl Genet,117(5):671-81
    166.Robbins M D,Casler M D,Staub J E.2008.Pyramiding QTL for multiple lateral branching in cucumber using inbred backcross lines.Mol Breed,22:131-139
    167.Saito A,Yano M,Kishimoto N,et al.1991 Linkage map of restriction fragment length polymorphism loci in rice.Jpn JBreed,41 :665-670
    168.Sanchez A C,Brar D S,Huang N,et al.2000.Sequence tagged site marker-assisted selection for three bacterial blight resistance genes in rice.Crop Science,40 (3):792-797
    169.SAS Institute.SAS/STAT User's Guide.Cary NC,USA:SAS Institute,1996.pp 25-36
    170.Schlotterer C.2002.A microsatellite-based multilocus screen for the identification of local selective sweeps.Genetics 160:753-763
    171.Schlotterer C.2002.A microsatellite-based multilocus screen for the identification of local selective sweeps.Genetics,160:753-763
    172.Schmalenbach I,Leon J,Pillen K.et al.2009.Identification and verification of QTLs for agronomic traits using wild barley introgression lines.Theor Appl Genet,118(3):483-497
    173.selection in rice for bacterial blight resistance gene,Xa27.Current Science,73(10),873-875
    174.Senthilvel S,Vinod KK,Malarvizhi P,et al.2008.QTL and QTL x environment effects on agronomic and nitrogen acquisition traits in rice.J Integr Plant Biol.50(9):1108-1117
    175.Septiningsih E M,Prasetiyono J,Lubis E,et al.2003.Identification of quantitative trait loci for yield and yield components in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O.rufipogon.Theor Appl Genet,107:1419-1432.
    176.Septiningsih E M,Prasetiyono J,Lubis E,et al.2003 .Identification of quantitative trait loci for yield and yield components in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O.rufipogon.Theor Appl Genet,107:1419-1432
    177.Shanti M L,George M L C,Vera Cruz C M,et al.2001.Identification of resistance genes effective against rice bacterial blight pathogen in eastern India.Plant Disease,85(5):506-512
    178.Sharp P J,Johnston S,Brown G,et al.2001.Validation of molecular markers for wheat breeding.Aust J Agric Res,52:1357-1366.
    179.Shen L,Courtois B ,McNally K L,et al.2001.Evaluation of near-isogenic lines of rice introgressed with QTLs for root depth through marker-aided selection.Theoretical and Applied Genetics.l03(1):75-83
    180.Shen Y J,Jiang H,Jin J P,et al.2004.Development of genomewide DNA polymorphism database for map-based cloning of rice genes.Plant Physiology,135 (3):1198-1205
    181.Shomura A,Sato M,Shimano T,et al.1998.A high-density rice genetic linkage map with 2275 markers using a single F2 population.Genetics,148:479-494
    182.Singh S,Sidhu J S,Huang N,et al.2001 .Pyramiding three bacterial blight resistance genes (xa5,xa13 and Xa21)using marker-assisted selection into indica rice cultivar PR106.Theoretical and Applied Genetics,102 (6-7):1011-1015
    183.Smith J M,Haigh J.1974.The hitch-hiking effect of a favourable gene.Genet Res,23:23-35
    184.Smith JM,Haigh J.1974.The hitch-hiking effect of a favourable gene.Genet Res 23:23-35
    185.Soller M,Beckmann J S.1983.Genetic polyphism in varietal identification and genetic improvement.Theor Appl Genet,67:25-33
    186.Soller M,Beckmann J S.1990.Marker-based mapping of quantitative trait loci using replicated progenies [J].Theor Appl Genet,80:205-208
    187.Song XJ,Huang W,Shi M,et al.2007.A QTL for rice grain width and weight encodes a reviously unknown RING-type E3 ubiquitin ligase.Nature Genetics,39(5):623-630
    188.Steele K A ,Edwards G,Zhu J,et al.2004.Marker-evaluated selection in rice:shifts in allele frequency among bulks selected in contrasting agricultural environments identify genomic regions of importance to rice adaptation and breeding.Theoretical and Applied Genetics,109(6):1247-1260
    189.Steele K A,Edwards G,Zhu J,et al.2004.Marker-evaluated selection in rice:shifts in allele frequency among bulks selected in contrasting agricultural environments identify genomic regions of importance to rice adaptation and breeding.Theor Appl Genet,109:1247-1260.
    190.Steele K A,Price A H,Shashidhar H E,et al.2006.Marker-assisted selection to introgress rice QTLs controlling root traits into an Indian upland rice variety.Theor Appl Genet,112(2):208-221
    191.Stuber C W,Moll R H,Goodman M M,et al.1980.Allozyme frequency changes associated with selection for increased grain yield in maize (Zea mays L.).Genetics,95:225-236.
    192.Sundaram R M,Vishnupriya M R,Biradar S K,et al.2008.Marker assisted introgression of bacterial blight resistance in SambaMahsuri,an elite indica rice variety.Euphytica,160(3):411-422
    193.Sundaram R M,Vishnupriva M R,Laha G S,et al.2009.Introduction of bacterial blight resistance into Triguna,a high yielding,mid-early duraction rice variety.Biotechno J,4(3):400-407
    194.Swamy P,Panchbhai A N,Dodiya P,et al,2006.Evaluation of bacterial blight resistance in rice lines carrying multiple resistance genes and Xa21 transgenic lines.Current Science,90 (6):818-824
    195.Szalma S J,Hostert B M,Ledeaux J R,et al.2007.QTL mapping with near-isogenic lines in maize.Theor Appl Genet,114(7):1211-1228
    196.Takahashi Y,Shomura A,Sasaki T,et al.2001.Hd6,a rice quantitative trait locus involved in photoperiod sensitivity,encodes the a subunit of protein kinase CK2.Proc Natl Acad Sci USA,98(14):7922-7927
    197.Takahashi Y,Shomura A,Sasaki T,et al.2001.Hd6,a rice quantitative trait locus involved in photoperiod sensitivity,encodes the a subunit of protein kinase CK2.Proc Natl Acad Sci USA,98(14):7922-7927
    198.Takeuchi Y,Ebitani T,Yamamoto T,et al.2006.Development of isogenic lines of rice cultivar Koshihikari with early and late heading by marker-assisted selection.Breeding Science,56(4):405-413
    199.Tang J H,Ma X Q,Teng W T,et al.2007.Detection of quantitative trait loci and heterotic loci for plant height using an immortalized F2 population in maize.Chin Sci Bull,52(4):477-483
    200.Tanksely S D.1993.Mapping polygenes.Annu Rev Genet,27:205-233.
    201.Tanksley S D,Grandillo S,Fulton T M,et al.1996.Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L.pimpinellifolium.Theor Appl Genet,92:213-224
    202.Tanksley S D,Nelson J C.1996.Advanced backcross QTL analysis:A method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines.Theor Appl Genet,92:191-203
    203.Tanksley,S D and McCouch S R.1997.Seed banks and molecular maps unlocking genetic potential from the wild.Science,277:1063-1066
    204.Temnykh S,DeCklerck G,Lukashova A,et al.2001.Computational and experimental analysis of microsatellites in rice (Oryza sativa L.):frequency,length variation,transposon associations,and genetic marker potential.Genome Res,11:1441-1452
    205.Temnykh S,Declerck G,Lukashova A,et al.2001.Computational and experimental analysis of microsatellites in rice (Oryza sativa L.):frequency,length variation,transposon associations,and genetic marker potential.Genome Res,11:1441-1452
    206.Temnykh S,Park W D,Ayres N M,et al.2000.Mapping and genome organization of microsatellite sequences in rice(Oryza sativa L.).Theor Appl Genet,100:697-712
    207.Thomson M.J.,Tai T.H.,McClung A.M.,et al.2003,Mapping quantitative trait loci for yield,yield components,and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson.Theor.Appl.Genet.,107(3):479-493
    208.Tian F,Li D J,Fu Q,et al.2006.Construction of introgression lines carrying wild rice (Oryza rufi pogon Griff.)segments in cultivated rice (Oryza sativa L.)background and characterization of introgressed segments associated with yield-related traits.Theor Appl Genet,112:570-580
    209.Toenniessen G H,Toole J C O,and DeVries J.2003 .Advances in plant biotechnology and its adoption in developing countries.Current Opinion in Plant Biology,6(2):191-198
    210.Toojinda T,Tragoonrung S,Vanavichit A,et al.2005.Molecular breeding for rainfed lowland rice in the Mekong region.Plant Production Science,8 (3):330-333
    211.Torjek O,Witucka-Wall H,Meyer R C.2006.Segregation distortion in Arabidopsis C24/Col-0 and Col-0/C24 recombinant inbred line populations is due to reduced fertility caused by epistatic interaction of two loci.TheorAppl Genet,113(8):1551-61
    212.Wang C,Zhu C,Zhai H.2005.Mapping segregation distortion loci and quantitative trait loci for spikelet sterility in rice (Oryza sativa L.).Genet Res,86(2):97-106
    213.Wang D L,Zhu J,Li Z K .1999.Mapping QTLs with epistatic effects and QTL x environment interactions by mixed linear model approaches.TheorAppl Genet,99:1255-1264.
    214.Wang D L,Zhu J,Li Z K,et al.1999.Mapping QTLs with epistatic effects and QTL xenvironment interactions by mixed linear model approaches.Theor Appl Genet,99:1255-1264.
    215.Wang D L,Zhu J.Li Z K.Paterson A H.1999.Mapping QTLs with epistatic effects and QTL X environment interactions by mixed linear model approaches. Theor Appl Genet,99:1255-1264
    216.Wang D.L.,Zhu J.,Li Z.K,Paterson A H.1999.Mapping QTLs with epistatic effects and QTLxenviornment interactions by mixed model approaches.Theor Appl Genet.99:1255-1264
    217.Wang,G L,Mackill D J,Bonman M.et al.1994.RFLP mapping of genes conferring complete and partial resistance to blast in durably resistance rice cultivar.Genetics,136:1421-1434.
    218.Ware D P,Jaiswal J J,Pan N X,et al.2002.Gramene:a Resource for Comparative Grass Genomics.Nucl Acids Res,30:103-105
    219.Wingbermuehle W J,Gustus C,Smith K P.2004.Exploiting selective genotyping to study genetic diversity of resistance to Fusarium head blight in barley.TheorAppl Genet,109:1160-1168.
    220.Wingbermuehle W J,Gustus C,Smith K P.2004.Exploiting selective genotyping to study genetic diversity of resistance to Fusarium head blight in barley.TheorAppl Genet,109:1160-1168.
    221.Wissuwa M,Ae N.2001.Further characterization of two QTLs that increase phosphorus uptake of rice (Oryza sativa L.)under phosphorus deficiency.Plant Soil,237:275-286.
    222.Wright FA,Kong A.1997.Linkage mapping in experimental crosses:the robustness of single-gene models.Genetics,146:417-425.
    223.Wu J,Maehara T,Shimokawa T,et al.2002.A comprehensive rice transcript map containing 6591 expressed sequence tag sites.Plant Cell,14:525-535
    224.Xiao J,Li J,Grandillo S,et al.1998,Identification of trait-improving quantitative trait loci alleles from a wild rice relative,Oryza rufipogon.Genetics,150:899-909.
    225.Xiao,J H,Li J,Yuan L ,et al.1996.Identification of QTLs affecting traits of agronomic importance in a recombinant inbred population derived from a subspecific rice cross.Theor.Appl.Genet,92:230-244.
    226.Xu J C,Wang J L,Ling Z Z,et al.2004.Analysis of rice blast resistance genes by QTL mapping.Chin Sci Bull,49(4):337-342
    227.Xu J L,Lafitte H R,Gao Y M,et al.2005.QTLs for drought avoidance and tolerance identified in a set of random introgression lines of rice.Theor Appl Genet,111:1642-1650
    228.Xu J L,Yu S B,Luo L J,et al.2004.Molecular dissection of the primary sink size in rice (Oryza sativa L.).Plant Breeding,123(l):43-50.
    229.Xu J L,Yu S B,Luo L J,et al.2004.Molecular dissection of the primary sink size in rice (Oryza sativa L.).Plant Breeding,123(l):43-50
    230.Xu J L,Yu S B,Luo L J,et al.Molecular dissection of the primary sink size in rice (Oryza sativa L.).Plant Breeding,2004,123(l):43-50.
    231.Xu X,Martin B,Comstock JP,et al.2008.Fine mapping a QTL for carbon isotope composition in tomato.Theor Appl Genet,117(2):221-233
    232.Xu Y B,Crouch J H.2008.Marker-Assisted Selection in Plant Breeding:From Publications to Practice.Crop Science,48:391-407
    233.Xu Y,Beachell H,and McCouch S R,2004.A marker-based approach to broadening the genetic base of rice in the USA.Crop Science.44(6):1947-1959
    234.Xu,J L,Yu S B,Luo L J,et al.2004 .Molecular dissection of the primary sink size in rice (Oryza sativa L.).Plant Breeding,123(l):43-50.
    235.Xu,Y,Zhu L,Xiao J,et al.1997.Chromosomal regions associated with segregation distortion of molecular markers in F2,backcross,doubled haploid,and recombinant inbred populations in rice (Oryza sativa L.).Mol Gen Genet,253:535-545.
    236.Xue W Y,Xing Y Z,Weng X Y,et al.2008.Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice.Nature Genetics,40:761-767
    237.Xue W,Xing Y,Weng X,et al.2008.Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice.Nat Genet,40(6):761-7
    238.Xue X W,Xu M R,Zang J P.2008.Genetic background and environmental effects on expression of QTL for sheath blight resistance in reciprocal introgression lines of rice.Acta Agron Sin,34(11):1885-1893
    239.Yan J Q,Zhu J,He C X.1999.Molecular marker-assisted dissection of genotype x environment interaction for plant type traits in rice.Crop Sci,39:538-544
    240.Yan J Q,Zhu J,He CX,et al.1999.Molecular marker-assisted dissection of genotype x environment interaction for plant type traits in rice.Crop science,39:538-541
    241.Yan J Q,Zhu J,He CX,et at.1998.Molecular dissection of developmental behavior of plant height in rice (Oryza sativa L.).Genetics,150:1257-1265
    242.Yang H,Yang J P,Rong T Z,et al.2005.QTL mapping of resistance to sheath blight in maize (Zea mays L.).Chin Sci Bull,50(8):782-787
    243.Yang Q H,Lu W,Hu M L,et al.2003.QTL and epistatic interaction underlying leaf chlorophyll and H_2O_2 content variation in rice (Oryza sativa L.).Acta Genet Sin,30(3):245-250
    244.Yano M,Katayose Y,Ashikari M,et al.2000.Hdl,a major photoperiod sensitivity quantitative trait locus in rice,is closely related to the Arabidopsis flowering time gene CONSTANS.Plant Cell,12(12): 2473-2484
    245.Yano M,Katayose Y,Ashikari M,et al.2000.Hdl,a major photoperiod sensitivity quantitative trait locus in rice,is closely related to the Arabidopsis flowering time gene CONSTANS.Plant Cell,12(12):2473-2484
    246.Yano M,Katayose Y,Ashikari M,Yamanouchi U,et al.2000.Hdl,a major photoperiod sensitivity quantitative trait locus in rice,is closely related to the Arabidopsis flowering time gene CONSTANS.Plant Cell,12(12):2473-2484
    247.Yashitolaa J,Thirumuruganb T,Sundaramb R M,et al.2002.Assessment of purity of rice hybrids using microsatellite and STS markers.Crop Science,42 (4):1369-1373
    248.Yoshimura S,Yamanouchi U,Katayose Y,et al.Expression of Xa-1,a bacterial blight-resistance gene in rice ,is induced by bacterial inoculation. Proc.Nail.Acad.Sci.USA,1998,(95):1663-1668
    249.Young N D,Tanksley S D.1989b.Restriction fragment length polymorphism maps and the concept of graphical genotypes.Theor Appl Genet,77:95-101
    250.Young N D.1999.A cautiously optimistic vision for marker-assisted breeding.Mol Breed,5:505-510.
    251.Yu B,Lin Z,Li H,et al.2007.TAC1,a major quantitative trait locus controlling tiller angle in rice.Plant J,52(5):891-898
    252.Yu S B,Li J X,Xu C G,et al.1997.Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid.Prot.Natl.Acad.Sci.USA,1997,94(9):226-9231.
    253.Yu,J,Hu S,Wang J,et al.2002.A draft sequence of the rice genome (Oryza sativa L.ssp.indica).Science,296:79-92.
    254.Yuan A P,Cao L Y,Zhuang J Y,et al.2003.Analysis of additive and AE interaction effects of QTLs controlling plant height,heading date and panicle number in rice (Oryza sativa L.).Acta Genet Sin,30(10):899-906
    255.Zang J P,Sun Y,Wang Y,et al.2008.Dissection of genetic overlap of salt tolerance QTLs at the seeding and tillering stages using backcross introgressive lines in rice.Sci China (Ser C-Life Sci)51(7):583-591
    256.Zeng Z B.1993.Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci [J].PNAS,90:10972-10976
    257.Zhang L P,Lin G Y,Nino-Liu D,et al.2003.Mapping QTLs conferring early blight (Alternaria solani)resistance in a Lycopersicon esculentum x L.hirsutum cross by selective genotyping.Mol Breed,12:3-19.
    258.Zhang L P,Lin G Y,Nino-Liu D,et al.2003.Mapping QTLs conferring early blight (Alternaria solani)resistance in a Lycopersicon esculentum xL.hirsutum cross by selective genotyping.Mol Breed,12:3-19.
    259.Zhang Q,Shen B Z,Dai X K,et al.1994.Using bulked extremes and recessive class to map genes for photoperiod-sensitive genie male sterility in rice.Proc Nat Acad Sci (USA),91:8675-8679.
    260.Zhang X,Zhou S,Fu Y,et al.2006.Identification of a drought tolerant introgression line derived from Dongxiang common wild rice (O.rufipogon Griff.).Plant Mol Biol,62:247-259
    261.Zhao X Q,Xu J L,Zhao M,et al.2008.QTLs affecting morph-physiological traits related to drought tolerance detected in overlapping introgression lines of rice (Oryza sativa L.).Plant Sci,174(6):618-625
    262.Zhou P H,Tan Y F,He Y Q,et al.2003.Simultaneous improvement for four quality traits
    263.Zhuang J Y,Lin H X,Qian G R,et al.1997.Analysis of QTL x environment interaction for yield components and plant height in rice.Thero Appl Genet,95:799-808

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700