用户名: 密码: 验证码:
基于罗丹明B/蒽环的阳离子化学传感器的合成及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
荧光分子探针具有诸如最高可达单分子检测的高灵敏度、能够实现开关操作、原位检测以及利用光纤维进行远距离检测等众多优点,己经在金属离子、核酸、细胞检测及免疫检测等方面发挥了重要作用。
     本论文综述了各种类型的阳离子荧光化学传感器,对它们的识别和光化学传感性能作了较详细的介绍。在此基础上,本论文以罗丹明B和蒽环荧光基团为原料合成了一系列的荧光受体2-1~2-4、3-1。并通过核磁共振氢谱、碳谱、元素分析等分析测试手段确定了它们的结构。
     通过荧光光谱法和紫外-可见光谱法研究了各受体与不同金属离子的相互作用。结果表明,受体2-2对Hg2+、2-3对Cu2+、2-4对Fe3+、3-1对Cu2+具有很好的选择性和识别配位性能,并且,化合物2-1可以在乙腈体系中识别Pb2+,在有水环境中识别Hg2+,是第一次合成的可以分别在1nM和10nM级别上检测Pb2+和Hg2+的化学荧光传感器。
     通过核磁共振氢谱和质谱研究了各受体与阳离子的作用机制,并对它们的络合方式进行了初步推测。
The advantages of molecular fluorescent Probes for sensing can be summarized: high sensitivity of detection down to the single molecule,‘on-off’, switch ability, observation insitu, remote sensing by using optical fibres, et al, and already has played an important role in metal cations, mucleic acids, immune cells and testing.
     In this thesis, receptors bearing various metal ions binding sites chemosensors were reviewed. Their abilities to selectively bind and sense cations were detailed presented. On the basis, a series of receptors2-1~2-4、3-1 were synthesized from Rhodamine B and anthracene and identified by 1H NMR,13C NMR, and elemental analysis.
     The interaction between the receptors and various metal cations was studied by fluorescence and UV-vis spectrum. The results demonstrate that receptors 2-2~2-4、3-1 had an excellent selective recognition and sensitivity for Hg2+、Cu2+、Fe3+、Cu2+ respectively, moreover, 2-1 is the first chemosensor based on small molecule that can detect both Pb2+ and Hg2+ at 1nM and 10nM level, respectively.
     The mechanism of the receptors with cations were studied through 1H NMR and MS, and preliminarly infered the mode of action between them.
引文
[1] de Silva A P, Gunaratne H Q N, Gunnlaugsson T, etal. Signaling recognition events with fluorescent sensors and switches. Chemical reviews, 1997, 97(5): 1515-1566
    [2] Valeur B, Leray I. Design principles of fluorescent molecular sensors for cation recognition. Coordination Chemistry Reviews, 2000, 205(1): 3-40
    [3] Rurack K, Resch-Genger U. Rigidization, preorientation and electronic decoupling the‘magic triangle’for the design of highly efficient fluorescent sensors and switches. Chemical Society Reviews, 2002, 31(2): 116-127
    [4]孟祥明,刘磊,郭庆祥.铅、汞、镉离子的荧光传感器研究进展.化学进展, 2005, 17(1): 45-54
    [5] Hiroshi I, Hiroyuki N, Hiroko Y, et al. Light-Harvesting and Photocurrent Generation by Gold Electrodes Modified with Mixed Self-Assembled Monolayers of Boron-Dipyrrin and Ferrocene-Porphyrin-Fullerene Triad. Journal of American Chemical Society, 2001, 123(1): 100-110
    [6]田茂忠. BODIPY和罗丹明类阳离子探针的研究[D]:大连理工大学,2007
    [7] Czarnik A W (Ed.). Fluorescent Chemosensors for Ion and Molecule Recognition. Washington, D.C.: ACS Symposium Series, 1993: 538
    [8] Wolfbeis O S. Fiber optical fluorosensors in analytical and clinical chemistry, in: Molecular Luminescence Spectroscopy, Methods and Applications: Part 2 (Schulman S G, ed.). New York: John Wiley & Sons, 1988: 129-281
    [9]刘海洋,黄锦汪,彭斌,等.金属叶琳配合物的分子识别研究进展.无机化学学报, 1997, 13(1): 1-10
    [10]DESVERGNE J P,CZARNIK A W.Chemnsensors of ion and molecule recognition[M]. Dordrecht:NATO ASI Series,KIuwer Academic. 1997.
    [12]高攀峰,曾光明,牛成刚,荧光化学传感器的制备及其在环境分析检测中的应用,环境污染与防治,2006,28(11),849-852,
    [13]Brown, G. J.; de Silva. A.P.; Pagliari, S. Molecules That Add Up. Chem. Commun.2002, 21, 2461-2464.
    [14]Lavigne J. J.; Anslyn, E. V Sensing A Paradigm Shift in the Field of Molecular Recognition : From Selective to Differential Receptors. Agrew. Chem.Int.Ed. 2001, 40, 3119-3130.
    [15]de Silva, A.P.; Gunaratne, H. Q. N.; Gunnlaugsson, t.; Huxley, A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T.E. Singnaling Recognition Events with Fluorescent Sensors and Switches. Chem. Rev.1997.97.1515-1566
    [16]Thiagarajan V.; Ramumurthy P.; Thirumaiai D. et al. A Novel Colorimetric and Fluorescent Chemosensor for Anions Involving PET and ICT Pathways. Organic Letters, 2005, 7(4):657-660.
    [17]Belser P.,De Cola L, Bartl F et al. Photochromic Switches Incorporated in Bridging Ligands: A New Tool to Modulate Energy-Transfer Processes. Advanced Funetional Materials, 2006, 16(2): 195-208.
    [18] Magri D. C., Brown G. J., McClean G. D. et al. Communicating Chemical Congregation: A Molecular and Logic Gate with Three Chemical Inputs as a Lab-on-a-Molecule Prototype Journal of the American Chemical Society, 2006, 128(15): 4950-4951.
    [19] Sautter A., Kaletas B. K., Schmid D. G. et al. Ultrafast Energy-Electron Transfer Cascade in a Multichromophoric Light-Harvesting Molecular Square. Journal of the American Chemical Society, 2005, 127(18):6719-6729.
    [20] De Silva A. P. Fluorescent signaling crown ethers: switching on, of fluorescence by alkali metal ion recognition and binding insitu, Chemical Cormmunications, 1986:1709-1710.
    [21]Wu Y, Peng X, Guo B et al. Boron dipyrromethene fluorophore based fluorescence sensor for the Selective imaging of Zn(II)in living cells. Organic Biomolecular Chemistry, 2005, 3(8): 1387-1392
    [22]Gunnlaugsson T, Lee T C, Parkesh R Highly selective fluorescent chemosensors for cadmium in water. Tetrahedron, 2004, 60: 11239-11249.
    [23] Turfan B, Engin U A, Modulation of Boradiazaindacene Emission by Cation-Mediated Oxidative PET. Organic Letters, 2002, 4(17): 2857-2859.
    [24] Valeur, B.; Leray, I. Design Principles of Fluorescent Molecular Sensors for Cation Recognition. Coord.Chem.Rev.2000, 205, 3-40
    [25] de Silva, A.P.; Gunnlaugsson, T.; Rice, T. E. Recent Evolution of Luminescent Photoinduced Electron Transfer Sensor. Analyst 1996, 121, 1759-1762
    [26] Turro, N. J. Modern Molecular Photochemistry; University Science Books: Mill Valley, CA, 1991
    [27] Martinez-Manez, R.; Sancenon, F. Fluorogenic and Chromogenic Chemosensors and Reagents for Anions. Chem. Rev. 2003, 103,4419-4467
    [28]Forster, T. Energiewanderung und Fluoreszenz. Narurwissenschaften 1946, 33 166-175
    [29] Sherril, C. B.; Marshall, D. J.; Moser, M. J.; Larsen, C. A.; Daude-Snow, L.; Prudent, J. R. Nucleic acid analysis using an expanded genetic alphabet to quench fluorescence [J]. J. Am. Chem. Soc. 2004, 126(14), 4550-4556.
    [30] Gutsche, C. D.; Calixarenes Revisited, Cambridge, The Royal Society of Chemistry,1998
    [31] Chen, L.; Xu, H.; Li, Y. Recent Development of Chemical Sensors Based-on Calixarenes.Chin. J. Anal. Chem. 2000, 28, 232-239
    [32] Casnati, A.; Pochiini, R.; Ungaro, R.; Ugozzoli, F.; Arnaud, F.; Fanni, S.; Schwing, M.J.; Egberink, R. J. M.; de Jong, F.; Reinhoudt, D. N. Synthesis, Complexation, and Membrane Transport Studies of 1,3-Alternate Calix[4]arene-crown-6 Conformers: A New Class of Cesium Selective lonophores. J. Am. Chem. Soc. 1995, 117, 2767-2777
    [33] Dung, N. T. K.; Ludwing, R. Solvent Extraction of Heavy Metal with Macrocyclic Ligands Based on Calix [4] arenes New J. Chem. 1999, 2, 603-607
    [34] Metivier, R.; Leray, I.; Valeur, B. Chem. Commun. 2003 996
    [35]Metivier, R.; Leray, I.; Valeur, B. Chem. Eur. J 2004, 10, 4480
    [36] Cao, Y. D.; Zheng, Q.Y.; Chen, C .F.; Huang, Z. T. Tetrahedron Lett.2003, 44, 4751
    [37]Liu, J.M.; Zheng, Q.Y.; Chen, C. F.; Huang, Z.T. J, Inclusion Phenom. Macrocyclic Chem.2005,51,165
    [38]Perez-Jimenez, C; Harris, S. J.; Diamond, D. J. Chem. Soc., 1993,480
    [39]Kim, J. S.; Noh, K. H.; Lee, S. H.; Kim, S. K.; Kim, S. K.; Yoon, J.Org. Chem. 2003, 68, 597
    [40] Lee, J. Y.; Kim, S. K.; Jung, J. H.; Kim, J. S. J. Org.Chem.2005,70,1463
    [41]Xia W. S., Schmehl R. H., Li C J, Magne J. T., Luo C. P., Guldi D. M. J. Phys. Chem. B, 2002,106:833-843
    [42] An H. Y., Bradshaw J., Izatt R.M., Yan Z. Chem. Rev., 1994, 94, 939-991
    [43] Costero A. M., Audreu R., Monrabal E., Sancenon F., Soto J. J. Chem. Soc. 2002, 8, 1769-1775
    [44] Youseff A. S., Angel B., Ramon M. M., et al. J Chem Soc[J]. Dalton Trans, 2000, 1199-1205
    [45] Sancenon F., Martinez-Males R, Soto J. Tetrahedron Lett. 2001, 42, 4321-4323
    [46] Descalzo A. B., Martinez-males R., Radeglia R., Rurack K., Soto J. J. Am. Chem. Soc.,2003, 125, 3418-3419
    [47] Vaidya B., Zak J. Bastiaans G. J., Porter M. D., Anal. Chem., 1995, 67,4101-4111
    [48] Prodi L., Bargossi C., Montali M., et al. J. Am. Chem. Soc., 2000, 122, 6769-6770
    [49] Prodi L., Montalti M., Zaccheroni N., et al. Tetrahedron Lett., 2001, 42, 2941-2944
    [50] Yoon J., Ohler N. E., Vance D. H., et al. Tetrahedron Lett., 1997, 38,3845-3848
    [51] Guo, X. F., Qian, X. H., Jia, L. H., J. Am. Chem. Soc., 2004, 126,2272
    [52] Hirano, T., Kikuchi, K. Urano, Y., Nagano, T. Angrew. Chem. Int. Ed. 2000, 39, 39, 1052
    [53] Xu Z., Qian X., Cui J., Org. Lett. 2005, 7,3029
    [54]樊江莉.二(2-吡啶甲基)胺为识别基团的Zn2+荧光分子探针的研究.博士学位论文。大连理工大学,大连,2005.
    [55] Jiang P J, Guo Z J. Fluorescent detection of zinc in biological systems:recent development on the design of chemosensors and biosensors. Coordination Chemistry Renews, 2004, 248(12): 205-229.
    [56] Goldsmith C R, Lippard S J. Analogues of zinpyr-1 provide insight into the mechanism of zinc sensing. Inorganic Chemistry, 2006, 45(16): 6474-6478.
    [57]Xu Z C, Xiao Y, Qian X H et al. Rafiometric and selective fluomscent sensor for Cu-II based on internal charge transfer(ICT). Organic Letters, 2005, 7(5):889-892.
    [58] Guo X F, Qian X H, Jia L H. A highly selective and sensitive fluorescent chemosensor for Hg2+ in neutral buffer aqueous solution. Journal of the American Chemical Society, 2004, 126(8): 2272-2273.
    [59] S. Bae and J. Tae, Tetrahedron Lett., 2007, 48, 5389.
    [60] M. Zhang, Y. Gao, M. Li, M. Yu, F. Li, L. Li, M. Zhu, J. Zhang, T. Yi and C. Huang, Tetrahedron Lett., 2007, 48, 3709.
    [61] Kewei Huang, Hong Yang, Zhiguo Zhou, Mengxiao Yu, Fuyou Li, Xia Gao,Tao Yi, and Chunhui Huang Multisignal Chemosensor for Cr3+ and Its Application in Bioimaging. Organic Letters 2008, 10(12), 2557-2560
    [62] Zhang X, Shiraishi Y, and Hirai T. Cu(II)-selective green fluorescence of a rhodamine- diacetic acid conjugate. Organic Letters, 2007, 9(24):5039-5042.
    [63] Wei Huang, Peng Zhou, Wenbo Yan, Cheng He et al. J. Environ. Monit., 2009, 11, 330-335
    [64] Lei Dong, Chong Wu, Xi Zeng, et al. The synthesis of a rhodamine B schiff-base chemosensor and recognition properties for Fe3+ in neutral aqueous solution. Sensors and Actuators B. 2010, 145: 433-437.
    [65] Honglin Li, Jiangli Fan, Jianjun Du,et al. A fluorescent and colorimetric probe specific for palladium detection. Chem.Commun. 2010, 46:1079-1081.
    [66] Lizhu Zhang, Jiangli Fan, Xiaojun Peng, X-ray crystallographic and photophysical properties of rhodamine-based chemosenore for Fe3+. Spectrochimica Acta Part A. 2009, 73: 398-402.
    [67]Sung-Kyun Ko, Young-Keun Yang, Jinsung Tae, and Injae Shin In Vivo Monitoring of Mercury Ions Using a Rhodamine-Based Molecular Probe. J. Am. Chem. Soc., 2006, 128 (43), 14150–14155
    [68] Yu Xiang, Aijun Tong, Peiyuan Jin, Yong Ju, New fluorescent rhodamine hydrazone chemosensor for Cu(II)with high selectivity and sensitivity. Org. Lett. 2006, 8: 2863-2866.
    [69] Hong Yang, Zhiguo Zhou, Kewei Huang, Mengxiao Yu. Multisignaling Optical- Electrochemical Sensor for Hg2+ Based on a Rhodamine Derivative with a Ferrocene Unit. OrganicLetters, 2007 9(23), 4729-4732
    [70] Min Hee Lee, Jia-Sheng Wu, Jeong Won Lee, ea al. Highly sensitive and selective chemosensor for Hg2+ based on the rhodamine fluorophore. Org. Lett. 2007, 9 : 2501-2504.
    [71] Jie Mao, Lina Wang, Wei Dou, Xiaoliang Tang, et al. Tuning the Selectivity of Two Chemosensors to Fe(III) and Cr(III) Org. Lett., 2007, 9 (22), 4567–4570
    [72]Wen Shi and Huimin Ma Rhodamine B thiolactone: a simple chemosensor for Hg2+ in aqueous media Chem. Commun., 2008, 1856–1858
    [73]Junhai Huang, Yufang Xu, and Xuhong Qian A Rhodamine-Based Hg2+ Sensor with High Selectivity and Sensitivity in Aqueous Solution:A NS2- Containing Receptor J. Org. Chem. 2009, 74, 2167–2170
    [74]Fabbrizzi, L.; Lichelli, M.; Pallavicini,P. et al., A fluorescence sensor for transition metal ions based on anthracene, Angew. Chem. Int. Ed., 1994, 33, 1975-1977
    [75] Choi, M.; Kim, M.; Lee, K. D. et al., A New Reverse PET Chemosensor and Its Chelatoselective Aromatic Cadmiation, Org. Lett., 2001, 3(22): 3455-3457
    [76] Jongmin Kang, Miwhoa Choi, Ji Young Kwon, et al. New Fluorescent Chemosensors for Silver Ion. J. Org. Chem. 2002, 67, 4384-4386
    [77] Sook Kyung Kim, Jae Hwa Lee, and Juyoung Yoon Fluorescent PET Chemosensor for Cadmium Ions in 100% Aqueous Solution . Bull. Korean Chem. Soc. 2003, 24(7) 1032-1034
    [78]Andrea Bencini, Emanuela Berni, Antonio Bianchi A fluorescent chemosensor for Zn(II). Exciplex formation in solution and the solid state Dalton Trans. 2004, 2180- 2184
    [79]麦健航刘军民王润和基于杯芳烃识别金属离子的荧光化学传感器研究进展[J]广东化工,2009,36(4)
    [80] Trung Nguyen, Matthew B. Francis. Practical Synthetic Route to Functionalized Rhodamine Dyes [J]. Org. Lett, 2003, 5(18): 3245~3248
    [81] H. A. Bnest, J. H. Hildebrand. J. Am. Chem. Soc. 1949, 71, 2703-2707
    [82] Martinez-Manez, R.; Sancenon, F. Fluorogenic and Chromogenic Chemosensors and Reagents for Anions, Chem. Rev., 2003, 103(11): 4419-4476
    [83] Stuhlmann, F.; Jaschke, A. Characterization of an RNA Active: Interactions between a Diels-Alderase R ibozyme and Its Substrates and Products, J. Am. Chem. Soc., 2002, 124(13):3238-3244.
    [84] Lygo, B.; Andrews, A. I. Asymmetric. Phase-Transfer Catalysis Utilizing Chiral Quaternary Ammonium Salts: Asymmetric Alkylation of Glycine Imines.Acc.Chem.Res.,2004, 37(8):518-525.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700