用户名: 密码: 验证码:
用cDNA-AFLP指纹技术分离MeJA诱导的人参皂苷生物合成相关基因
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人参皂苷具有广泛的药理活性,深入了解人参皂苷生物合成途径及其调控的分子遗传学基础,从而在分子水平实现皂苷生物合成的人工调控,将是发展生物技术大量生产人参皂苷的重要前提。甲基茉莉酮酯(MeJA)为一种外源化学诱导子能显著提高人参细胞中皂苷的产量,而皂苷含量和组成的变化又取决于皂苷合酶及其转录调节子在细胞中的表达水平。为阐明人参皂苷生物合成途径及分子调控机制,本研究以生长于吉林省长白山区的四年生人参根为外植体材料,成功诱导出人参根愈伤组织,后经液体振荡培养后成功建立了人参悬浮细胞系,选择MeJA诱导人参皂苷合成的200μM最适剂量,处理人参悬浮细胞24 h,通过改进RNA提取方法获得高质量的总RNA,经纯化mRNA,逆转录成cDNA,利用cDNA-AFLP指纹技术,获得MeJA诱导后与对照组比较差异表达的52条cDNA片段,经DNA测序获得了28个可能参与人参皂苷生物合成有关的cDNA片段序列,生物信息学分析,结果显示其中16条与GeneBank中已知功能基因同源,主要涉及参与次生代谢物转运的ABC转运蛋白基因,参与次生代谢物合成的ATP硫酸腺苷基转移酶、二氢硫辛酰胺S-乙酰基转移酶、黄体酮5β-还原酶及裂合酶基因;参与转录调控的锌指蛋白基因,参与植物防御反应的HSP60、富羟脯氨酸糖蛋白及谷胱甘肽S-转移酶基因,参与细胞信号传导的磷酸二酯酶基因。
     本研究采用cDNA-AFLP指纹技术,筛选出28条MJA诱导人参皂苷合成相关基因的cDNA片段,为进一步克隆其基因全长,阐明其在人参皂苷生物合成中的功能提供了重要的实验依据。
Ginsenosides have various pharmacological activities with a wide spectra of usefulness, to dissect the ginsenoside biosynthetic pathways and their molecular genetic mechanisms in depth became important premise for the development of in dustrial manufacturing biotechs.Studies have shown that MeJA is a chemical elicitor,which is able to improve the ginsenoside production.In fact, this suggested that the differential temporal expression of ginsenoside biosynthase and/or transcriptional regulator genes might play important roles in ginsenoside biosynthesis.In this experiment,we collected ginseng from Changbai Mountain, Jilin province, used it as the explant material.Ginseng callus cultures have been successfully induced and stably subcultured from one generation to another , and are maintained in a modified MS medium.Ginseng suspension cell cultures have also been successfully established. In this study,cDNA-AFLP analysis was employed to identify genes that exhibited a modulated expression following 200μM MeJA treatment in Panax ginseng grown in suspension culture.A total of twenty-eight unique TDFs was found as MeJA responsive. sixteen of them showed significant homology to genes with known or putative function,six TDFs were homologous to uncharacterized genes, while six TDFs did not show significant matches. Twenty-eight genes of known or putative function were transcriptional factors, expression regulators, and stress responding and transport facilitation genes, as well as genes involved in cellular metabolism and organization and the photosynthetic process, suggesting that a multitude of processes are implicated in MeJA response.
引文
[1] Kutchan T M. Ecological arsenal and developmental dispatcher: The paradigm of secondary metabolism.Plant Physiology,2001,125:58-60.
    
    [2] Joseph Chappell The Biochemistry and Molecular Biology of Isoprenoid Metabolism Plant.Physiology, 1995, 107:1-6.
    [3] Pickett JA, Birkett MA, Bruce TJ, Chamberlain K, Gordon-Weeks R, Matthes MC, Napier JA, Smart LE, Woodcock CM.Developments in aspects of ecological phytochemistry: the role of cis-jasmone in inducible defence systems in plants.Phytochemistry,2007,68(22-24):2937-45.
    [4] Goossens A, Hakkinen ST, Laakso I, et al.A functional genomics approach toward the understanding of secondary metabolism in plant cells.Proc Natl Acad Sci USA ,2003,100(14):8595-600.
    [5] Walker K, Fujisaki S, Long R,et al. Molecular cloning and heterologous expression of the C-13p henylpropanoid side chain-CoA acyltransferase that f unctions in Taxol biosynthesis.Proc Natl Acad Sci USA ,2002,99(20):12715-12720.
    
    [6] Walker K,Croteau R.Taxol biosyntheti genes.Phytochemistry,2001,58(1): 1 -7.
    [7] van der Fits L, Memelink J. ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism.Science,2000,289(5477):295-297.
    [8] van der Fits L, Zhang H, Menke FL.et al. A Catharanthus roseus BPF-1 homologue interacts with an elicitor-responsive region of the secondary metabolite biosynthetic gene Str and is induced by elicitor via a JA-independent signalt ransduction path way .Plant Mol Biol,2000,44(5):675-85.
    
    [9] Hofmann E, Zerbe P, Schaller F.The crystal structure of Arabidopsis thaliana allene oxide cyclase:insights into the oxylipin cyclization reaction. Plant Cell, 2006,18(11):3201-17.
    
    [10] Zulak KG Cornish A, Daskalchuk TE,et al. Gene transcript and metabolite profiling of elicitor-induced opium poppy cell cultures reveals the coordinate regulation of primary and secondary metabolism.Planta,2007,225(5):1085-106.
    
    [11] Kojima S, Bohner A, von Wiren N.Molecular mechanisms of urea transport in plants.J Membr Biol,2006,212(2):83-91.
    
    [12] Sumner LW, Huhman DV, Urbanczyk-Wochniak E,et al.Methods, applications and concepts of metabolite profiling: secondary metabolism, 2007,97:195-212.
    
    [13] Cho HY, Son SY, Rhee HS, et al.Synergistic effects of sequential treatment with methyl jasmonate,salicylic acid and yeast extract on benzophenanthridine alkaloid accumulation and protein expression in Eschscholtzia californica suspension cultures.J Biotechnol,2008,135(1): 117-22.
    
    [14] Lu Y, Savage LJ, Ajjawi Let al. New Connections across Pathways and Cellular Processes:Industrialized Mutant Screening Reveals Novel Associations between Diverse Phenotypes in Arabidopsis. Plant Physiol,2008,146(4): 1482-500.
    
    [15] Lee KM, Lee CK, Choi SU, et al.Functional analysis of a BarX homologue (SngA) as a pleiotropic regulator in Streptomyces natalensis.Arch Microbiol.2008 Jan 26.
    [16]Huang Z,Jiang K,Pi Y,et al.Molecular cloning and characterization of the new gene encoding squalene synthase from Taxus cuspidata.J Biochem Mol Biol.2007,40(5):625-35.
    [17]Cane DE.BIOSYNTHETICPATHWAY:BiosynthesisMeetsBioinformatics.Science.2000.287:818.
    [18]Ange B M,Ruian T,MartinW,Croteau R.Isoprenoid biosynthesis the evolution of two ancient and distinct pathways across ganomes,Proc Natl Aead Sci USA,2000,97(13):172.
    [19]Saralampidis K,Trojanowska M,Osbourn AE.Biosynthesis of triterpenoid saponins in plants.Adv Biochem Eng Biotechnol,2002,75:31-49.
    [20]Zhu WH,Zhang YL,Li XLet cal.Study on Panax ginseng callus culture Academic Journal of Pharmacy,1979,14(9):541-547
    [21]Shibata S.Chemistry and Cancer Preventing Activities of Ginseng Saponins and Some Related Triterpenoid Compounds.J Koeran Med Sci,2001,16:S28-37.
    [22]Yun TK,Lee YS,Lee Y H,et al.Anticarcinogenic effect of Panax ginseng C.A.M eyer and identification of active compounds.J Korean Med Sci,2001,16:S6-1.
    [23]Kim SW,Kwon HY,Chi DW et al.Reversal of P-glycoprotein-mediated multidrug resistance by ginsenoside Rg3.Biochem Pharmacol,2003,65(1):75-8.
    [24]Luo X,Wang CZ,Chen J,et al.Characterization of gene expression regulated by American ginseng and ginsenoside Rg3 in human colorectal cancer cells.Int J Oncol,2008,32(5):975-83.
    [25]Choi K,Kim M,Ryu J,Choi C.Ginsenosides compound K and Rh(2)inhibit tumor necrosis factor-alpha-induced activation of the NF-kappaB and JNK.pathways in human astroglial cells.Neurosci Lett,2007,421(1):37-41.
    [26]Shin YW,Bae EA,Kim DH.Inhibitory effect of ginsenoside Rg5 and its metabolite ginsenoside Rh3in an oxazolone-induced mouse chronic dermatitis model.Arch Pharm Res,2006,29(8):685-90.
    [27]王筠默.人参药理研究的进展.人参研究.2001,12(3):2-10.
    [28]Liao B,Newmark H,Zhou R.Neuroprotective efects of ginseng total saponin and ginsenosides Rbl and glon spinal cord neurons in vitro.Exp Neurol,2002,173:224-234.
    [29]Cheong JJ,Choi YD.Methyl jasmonate as a vital substance in plant.TrendsGenet,2003,19(7):109-413.
    [30]Liechti R,Farmer EE.The jasmonate pathway.Science,2002,296(5573):1649-50.
    [31]Ali MB,Yu KW,Hahn EJ,et al.Methyl jasmonate and salicylic acid elicitation induces ginsenosides accumulation,enzymatic and non-enzymatic antioxidant in suspension culture Panax ginseng roots in bioreactors.Plant Cell Rep,2006,25(6):613-20.
    [32]Yu Kee-Won,Gao Wenyuan,Hahn Eun-Joo,et al.Jasmonic acid improves ginsenoside accumulation in adventitious root culture of Panax ginseng.Biochemical Engineering Journal,2003,11:211-215.
    [33]Kim YS,Yeung EC,Hahn EJ,et al.Combined effects of phytohormone indole-3-butyric acid,and methyl jasmonate on root growth and ginsenoside production in adventitious root cultures of Panax ginsengC.A.Meyer.Biotechnol Lett,2007,29(11):1789-92.
    [34]Kim Yun-Soo,Hahn Eun-Joo,Hosakatte NM,et al.Adventitiousroot growth and ginsenoside accumulation in Panax ginseng cultures as affected by methyl jasmonate.Biotechnology Letters,2004,26:1619-1622.
    [35]Choi Dong-Woog.Jung JongDuk,Ha Young Im,et al.Analysis of transcripts in methyl jasmonatetreated ginseng hairy roots to identify genes involved in the biosynthesis of ginsenosides and other secondary metabolites.Plant Cell Rep,2005(23):557-566.
    [36]Bachem C W B,Van der Hoeven R S,de Bruijn S M,et al.Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP:analysis of gene expression during potato tuber development.The Plant Journal,1996,9(5):745-753.
    [37]Bruoanns B,Carmen A F D,Bachem C W B,et al.A novel method for the construction of genome wide transcriptome maps.The Plant Journal,2002,31(2):211-222.
    [38]Damien van Raemdonck,Edouard Pesquet,Sophie Cloquet,et al.Molecular changes associated with the setting up of secondary growth in aspen.Journal of Experimental Botany,2005,56(418):2211-2227.
    [39]Hon C C,Chowy C,Zeng F Y,et al.Genetic authentication of ginseng and other traditional Chinese medicine.Acta Pharmacol Sin,2003,24(9):841-846.
    [40]Nicola Fusco,Lorenza Micheletto,Giovanni Dal Corso,et al.Identification of cadmium-regulated genes by cDNA-AFLP in the heavy metal accumulator Brassica juncea L.Journal of Experimental Botany,2005,56(421):3017-3027.
    [41]Sarosh BR,Meijer J.Transcriptional profiling by cDNA-AFLP reveals novel insights during methyl jasmonate,wounding and insect attack in Brassica napus.Plant Mol Biol,2007,64(4):425-38.
    [42]Yao YX,Li M,Liu Z.novel gene screened by cDNA-AFLP approach contributes to lowering the acidity of fruit in apple.Plant Physiology and Biochemistry,2007(45):139-145.
    [43]Zhang GD,Zhou ZH,Wang MZ,et al.Analysis of Panax ginseng Ⅱ.Academic Journal of Pharmacy.1980,15(3):175-180.
    [44]Wang MZ,Gao FY,Zhang GD,et al.Analysis of Panax ginseng Ⅰ.Academic Journal of Pharmacy.1979,14(5):309-315.
    [45]Ding BZ,Bo SH,Yi W.Study on Panax ginseng suspension cells.Journal of Cell biology,1981,3(3):27-30.
    [46]Ding BZ,Bo SH,Yi W.Study on Panax ginseng suspension cells Ⅱ.Journal of Cell biology,1983,5(3):24-26.
    [47]陈巍,高文远,贾伟等.人参属药用植物组织和细胞培养的研究进展.中草药.2005,36(4):616-620.
    [48]唐巍、吴绛云.人参悬浮细胞系的建立及其生长特性的研究.生物技术.1994,4(1),26-29
    1491 Pan RuiChi.Plant tissue Culture.Guangdong Education Press Guangzhou.2003.
    [50]崔丽萍,侯艳红,陈晓星等.人参活性成分在军事领域的研究价值及研究进展.北京中医,July,2007.Vol.26,No.7
    [51]Mattheus N,Ekramoddoullah AK,Lee SP.Isolation of high-quality RNA from white spruce tissue using a three-stage purification method and subsequent cloning of a transcript from the PR-10 gene family.Phytochem Anal,2003,14(4):209-215.
    [52] SAharma AD, Gill PK, Singh P. RNA isolation from plant tissues rich in polysaccharides. Anal Biochem,2003,314(2):319-321.
    
    [53] Wang GL,Fang HJ.Plant Genetic Engineering.Beijing:Science Press.2002.
    [54] Chomczynski P,Sacchi N.Single step method of RNA isolation by acid guanidinium thiocynate phenol-chloroform extraction.Anal Biochem,1987,162:156-159.
    [55] Gehrig HH,Winter K,Cushman J.et al .An improved RNA isolation method for succulent plant species rich in polyphenols and polysaccharide.Plant Mol Biol Rep,2000,18:369-376.
    [56] Luo ZY, Lu QH, Liu SP, et al. Screening and identification of novel genes in vo}ved in biosynthesis of ginsenoside in Panax ginseng plant .Acta Biochemical et Biophysica sin,2003.35(6):554-560.
    [57] Luo ZY,Liu SP,Lu QH,et al.Construction of substructive cDNA library and mRNA differential expression analysis involved in ginsenoside biosynthesis from Panax ginseng root.sci Res,2003,7(4):324-328 .
    
    [58] Cocco L,Faenza I,Fiume R,et al.Phosphoinositide-specific phospholipase C (PI-PLC) betal and nuclear lipid-dependent signaling.Biochim Biophys Acta.,2006,1761(5-6):509-21.
    
    [59] Hatzfeld Y,Lee S,Lee M,et al.Functional characterization of a gene encoding a fourth ATP sulfurylase isoform from Arabidopsis thaliana.Gene,248,2000:51-58.
    [60] Moons A.Regulatory and functional interactions of plant growth regulators and plant glutathione S-transferases (GSTs).Vitam Horm,2005,72:155-202.
    [61] Rikhvanov EG, Gamburg KZ, Varakina NN, et al. Nuclear-mitochondrial cross-talk during heat shock in Arabidopsis cell culture.Plant J,2007,52(4):763-78.
    [62] Lisso J, Altmann T, Mussig C. The AtNFXLl gene encodes a NF-X1 type zinc finger protein required for growth under salt stress.FEBS Lett.2006,580(20):4851-6.
    [63] Dudler R, Hertig C. Structure of an mdr-like gene from Arabidopsis thaliana: Evolutionary implications. J Biol Chem,1992, 267: 5882-5888.
    [64] Schulz B, Kolukisaoglu H U. Genomics of plant ABC transporters: the alphabet of photosynthetic life forms or just holes in membranes? FEBS Lett,2006,580: 1010-1016.
    
    [65] Yazaki K. Transporters of secondary metabolites. Curr Opin Plant Biol, 2005,8: 301-307.
    [66] Jung YH,Yong SK,Doek CY,et al.Expression and RNA interference induced silencing of Dammarenediol synthase gene in Panax ginseng. Plant and cell physiology,2006,47(12): 1653-62.
    [67] Kushiro T,Shibuya M,Ebizuka Y,β-Amyrin synthase cloning of oxidosqualene cyclase that catalyzes the formation of the most popular triterpene among higher plants.Eur J Biochem, 1998.256:237-244.
    [68] Kotak S, Vierling E, BaumLein H, von Koskull-Doring P.A novel transcriptional cascade regulating expression of heat stress proteins during seed development of Arabidopsis.Plant Cell,2007,19(1): 182-95.
    
    [69] Sasabe M, Toyoda K, Shiraishi T,et al.cDNA cloning and characterization of tobacco ABC transporter:NtPDR1 is a novel elicitor-responsive gene.FEBS Lett,2002,518(1-3):164-8.
    [70]Townley HE,McDonald K,Jenkins GI,et al.Ceramides induce programmed cell death in Arabidopsis cells in a calcium-dependent manner.Biol Chem.2005,386(2):161-6.
    [71]Zhao J,Fujita K,Sakai K.Oxidative stress in plant cell culture:a role in production of beta-thujaplicin by Cupresssus lusitanica suspension culture.Biotechnol Bioeng,2005,90(5):621-31.
    [1] Zhao J, Davis LC, Verpoorte R. Elicitor signal transduction leading to production of plant secondary metabolites.Biotechnol Adv,2005, 23(4):283-333.
    
    [2] Blume B,Nqmberger T,Nass N,et al.Receptor-mediated increase in cytoplasmic free calcium required for activation of pathogen defense in Parsley.Plant Cell,2000,12:1425-1440.
    [3] Shibuya N, Yamaguchi T, Minami E, et al. Oligosaccharide elicitor signaling: perception and transduction of oligochitin/oligoglucan elicitor in rice. Biol Plant-Microbe Interact, 2002,2:109-13.
    [4] Okada M, Matsumura M, Ito Y, High-affinity binding proteins forN-acetylchitooligosaccharide elicitor in the plasma membranes from wheat, barley and carrot cellsxonserved presence and correlation with the responsiveness to the elicitor.Plant Cell Physiol,2002,43:505-12.
    [5] Assmann SM. Heterotrimeric and unconventional GTP binding proteins in plant cell signaling. Plant Cell, 2002,14:S355-73.
    [6] Yang T,Poovaiah BW,A calmodulin-binding/CGCG box DNA-binding protein family involved in multiple signaling pathways in plantsJ Biol Chem,2002,277:45049-45058.
    [7] Park J, Choi H-J, Lee S, Lee T, Yang Z, Lee Y. Rac-related GTP-binding protein in elicitor-induced eactive oxygen generation by suspension-cultured soybean cells. Plant Physiol,2000,124:725-32.
    [8] Zhao J,Wang X.Arabidopsis phospholipase Dal interacts with the heterotrimeric G-protein a-subunit through a motif analogous to the DRY motif in G-protein-coupled receptors.J Biol Chem,2004,279:1794-1800.
    [9] Wang XQ,UUah HJones AM,et al.G-protein regulation of ion channels and abscisic acid signaling in Arabidopsis guard cells.Science,2001,292:2070-2072.
    [10] Morel J, Fromentin J, Blein JP,et aj Rac regulation of NtrbohD, the oxidase responsible for the oxidative burst in elicited tobacco cell. Plant J, 2004,37:282-93.
    
    [11] Booker FL, Burkey KO, Overmyer K, Jones AM. Differential responses of G-protein Arabidopsis thaliana mutants to ozone.New Phytol ,2004,162:633-41.
    
    [12] Ageyama CKato K,Iyozumi H,et al.Photon emissions from rice cells elicited by N-acetylchitooligosaccharide are generated through phospholipid signaling in close association with the production of reactive oxygen species,2006,44(11-12):901-9.
    
    [13] Jong CF,Laxalt AM,Bargmamn BO,et al.Phosphatidic acid accumulation is an early response in the Cf-4/Avr4 interaction.Plant J.2004,39(1):1 -12
    
    [14] Chen YC, Lin HH, Jeng ST.Calcium influxes and mitogen-activated protein kinase kinase activation mediate ethylene inducing ipomoelin gene expression in sweet potato.Plant Cell Environ,2008,31(1):62-72.
    
    [15] Dodd AN, Gardner MJ, Hotta CT,et al.The Arabidopsis circadian clock incorporates a cADPR-based feedback loop.Science,2007,318(5857):1789-92.
    
    [16] Martinez-Noel G, Nagaraj VJ, Calo G,et al.Sucrose regulated expression of a Ca2+-dependent protein kinase (TaCDPK1) gene in excised leaves of wheat.Plant Physiol Biochem,2007,45(6-7):410-9.
    
    [17] Boiler T. Chemoperception of microbial signals in plant cells. Annu Rev Plant Physiol Plant Mol Biol,1995,46:189-214.
    
    [18] Roos W, Viehweger K, Dordschbal B,et al.Intracellular pH signals in the induction of secondary pathways—the case of Eschscholzia californica.J Plant Physiol,2006,163(3):369-81.
    
    [19] Davies DR, Bindschedler LV, et al.Production of reactive oxygen species in Arabidopsis thaliana cell suspension cultures in response to an elicitor from Fusarium oxysporum: implications for basal resistance.J Exp Bot,2006,57(8):1817-27.
    
    [20] Kobayashi M, Kawakita K, Maeshima M, Doke N, Yoshioka H.Subcellular localization of Strboh proteins and NADPH-dependent O2(-)-generating activity in potato tuber tissues. J Exp Bot,2006,57(6): 1373-9.
    
    [21] Townley HE, McDonald K, Jenkins GI,et al.Ceramides induce programmed cell death in Arabidopsis cells in a calcium-dependent manner.Biol Chem,2005,386(2):161-6.
    
    [22] Zhao J, Fujita K, Sakai K.Oxidative stress in plant cell culture: a role in production of beta-thujaplicin by Cupresssus lusitanica suspension culture.Biotechnol Bioeng,2005,90(5):621-31.
    
    [23] Yamaguchi T,Tanabe S,Minami E,et al.Activation of phospholipase D induced by hydrogen peroxide in suspension-cultured rice cells.Plant Cell Physiol,2004,45(9):1261-70.
    
    [24] Clarke A, Mur LA, Darby RM,et al. Harpin modulates the accumulation of salicylic acid by Arabidopsis cells via apoplastic alkalizationJ Exp Bot,2005,56(422):3129-36.
    
    [25] Hoque MA, Banu MN, Nakamura Y,et al.Proline and glycinebetaine enhance antioxidant defense and methylglyoxal detoxification systems and reduce NaCl-induced damage in cultured tobacco cellsJ Plant Physiol,2008, 165(8):813-24.
    [26] Thoma I, Loeffler C, Sinha AK,et al. Cyclopentenone isoprostanes induced by reactive oxygen species trigger defense gene activation and phytoalexin accumulation in plants. Plant J,2003,34:363-75.
    
    [27] Wu J, Ge X. Oxidative burst, jasmonic acid biosynthesis, and taxol production induced by low-energy ultrasound in Taxus chinensis cell suspension cultures. Biotechnol Bioeng,2004,85:714—21.
    
    [28] Zhao J, Guo Y, Sakai K. Rapid metabolism of phosphoinositides and its possible role in phytoalexin biosynthesis in elicitor-treated Cupressus lusitanica cell cultures. Planta,2004,129:121-31.
    
    [29] Zhao J, Guo Y, Fujita K, Sakai K. Involvement of cAMP signaling pathway in elicitor-induced phytoalecin accumulation in Cupressus lusitanica cell cultures. New Phytol,2004,161:723-33.
    
    [30] Kang SM, Jung HY, Kang YM, Yun DJ, Bank JD, Yang J, et al. Effects of methyl jasmonate and salicylic acid on the production of tropane alkaloids and the expression of PMT and H6H in adventitious root cultures of Scopolia parviflora. Plant Sci,2004,166:745-51.
    
    [31] Ogura Y, Ishihara A, Iwamura H.Induction of hydroxycinnamic acid amides and tryptophan by jasmonic acid, abscisic acid and osmotic stress in barley leaves.Z Naturforsch,2001,56(3-4): 193-202.
    [32] Turnerj G ,EUisc,Devoto A.The jasmonate signal pathway.Plant Cell,2002,14(S):153-164
    [33] Cheong JJ ,Choiy D.Methyl jasmonate as a vital substance in plants.Trends Genet.2003,19(7):409-413.
    [34] Choi DW,Jung J,Ha YI,et al. Analysis of transcripts in methyl jasmonate treated ginseng hairy roots to identify genes involved in the biosynthesis of ginsenosides and other secondary metabolites. Plant Cell Rep,2005,23:557-566.
    
    [35] Ishihara A, Ogura Y, Tebayashi S, Iwamura H.Jasmonate-induced changes in flavonoid metabolism in barley (Hordeum vulgare) leaves.Biosci Biotechnol Biochem.2002,66(10):2176-82.
    
    [36] Hu X, Neill SJ, Cai W, Tang Z. Nitric oxide mediates elicitor-induced saponin synthesis in cell cultures of Panax ginseng. Funct Plant Biol,2003,30:901-7.
    
    [37] Tamaoki M, Freeman JL, Pilon-Smits EA.Cooperative ethylene and jasmonic acid signaling regulates selenite resistance in Arabidopsis.Plant Physiol,2008,146(3):1219-30.
    
    [38] Zhao J,Zheng SH,Fuijita K,et al.Jasmonate and ethylene signalling and their interaction are integral parts of the elicitor signalling pathway leading to beta-thujaplicin biosynthesis in Cupressus lusitanica cell cultures.JExpBot,2004,55(399):1003-12.
    
    [39] Shoji T,Nakajima K,Hashimoto T.Ethylene suppresses jasmonate-induced gene expression in nicotine biosynthesis.Plant Cell Physiol,2000,41(9): 1072-6.
    
    [40] Kim ST,Cho Kyu S,Kim SG,et al.A rice isoflavone reductase-like gene, OsIRL, is induced by rice blast fungal elicitor.Mol Cells.2003, 16(2):224-31.
    
    [41] Xu MJ, Dong JF, Zhu MYNitric oxide mediates the fungal elicitor-induced hypericin production of Hypericum perforatum cell suspension cultures through a jasmonic-acid-dependent signal pathway.Plant Physiol,2005, 139(2):991-8.
    
    [42] Romero-Puertas MC, Corpas FJ, Rodriguez-Serrano M,et al.Differential expression and regulation of antioxidative enzymes by cadmium in pea plants.J Plant Physiol,2007,164(10):1346-57.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700