用户名: 密码: 验证码:
波导微环谐振器光延时及滤波特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微波光子技术在微波信号的产生、传输和处理等方面具有巨大的潜在应用前景。尤其是在光控相控阵天线系统中,采用基于微波光子技术的光延时线可以避免传统基于电相移器天线系统的波束“斜视”现象,具有大的瞬时带宽,实现波束的精确扫描与控制;采用微波光纤传输技术可将天线阵列接收的射频信号低损耗、远距离传输到中心控制站以便于进行分析处理,同时具有良好的抗电磁干扰特性。新一代高性能光控相控阵天线系统将采用基于光子集成技术的集成波导光延时线,最终实现激光光源、电光调制器、光开关、光延时线、光子滤波器、光电探测器等器件的单片集成,从而减小光控相控阵天线系统的体积、降低功耗、提高系统工作的稳定性,这在星载和机载相控阵天线系统中显得尤为重要。本文旨在研究集成波导微环谐振器应用于微波光子学领域中的光延时线与微波光子滤波特性。
     通过对微环的频率响应特性进行分析,研究波导微环的耦合系数、周损耗、周延时等参量对微环光延时性能的影响与作用机理,以及耦合条件对级联微环延时响应平坦度的影响,为微环光延时线的设计与应用提供理论依据。通过对微环时域响应特性进行研究,分析微环的延时带宽、延时抖动、波导损耗等特性参量对脉冲响应时间、脉冲形变、幅度衰减等性能的影响,为基于微环的信号处理应用提供参考。
     采用马赫-曾德干涉仪(MZI)代替传统的定向耦合器,通过MZI干涉臂相位差的改变实现耦合系数的调谐,结合环波导上附加相移来达到微环延时量的连续可调功能。分析了MZI带来的额外相位对对微环谐振频率的影响,给出了级联微环光延时线的优化设计方法。基于聚合物PSQ光波导材料,设计并获得了目标延时带宽为3GHz、延时量调谐范围为0-346.4ps的波导微环光延时线掩模版。
     实验研究了聚合物PSQ集成波导微环谐振器的微波光子滤波特性。利用其在谐振频率处的陷波滤波特性,克服双边带(DSB)调制微波光纤传输(RoF)系统中色散导致的微波功率衰减效应(fading effect)。通过将DSB信号的一个边带恰好处于微环的谐振频率处,来抑制DSB的部分边带,实验上成功实现了承载于14.35GHz微波之上的20Mbps-QPSK信号经25km光纤的传输。
Microwave photonic technology in microwave signal generation, transmission and processing area has tremendous potential application prospects, especially in optical controlled phased-array antenna (OCPA) system. Using optical delay line based on microwave photonic technology, which has large instantaneous bandwidth, can avoid beam "squint" phenomenon caused by electrical phase shifter, and achieve precise beam scanning and control. With radio over fiber (RoF) technology the RF signal received from antenna array can be transimitted to the central station through a long distance with low loss and good immunity to electromagnetic interference (EMI). The new generation of OCPA with high-performance, high integration will utilize the integrated waveguide optical delay line based on photonic integration technology. Ultimately to achieve the monolithic integration of the laser, electro-optic modulators, optical switches, optical delay lines, optical filters and photo detectors et al. Thus to realize smaller size, lower power, and to improve system stability, which are very important for the phased array antenna system in the spaceborne and airborne. The purpose of this thesis is to study the optical delay and microwave photonic filtering properties of waveguide microring resonator.
     Through the analysis of frequency response characteristics of the microring, the influencing factors, such as coupling coefficients, round trip loss and round trip delay time, and their mechanism for the delay characteristics of optical microring have been investigated. The effect of the coupling conditions on the time delay flat properties of cascaded waveguide ring resonators has also been studied. The rusults provide a good theoretical basis for the design and application of the optical delay line based on microring in future. Through the study on the time domain characteristics of waveguide microring resonator, the influence of time delay parameters, such as time-delay bandwidth, time-delay ripples and waveguide loss, on the pulse signal transmission properties, for example response time, pulse shape, and pulse amplitude, has been analyzed, which provides a good reference for the signal processing application in future.
     The Mach-Zehnder Interferometer (MZI) is proposed to replace the conventional waveguide directional coupler in the ring, which can achieve the continuous tuning of delay time combining with the phase shifter on the ring waveguide. The impact of additional phase brought by MZI on the ring is also analyzed. In the end, the mask of optical delay line based on MZI-ring with bandwidth of 3GHz and tunable time delay range of 0-346.4ps is designed.
     Microwave photonics filtering properties of intergrated waveguide microring resonator based on polymer PSQ is investigated through some experiments. Its notch filtering characteristic at the resonant frequency is used to overcome the fading effect in the double sideband (DSB) modulated RoF system, which is introduced by the optical fiber chromatic dispersion. Part of one side-band of DSB is suppressed when it is just at the resonant frequency of microring.20Mbps QPSK signal carried by 14.35 GHz microwave is transmitted successfully over 25 km single mode fiber (SMF) in the experiment.
引文
[1]张光义赵玉洁.相控阵雷达技术[M].北京:电子工业出版社,2006.
    [2]Zan Shi, James J. Fosheeb, Jianyi Yang, et al. Photonics for time delay in communication systems [J]. Proc. SPIE,2001, Vol.4292:34-41
    [3]何子述,金林,韩蕴洁等.光控相控阵雷达发展动态和实现中的关键技术[J].电子学报,2005,33(12):2191-2195
    [4]李冬文,贾春燕,叶莉华等.光控相控阵雷达中的真延时技术[J].激光与光电子学进展,2006,43(3):37-42
    [5]杨莹,董毅,柳大伟等.基于8×8 MOEMS光开关的7-Bit光真延时系统[J].中国光学快报,2009,7(2):118-120
    [6]Jose Capmany, Dalma Novak. Microwave photonics combines two worlds [J]. Nature Photonics,2007,1(6):319-330
    [7]James Foshee, Jennfer Colegrrove, et al. Switched optical polymeric waveguide true-time-delay lines for wideband photonics phased array antennas [J]. Proc. SPIE, 2004,5356:65-73.
    [8]Zao Shi, Dechang An, Ray T.Chen, et al. Optical True-time-delay lines using polyimide-based waveguides for wideband phased-array antennas[J]. Proc. SPIE,2000, 3952:214-221.
    [9]Y. Chen, K. Wu, F. Zhao, et al. Reconfigurable True-Time Delay for Wideband Phased-Array Antennas [J]. Proc.SPIE,2004,5363:125-130.
    [10]N. A. Riaza, et al. Analog-Digital Variable Fiber-Optic Delay Line[J]. IEEE/OSA J. Lightw. Technol.,2004,22(2):619-624.
    [11]A. P. Goutzoulis, D. K. Davies, J. M. Zomp, et al. Prototype binary fiber optic delay line [J].Opt Eng.,1989,28(11):1193-1202.
    [12]R. A. Soref. Programmable time-delay devices [J]. Appl Optics,1984, 23(21):3736-3737.
    [13]L. PASTUR, S. Tonda-goldstein, et al. Two-Dimensional Optical Architectures for the Receive Mode of Phased-Array Antennas [J]. Appl Optics,1999,38(14):3105-3111.
    [14]N. Madamopoulos, N. A. Riza. Demonstration of an All-Digital 7-Bit 33-Channel Photonic Delay Line for Phased-Array Radars [J].Appl Optics,2000,39(23):4168-4181.
    [15]C. M. Warnky, R. Mital, B.L.ANDERSON, et al. Demonstration of a quartic cell, a freespace true time delay device based on the White cell[J]. IEEE J. Lightwave Technol. 2006,24(10):3849.
    [16]Yongqiang Jiang, Brie Howley, Zhong Shi, et al. Dispersion-enhaced photonic crystal fiber array for a true time-delay structured X-band phased array antenna [J]. IEEE Photonics Technology Letters,2005,17(1):187-189.
    [17]David B. Hunter, Michael E. Parker, and James L. Dexter. Demonstration of a continuously variable true-time delay beam former using a multichannel chirped fiber grating [J], IEEE Transaction on Microwave Theory and Techniques,2006,54 (2):861-867.
    [18]Rideout, H. R., Seregelyi, J. S., Jianping Yao. A true time delay beamforming system incorporating a multiwavelength tunable fiber laser source [J]. J. of Lightwave Technology,2007,25(7):1767-1770.
    [19]Jianping Yao, Jianliang Yang, and Yunqqi Liu. Continuous time-delay beamforming employing a multiwavelength tunable fiber laser source [J]. IEEE Photononics Technology Letters,2002,11 (2):408-416.
    [20]Vincenzo Italia, Marco Pisco, Stefania Campopiano, et al. Chirped fiber Bragg gratings for electrically tunable time delay lines [J]. IEEE J. Selected Topics in Quantum electronics,2005,11 (2):408-416.
    [21]Y. G. Han, J. H. Lee and S. B. Lee. Continuously tunable photonic microwave true-time delay based on tunable chirped fiber Bragg grating [J]. Electronics Letters,2006, 42(14):811-812.
    [22]Mahmoud S. Rasras, Christi K. Madsen, Mark A. Cappuzzo, et al.. Integrated resonance-enhanced variable optical delay lines [J]. IEEE Photonics Technology Letters,2005,17(4):834-836
    [23]Joyce K. S. Poon, Lin Zhu, Guy A. DeRose, et al. Polymer microring coupled-resonator optical waveguides [J]. J. of Lightwave Technology,2006,24(4):1843-1849
    [24]L. Zhuang, C. G. H. Roeloffzen, R. G. Heideman, et al. Single-chip ring resonator-based 1X8 optical beam forming network in CMOS-compatible waveguide technology [J]. IEEE Photonics Technology Letters,2007,19(15):1130-1132
    [25]G. Lenz, B. J. Eggleton, C. K. Madsen, et al. Optical delay lines based on optical filters [J]. IEEE J. Quantum Electronics,2001,37(4):525-532
    [26]Brie Howley, Zhong Shi, Ray T. Chen, et al. Thermally tuned optical fiber for true time delay generation [J].opt laser technol,2004,37:29-32.
    [27]Xiaolong Wang, Brie Howley, Ray T.Chen, et al. Phase error corrected 4-bit true time delay module using a cascaded 2×2 polymer waveguide switch array[J]. Appl Optics, 2007,46:379-383.
    [28]Brie Howley, Zhong Shi, Ray T.Chen.2-bit Reconfigurable True Time Delay Line Using 2X2 Polymer Waveguide Switches [J]. IEEE Photon. Technol. Lett.,2005,25:1944-1946.
    [29]陆荣国.有机聚合物光波导延迟线的基础研究[D].成都:电子科技大学,2006.
    [30]G. Lenz, B. J. Eggleton, C. K. Madsen, et al. Optical delay lines based on optical filters [J]. IEEE J. Quantum Electronics,2001,37(4):525-532
    [31]Mareatili E. A. J.Bends in optical dielectric guides [J].Bell Labs Technical Journal, 1969,48:2103-2132.
    [32]Chu, S. T., et al., Cascaded microring resonators for crosstalk reduction and spectrum cleanup in add-drop filters [J]. IEEE Photonics Technology Letters,1999, 11(11):1423-1425.
    [33]Chu, T., et al. Compact 1xN thermo-optic switches based on silicon photonic wire waveguides. Optics Express,2005.13(25):10109-10114.
    [34]Xu, Q. F., et al. 12.5Gbit/s carrier-injeetion-based silico nmicro-ring silicon modulators. Optics Express,2007.15(2):430-436.
    [35]Yriv A., Xu Y, Lee R. K., et al. Coupled-resonator optical waveguide:a proposal and analysis [J]. Optics Letters,1999,24(11):711-713.
    [36]Fengnian Xia, Lidija Sekaric, et al. Coupled resonator optical waveguides based on silicon-on-insulator photonic wires [J]. Applied Physics Letters,2006, 89(4):041122.
    [37]Yurii A. Vlasov, Fengnian Xia, et al. Silicon micro-resonators for on-chip optical networks[C]. ECOC. Berlin, Germany:2007.
    [38]Xia F, Sekaric L., Vlasov Y. Ultra compact optical buffers on a silicon chip [J]. Nature Photonics,2007,1(1):65-71.
    [39]Heebner J. E., Boyd R. W., Park Q. H. SCISSOR solitons and other novel propagation effects in microresonator-modified waveguides [J]. Journal of the Optical Society of America B,2002,19(4):722-731.
    [40]Andrea M., Pierpaolo B., Carlo F., etal.10-Gb/s Duobinary Transmssion Controlled by Tunable Coupled Resonator Optical Delay Line [C]. OFC. San Diego, US:2009.OWV2.
    [41]Maleki L., Matsko A. B., Savchenkov A. A., et al. Tunable delay line with interacting whispering-gallery-mode resonators. Optics Letters,2004,29(6):626-628.
    [42]Leimeng Zhuang. Ring Resonator-Based Broadband Photonic Beam Former for Phased Array Antennas [D]. PhD thesis, Netherlands:University of Twente.2010.
    [43]Jaime Cardenas, Mark A. Foster, et al. Wide-bandwidth continuously tunable optical delay line using silicon microring resonators [J]. Optical Express,2010, 18(25):26525-26534.
    [44]Louay Eldada. Advances in polymer-based dynamic photonic components, modules, and subsystems [J]. Proc. SPIE,2006,6351:63510Y.
    [45]L. Eldada. Telcordia qualification and beyond:reliability of today's polymer photonics components [J]. SPIE Proceedings,2005,572(1):96-106
    [46]S. Y. Chou, P. R. Krayss, P, J, Renctrom. Imprint lithography with 25-nanometer resolution [J]. Science,1996,271:85-87.
    [47]L Jay Guo. Recent progress in nanoimprint technology and its applications [J]. J. Phys. D:Appl. Phys.,2004,37:R123-R141.
    [48]H.-C. Scheer. Nanoimprint lithography techniques-an introduction [J]. Proc. of SPIE, 2006,6281:62810N.
    [49]张洪波,李林科,宋媛,滕婕,赵明山,蹇锡高.新型有机-无机杂化聚合物光波导材料的固化和光学特性[C].全国第二届塑料光纤、聚合物光子学器件研究、生产和应用会议.秦皇岛,2006:56-59.
    [50]Jie Teng, Stijn scheerlinck, et al. A PSQ-L polymer microring resonator fabricated by a simple UV-based soft-lithography process [J]. IEEE Photonics Technology Letters, 2009,21(18):1323-1325.
    [51]Jie Teng, Pieter Dumon, Wim Bogaerts, et al.Athermal Silicon-on-insulator ring resonator by overlaying a polymer cladding on narrowed waveguides [J]. Optical Experss, 2009,17(17):14627:14633.
    [52]A. V. Oppenheim, A. S. Willsky, and I. T. Young, Signals and Systems [M], Prentice-Hall International, London,1983.
    [53]Yariv. Universal relations for coupling of optical power between microresonators and dielectric waveguides [J]. Electronics Letters,2000,36(4):321-322
    [54]A. Yariv. Universal relations for coupling of optical power between microresonators and dielectric waveguides [J]. Electronics Letters,2000,36(4):321-322.
    [55]A. Yariv. Critical coupling and its control in optical waveguide-ring resonator systems. IEEE Photonics Technology Letters,2002,14(4):483-485.
    [56]Qingjiang Chang, Qiang Li, Ziyang Zhang, Min Qiu, Tong Ye, and Yikai Su. A tunable broadband photonic RF phase shifter based on a silicon microring resonator [J]. IEEE Photonics Technology Letters,2009,21 (1):60-62.
    [57]John, E. Heebner and Robert W. Boyd. Slow and fast light in resonator-coupled waveguides [J], Journal of Modern Optics,2002,49(14/15):2629-2636.
    [58]H. P. Uranus, L. Zhuang, C. G. H. Roeloffzen, H. J. W. M. Hoekstra, Direct experimental observation of pulse temporal behavior in integrated-optical ring-resonator with negative group velocity [R].13th European Conference on Integrated Optics (ECIO'2007), Copenhagen, Denmark,25-27 April 2007, post-deadline paper.
    [59]陈杰,Matlab宝典[M].北京:电子工业出版社,2007.
    [60]M. Mojahedi, K. J. Malloy, G. V. Eleftheriades. Abnormal Wave Propagation in Passive Media [J]. IEEE Journal of selected topics in quantum electronics,2003,9(1):30-39.
    [61]Zhengqing Pan, Qing Ye, Haiwen Cai, et al. Millimeter-wave modulated optical pulse generated by pulse repetition rate multiplication and temporal Talbot effect[J]. Chinese Optics Letters,2009,6(9):634-637.
    [62]Merrill I. Skolnik,雷达系统导论[M].北京:电子工业出版社,2006,428.
    [63]李林科.基于新型聚合物材料的微环谐振器的基础研究[D].硕士学位论文,大连:大连理工大学,2007.
    [64]Yao J. Microwave photonics [J]. J. of Lightwave Technology,27(3):314-335,2009.
    [65]A. F. Elrefaie, R. E. Wagner, D. A. Atlas, et al. Chromatic dispersion limitations in coherent lightwave transmission systems[J]. IEEE J. Lightwave Technol. 1988,6(5):704-709.
    [66]文雪.聚合物基光波导光纤耦合及封装研究[D].硕十学位论文,大连:大连理工大学,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700