用户名: 密码: 验证码:
葡萄籽原花青素治疗大鼠复发性溃疡性结肠炎的作用及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:用三硝基苯磺酸(TNBS)-50%乙醇溶液二次致炎法建立大鼠复发结肠炎模型,观察葡萄籽原花青素(GSPE)对其治疗作用,并初步探讨其作用机理。
     方法:雄性Wistar大鼠分为6组:正常对照组、急性结肠炎组、结肠炎自发性愈合组、复发性结肠炎模型对照组、复发性结肠炎模型加柳氮磺吡啶(SASP)治疗组(SASP治疗组)、复发性结肠炎模型加GSPE治疗组(GSPE治疗组)。大鼠直肠给予80mg/kg TNBS-50%乙醇溶液建立UC模型,观察14d后,用30mg/kg TNBS-50%乙醇溶液诱导复发性结肠炎。用200mg/kgGSPE灌胃对其进行治疗,并以500mg/kgSASP作为阳性对照,给药7d后处死大鼠,取结肠标本评价炎症程度并检测各项指标,结肠炎症的评价指标包括大体形态与组织病理学变化、组织与血清中髓过氧化物酶(MPO)活力;生化法检测组织与血清中丙二醛(MDA)、谷胱甘肽(GSH)和一氧化氮(NO)含量、谷胱甘肽过氧化物酶(GSH-Px)、超氧化物歧化酶(SOD)及诱导型一氧化氮合酶(iNOS)活力。
     结果:①与正常对照组、急性结肠炎组及结肠炎自发性愈合组比较,复发性结肠炎模型对照组大鼠结肠湿重指数明显升高(P<0.05);与复发性结肠炎模型对照组比较,GSPE治疗组大鼠结肠湿重指数明显降低(P<0.05)。
     ②大体观察显示,复发性结肠炎模型对照组大鼠结肠粘膜溃疡面较大、部分结肠粘膜充血、水肿;GSPE治疗组大鼠结肠粘膜溃疡面积缩小,肠壁内表面光滑,大体形态学损伤评分下降(P<0.01);组织学检查结果显示,与复发性结肠模型对照组比较,GSPE治疗组大鼠结肠组织病理学损伤评分明显下降(P<0.05)。
     ③与正常对照组比较,复发性结肠炎模型对照组大鼠血清与结肠组织中MPO和iNOS活力、MDA和NO含量明显升高;与复发性结肠炎模型对照组比较,GSPE治疗组大鼠血清与结肠组织中MPO活力、MDA和NO含量明显降低(P<0.05或P<0.01);GSPE治疗组大鼠血清中iNOS活力与复发性结肠炎模型对照组比较也明显降低(P<0.05)。
     ④与正常对照组比较,复发性结肠炎模型对照组大鼠血清与结肠组织中SOD和GSH-Px活力及GSH含量明显降低(P<0.05或P<0.01);与复发性结肠炎模型对照组比较,GSPE治疗组大鼠血清与结肠组织中GSH-Px、SOD活力及GSH含量明显升高(P<0.05或P<0.01)。
     ⑤GSPE治疗组与SASP治疗组比较,除大鼠血清中MPO活力在GSPE治疗组中降低更明显外(P<0.05),其余指标均无明显差异。
     结论:(1)采用TNBS/乙醇在首次致炎两周后进行第2次致炎,可以模拟UC缓解-复发交替出现的特点,是较理想的人类UC模型,可以应用于UC缓解期复发的研究。(2)GSPE对大鼠溃疡性结肠炎复发阶段有明显的治疗作用,其作用机制与抗氧化、减轻脂质过氧化损伤、清除自由基、抑制iNOS活力减少NO过量生成有关。
     目的:考察葡萄籽原花青素(GSPE)治疗三硝基苯磺酸(TNBS)-50%乙醇溶液诱导大鼠复发性溃疡性结肠炎(UC)的量效关系,并观察GSPE对TNBS诱导的复发性UC大鼠结肠组织中MAPK与NF-κB信号转导系统的调节作用,以深入探讨其治疗作用机理。
     方法:用TNBS-50%乙醇二次致炎法建立大鼠UC复发的模型,将雄性Wistar大鼠随机分为正常对照组、模型对照组、柳氮磺吡啶(SASP)组和GSPE低(100mg/kg)、中(200mg/kg)、高(400mg/kg)剂量组,于第二次致炎24h后灌胃对其进行治疗,连续给药7天后处死大鼠,取结肠标本评价炎症程度并检测各项指标,结肠炎症的评价指标包括结肠湿重指数(结肠湿重/结肠长,mg/cm)、大体形态与组织病理学变化、组织与血清中髓过氧化物酶(MPO)活力;生化法检测组织与血清中超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-Px)和一氧化氮合酶(iNOS)活力、及丙二醛(MDA)、谷胱甘肽(GSH)和一氧化氮(NO)含量。取结肠标本,制备组织匀浆后离心取上清液用酶联免疫ELISA法检测结肠组织中细胞外信号调节蛋白激酶(ERK), c-Jun氨基端激酶(JNK),p38丝裂原活化蛋白激酶(p38MAPK)、c-Jun蛋白(c-Jun)、c-Fos蛋白(c-Fos)、激活蛋白1(AP-1)及核因子-κB(NF-κB)的表达水平。
     结果:①大体观察显示,模型对照组大鼠结肠粘膜溃疡面积较大、部分结肠粘膜充血,与模型对照组比较,GSPE各剂量组大鼠结肠粘膜溃疡面积缩小,肠壁内表面光滑,大体形态学损伤评分明显下降(P<0.05或P<0.01);组织学检查结果显示,与模型对照组比较,GSPE各剂量组大鼠结肠组织病理学损伤评分明显下降(P<0.05)。
     ②与正常对照组比较,模型对照组大鼠体重明显下降,结肠湿重指数及血清与结肠组织中的MPO活性均明显增加(P<0.05或P<0.001);与模型对照组比较,GSPE各剂量组大鼠体重下降程度较轻(P<0.05),结肠湿重指数及血清与结肠组织中的MPO活性均明显降低(P<0.05,P<0.01或P<0.001),随GSPE剂量的增加,大鼠血清中MPO活力逐渐降低。
     ③与正常对照组比较,模型对照组大鼠血清与结肠组织中的MDA含量明显升高而SOD活力明显降低(P<0.05,P<0.01或P<0.001);与模型对照组比较,GSPE低、中、高剂量组大鼠结肠组织和血清中MDA含量均明显降低而SOD活力均明显升高(P<0.05,P<0.01或P<0.001)。
     ④与正常对照组比较,模型对照组大鼠血清与结肠组织中的GSH含量和GSH-Px活力均明显降低(P<0.01或P<0.001);与模型对照组比较,GSPE各剂量组大鼠结肠组织和血清中GSH含量和GSH-Px活力(除血清中GSH-Px活力)均明显升高(P<0.05,P<0.01或P<0.001)。
     ⑤与正常对照组比较,模型对照组大鼠血清与结肠组织中的NO含量和iNOS活力均明显升高(P<0.05或P<0.01);与模型对照组比较,GSPE各剂量组大鼠结肠组织和血清中NO含量和iNOS活力均明显降低(P<0.05,P<0.01或P<0.001)。
     ⑥与正常对照组比较,模型对照组大鼠结肠组织中ERK, JNK和p38MAPK含量显著升高(P<0.05或P<0.01);GSPE低、中、高剂量组大鼠结肠组织中ERK,JNK和p38MAPK含量与模型对照组比较明显降低(P<0.01或P<0.001),其中,GSPE各剂量组大鼠结肠组织的p38MAPK含量随着GSPE治疗剂量的增加而逐渐降低(呈剂量依赖性)。
     ⑦与正常对照组比较,模型对照组大鼠结肠组织中c-Jun与c-Fos含量显著升高(P<0.05或P<0.01);GSPE低、中剂量组大鼠结肠组织c-Jun与c-Fos含量与模型对照组比较明显降低(P<0.05或P<0.01),而柳氮磺吡啶组和GSPE高剂量组大鼠肠组织中c-Jun与c-Fos含量与模型对照组比较无明显差异(P>0.05)。
     ⑧与正常对照组比较,模型对照组大鼠结肠组织中AP-1与NF-κB含量显著升高(P<0.05或P<0.01);GSPE低、中、高剂量组大鼠结肠组织中AP-1及NF-κB含量与模型对照组比较均明显降低(P<0.05,P<0.01或P<0.001),其中,GSPE各治疗组大鼠结肠组织的AP-1含量随着治疗剂量的增加而逐渐降低(呈剂量依赖性),与柳氮磺吡啶组比较,GSPE高剂量组大鼠结肠组织中AP-1含量降低更明显(P<0.05)。
     结论:(1)GSPE在治疗TNBS/乙醇二次致炎诱导的大鼠复发性结肠炎时,除大体损伤评分、结肠组织与血清MPO活力、组织GSH-Px活力和NO含量及血清GSH含量变化呈剂量依赖性,其它指标:如体重变化、结肠湿重指数、结肠组织与血清MDA含量及SOD活力等均未表现出明显的剂量依赖性,这可能是由于低剂量或中剂量的GSPE已经表现了明显的治疗作用,其治疗效果没有因剂量的增加而明显的增强。
     (2) MAPK信号传导通路系统与NF-κB信号转导通路均与UC发病关系密切,在UC的发生、发展中占有重要地位,GSPE可能是通过抑制MAPK与NF-κB信号转导通路对大鼠复发性UC起治疗作用。
Aim:The aim of the present study was to investigate the therapeutic effect and mechanism of proanthocyanidins from grape seeds (GSPE) in the treatment of recurrent ulcerative colitis (UC) in rats.
     Methods:Rats were randomized into six groups:normal control group, acute colitis group, spontaneous healing colitis group, recurrent colitis model control group, SASP group and GSPE group. To induce recurrent colitis, rats were instilled with 2,4, 6-trinitrobenzenesulfonic acid (TNBS) (80 mg/kg) into the colon through the cannula in the first induced phase, and then the rats were second instilled with TNBS (30 mg/kg) into the colon on the 16th day after the first induction UC. Rats were intragastrically administered GSPE (200 mg/kg) per day for 7 days after twice-induction of colitis by TNBS. Sulfasalazine (SASP) at 500 mg/kg was used as a positive control drug. Rats were killed 7 days after GSPE treatment. The colonic injury and inflammation were assessed by macroscopic and macroscopic damage scores, colon weight/length ratio (mg/cm) and myeloperoxidase (MPO) activity. Then, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), inducible nitric oxide synthase (iNOS) activities, and the levels of malonyldialdehyde (MDA), glutathione (GSH) and nitric oxide (NO) in serum and colonic tissues were measured.
     Results:Compared with recurrent UC group, GSPE treatment facilitated recovery of pathologic changes in the colon after induction of recurrent colitis, as demonstrated by reduced colonic weight/length ratio and macroscopic and microscopic damage scores (P<0.05 or P<0.01). The MPO and iNOS activities with MDA and NO levels in serum and colon tissues of colitis rats were significantly decreased in GSPE group compared with the recurrent UC group (P<0.05 or P<0.01). In addition, GSPE treatment was associated with notably increased SOD, GSH-Px activities and GSH levels of colon tissues and serum of rats. No statistical difference was observed in any biochemical analysis between the SASP and GSPE treatment group, except for the MPO activity in serum of the GSPE group that were significantly lower than the SASP group.
     Conlusions:GSPE exerted a protective effect on recurrent colitis in rats by modifying the inflammatory response, inhibiting inflammatory cell infiltration and antioxidation damage, promoting damaged tissue repair to improve colonic oxidative stress, and inhibiting of colonic iNOS activity to reduce the production of NO.
     Aim:To elucidate the molecular mechanisms involved in the therapeutic effects of proanthocyanidins from grape seeds (GSPE), we explore whether GSPE regulates the inflammatory response of 2,4,6-trinitrobenzenesulfonic acid (TNBS) induced recurrent colitis in rats at the levels of MAPK and NF-κB signal transduction pathways.
     Method:Rats were intragastrically administered different doses of GSPE (100,200, and 400 mg/kg) per day for 7 days after recurrent colitis was twice-induced by intracolonic injection of TNBS dissolved in 50% ethanol. Sulfasalazine (SASP) at 500 mg/kg was used as a positive control drug. The inflammatory response was assessed by gross appearance, myeloperoxidase (MPO) and inducible nitric oxide synthase (iNOS) activities, malonyldialdehyde (MDA) and nitric oxide (NO) levels and a histological study of the lesions. We determined GSH production as well as the GSH-Px and SOD activities by biochemical methods. The expression levels of extracellular signal regulated kinase (ERK), c-Jun NH2-terminal terminal kinase (JNK), p38 mitogen-activated protein kinase (p38MAPK), c-Jun and c-Fos, nuclear transcription factor activator protein-1 (AP-1) and nuclear factor-kappa B (NF-κB) in the colon tissues were all measured by enzyme-linked immunosorbent assay (ELISA) methods.
     Result:GSPE treatment was associated with a remarkable amelioration in macroscopic and microscopic colitis scores, decreased colonic and serum MPO and iNOS activity as well as MDA and NO levels in TNBS-induced recurrent colitis. The GSH-Px, SOD activity and GSH levels in colonic and serum of rats treated with GSPE were significantly increased as compared to recurrent control group. GSPE reduced the expression levels of ERK, JNK, p38MAPK, c-Jun, c-Fos, AP-1, and NF-κB in the colon mucosa.
     Conclusion:(1) GSPE showed significantly dose-dependent effects on some indices of TNBS-induced recurrent colitis in rats, such as MPO and GSH-Px activity, NO and GSH levels in colonic tissues. GSPE did not show dose-dependent effects, however, on colonic MDA levels, weight/length ratio, macroscopic damage scores, macroscopic damage scores, and serum GSH-Px activity et al. It may by that the low or medium dose of GSPE already shows maximal therapeutic effect. (2) GSPE exerted a protective effect on recurrent colitis in rats by inhibition of MAPKs and NF-κB signal transduction pathways, modificating the inflammatory response and promoting damaged tissue repair to improve colonic oxidative stress.
引文
1.陈昭,王洪艳,张新刚,等.溃疡性结肠炎动物模型的实验研究.北华大学学报(自然科学版),2005,6(1):65-67
    2. Curran ME, Lau KF, HamPe J, et al. Genetic analysis of inflammatory bowel disease in a large European cohort supports linkage to chromosomes 12 and 16. Gastroenterology,1998,115(5): 1286-1289
    3. Parkes M, Satsngi J, Jewell DP, et al. Ulcerative colitis is more strongly linked to chromosome 12 than Crohn's disease. Gut,2001,49(2):311
    4. Tountas NA, Casini RV, Yang H, et al. Funetional and ethnic association of allele 2 of the interleukin-1 receptor antagonist gene in ulcerative colitis. Gastroenterology,1999, 117(4):806-813
    5. Irvine EJ, Farrokhyar F, Swarbrick ET. A critical review of epide miological studies in inflammatory bowel disease. Seand J Gastroenterol,2001,36(1):2-15
    6. McGilligan VE, Wallace JM, Heavey PM, et al. Hypothesis about mechanisms through which nicotine might exert its effect on the interdependence of inflammation and gut barrier function in ulcerative colitis. Inflamm Bowel Dis 2007,13:108-115
    7. Scott DA, Martin M. Exploitation of the nicotinic anti-inflammatory pathway for the treatment of epithelial inflammatory diseases. World J Gastroenrol,2006,12:7451-7459
    8. Ingram JR, Rhodes J, Evans BK, et al. Preliminary observations of oral nicotine therapy for inflammatory bowel disease:an open-label phase Ⅰ-Ⅱ study of tolerance. Inflamm Bowel Dis, 2005,11:1092-1096
    9. Jantchou P, Monnet E, Carbonnel F. Environmental risk factors in Crohn's disease and ulcerative colitis(excluding tobacco and appendicectomy). Gastroenterol Clin Biol,2006,30: 859-867
    10. GarCia Rodriguez LA, Gonzalez-Perez A, Johansson S, et al. Risk factors for inflammatory bowel disease in the general population. Aliment Pharmacol Ther,2005,22:309-315
    11. Magee EA, Edmond LM, Tasker SM, et al. Associations between diet and disease activity in ulcerative colitis patients using a novel method of data analysis. Nutr J,2005,4:7
    12. Winawer SJ. Screening of colorectal cancer. Surg Oncol Clin N Am,2005,14:699-722
    13. Dejica D. Serum soluble IL-2 receptor as a marker of lymphoeyte activation in some autoimmune diseases. Effect of immunosuppressive therapy. Roum Areh Mierobiol Immunol, 2001,60:183-201
    14. Li MC, He SH. IL-10 and its related cytokines for treatment of inflammatory bowel disease. World J Gastroenterol,2004,10:620-625
    15. Catley MC, Cambridge LM, Nasuhara Y, et al. Inhibitors of Protein Kinase C (PKC) Prevent Activated Transcription. Role of events downstream of NF-κB DNA binding. J Biol Chem,2004, 279(18):18457-18466
    16. Farhadi A, Farhadi A, Keshavarzian A, et al. The role of protein kinase C isoforms in modulating injury and repair of the intestinal. J Pharmacol Exp Ther,2006,316:1-7
    17. Andresen L, Jorgensen VL, Perner A, et al. Activation of nuclear factor kB in colonic mucosa from patients with collagenous and ulcerative colitis. Gut,2005,54:503-509
    18. Pataki T, Bak Ⅰ, Kovacs P, et al. Grape seed proanthocyanidins improved cardiac recovery during reperfusion after ischemia in isolated rat hearts. Am J Clin Nutr.2002,75(5):894
    19. De Rezende AA, Graf U, Guterres ZR, et al. Protective effects of proanthocyanidins of grape (Vitis vinifera L.) seeds on DNA damage induced by Doxorubicin in somatic cells of Drosophila melanogaster. Food Chem Toxicol,2009,47:1466-1472
    20. Bagchi D, Bagchi M, Stohs S, et al. Cellular protection with proanthocyanidins derived from grape seeds. Ann N Y Acad Sci,2002,957:260-270
    21. Dixon RA, Xie DY, Sharma SB. Proanthocyanidins-a final frontier in flavonoid research? New Phytol,2005,165:9-28
    22. Pinelo M, Ruiz-Rodriguez A, Sineiro J, et al. Supercritical fluid and solid-liquid extraction of phenolic antioxidants from grape pomace:a comparative study. Eur Food Res Technol,2007,226: 199-205
    23. Hughes-Formella B, Wunderlich O, Williams R. Anti-inflammatory and skin-hydrating properties of a dietary supplement and topical formulations containing oligomeric proanthocyanidins. Skin Pharmacol Physiol,2007,20:43-49
    24. Ranaivo HR, Diebolt M, Andriantsitohaina R. Wine polyphenols induce hypotension, and decrease cardiac reactivity and infarct size in rats:involvement of nitric oxide. Br J Pharmacol, 2004,142:671-678
    25. Zhang XY, Li WG, Wu YJ, et al. Proanthocyanidin from grape seeds potentiates anti-tumor activity of doxorubicin via immunomodulatory mechanism. Int Immunopharmacol,2005,5: 1247-1257
    26. Dauer A, Hensel A, Lhoste E, et al. Genotoxic and antigenotoxic effects of catechin and tannins from the bark of Hamamelis virginiana L. in metabolically competent, human hepatoma cells (Hep G2) using single cell gel electrophoresis. Phytochemistry,2003,63:199-207
    27. Ariga, T. The antioxidative function, preventive action on disease and utilization of proanthocyanidins. Biofactors.2004,21:197-201
    28. Nosal V, Bauer V. Protective efect of stobadine in experimental colitis. Life Sci,1999, 65(18-19):1919-1927
    29. Sharon P. Stenson WF. Metabolism of arachidonicacld in acetic acid coiitis in rat:similarlty to human inflammatory bowel disease. Gastroenterology,1985,88(1):55-63
    30. Morris GP, Beck PL, Herridge MS, et al. Hap ten induced model of chronic inflammation and ulceration in the rat colon. Gastroenterology,1989,96(3):795-811
    31.李晓军,张晓峰,马贵同.大鼠实验性溃疡性结肠炎动物模型的复制.河北医学,2003,9(6):528-530
    32. Okayasu I, Hatakeyama S, Yamada M, et al. A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology,1990,98:694
    33.胡仁伟,欧阳钦,陈代云.石旋葡聚糖硫酸钠小鼠结肠炎动物模型建立方法探讨.胃肠病学,2002,7(6):331-341
    34.郑红斌,胡鸿毅,黄礼杰,等.不同剂量过氧化亚硝酸钠诱导大鼠溃疡性结肠炎的实验研究.浙江中医药大学学报,2001,25(4):39-40
    35. Heller F, Fus IJ, Nieuwenhuis EE, et al. Oxazolone colitis, a Th2 colitis model resembling ulcerative colitis, is mediated by IL-13 producing NK-T cells. Immunity,2002,17:629
    36. Glick ME, Falchuk IM. Dinitrochlorobenzene-induced colitis in the guinea-pig studies of colonic lamina propria lymphocytes.Gut,1981,22:120-125
    37. Tobacman JK. Review of harmful gastr-ointestinal effects of carrageenan in animal experiments. Environ Health Perspect,2001,109(10):983-994
    38. Mansfield KG, Lin KC, Xia D, et al. Enteropathogenic Escherichia coli and ulcerative colitis in cotton-top tamarins (Saguinus oedipus). J Infect Dis,2001,184(6):803-807
    39.易季云,夏冰,黄梅芳,等.大鼠溃疡性结肠炎模型的观察.新消化病学杂志,1997,5(11):721-722
    40.黄永年,张元德,邢玉馥.大鼠溃疡性结肠炎模型的建立与观察.白求恩医科大学学报,1995,21(4):257-259
    41. Prinz 1, Klemm U, Kaufmann SH, et al. Exacerbated colitis associated with elevated levels of activated CD4+T cells in TCR alpha chain transgenic mice. Gastroenterology,2004,126:170-181
    42. Kim SC, Tonkonogy SL, Albright CA, et al. Variable phenotypes of enterocolitis in interleukin 10-deficient mice monoassociated with two different commensal bacteria. Gastroenterology,2005,128:891-906
    43. Pataki T, Bak Ⅰ, Kovacs P, et al. Grape seed proanthocyanidins improved cardiac recovery during reperfusion after ischemia in isolated rat hearts. Am J Clin Nutr.2002,75(5):894
    44.朱峰,钱家鸣,潘国宗.细胞免疫反应性炎症性肠病动物模型的建立.中国医学科学院学报,1998,20:271-278
    45.李文广,张小宇,吴勇杰,田暄.葡萄籽中原花青素的抗炎作用和机制.中国药理学报,2001,22:1117-20
    46. Donovan JL, Manach C, Rios L. Morand C, et al. Procyanidins are not bioavailable in rats fed a single meal containing a grapeseed extract or the procyanidin dimer B. Br J Nutr,2002,87: 299-306
    47. Rios LY, Bennett RN, Lazarus SA, Remesy C, Scalbert A,Williamson G. Cocoa procyanidin are stable during gastric tran-sit in humans. Am J Clin Nutr,2002,76:1106-1110
    48. Gonthier MP, Cheynier V, Donovan JL, et al. Microbial aromatic acid metabolites formed in the gut account for a major fraction of the polyphenols excreted in urine of rats fed red wine polyphenols. J Nutr,2003,133:461-467
    49.杨孝来,吴勇杰,葛斌,等.葡萄籽原花青素提取物对大鼠乙酸性结肠炎的保护作用.中国临床药理学与治疗学,2005,10(8):903-908
    50. Li XL, Cai YQ, Qin H, Wu YJ. Theapeutic effect and mechanism of proanthocyanidins from grape seeds in rats with TNBS-induced ulcerative colitis. Can J Physiol Pharmacol,2008,86: 841-849
    51. Galvez J, Coelho G, Crespo ME. Intestinal anti-inflammatory activity of morin on chronic experimental colitis in the rat. Aliment Pharmacol Ther,2001,15:2027-2039
    52.袁学勤,王旭丹,谢鸣,等.三硝基苯磺酸诱导BALB/c小鼠结肠炎的实验研究.中国药理学通报,2005,21(6):756-59
    53.金艳,刘莉,王庆伟,等.已烯雌酚对2,4,6-三硝基苯磺酸/乙醇诱导的大鼠结肠炎的影响.中国临床药理学与治疗学,2006:11(2):1273-1277
    54.龙友明,陈垦,兰雷,等.大鼠Crohn病模型制备的改进[.广东医学院学报,2004,22(1):4-7
    55. Kiyosue M, Fujisawa M, Kinoshita K, et al. Different susceptibilities of spontaneous rhythmicity and myogenic contractility to intestinal muscularis inflammation in the hapten-induced colitis. Neurogastroenterol Motil,2006,18(11):1019-1030
    56.黄俊,罗和生,李颖.大鼠实验性溃疡性结肠炎中NO、 MDA、 SOD的变化.医学文选,2001,20(6):757-759
    57. Sedghi S, Fields JZ, Klamut M, et al. Increased production of luminol enhanced chemiluminescence by the inflamed colonic mucosa in patients with ulcerative colitis. Gut,1993, 34:1191-1197
    58. Grisham MB. Oxidants and free radicals in inflammatory bowel disease. Lancet,1994,344: 859-861
    59. Geier MS, Butler RN, Howarth GS. Inflammatory bowel disease:current insights into pathogenesis and new therapeutic options; probiotics, prebiotics and symbiotic. Int J Food Microbiol,2007,115:1-11
    60. Herias MV, Koninkx JF, Vos JG, et al. Probiotic effects of Lactobacillus casei on DSS-induced ulcerative colitis in mice. Int J Food Microbiol,2005,103:143-155
    61. Danese S, Sans M, Fiocchi C. Inflammatory bowel disease:the role of environmental factors. Autoimmun Rev,2004,3:394-400
    62. Damiani CR, Benetton CA, Stoffel C, et al. Oxidative stress and metabolism in animal model of colitis induced by dextran sulfate sodium. J Gastroenterol Hepatol,2007,22:1846-1851
    63. Rezaie A, Parker RD, Abdollahi M. Oxidative stress and pathogenesis of inflammatory bowel disease:an epiphenomenon or the cause? Dig Dis Sci,2007,2:2015-2021
    64. Kruidenier L, Verspaget HW. Review article:oxidative stress as a pathogenic factor in inflammatory bowel disease. Aliment Pharmacol Ther,2002,16:1997-2015
    65. Pavlick KP, Laroux FS, Fuseler J, et al. Role of reactive metabolites of oxygen and nitrogen in inflammatory bowel disease. Free Radic Biol Med,2002,33:311-322
    66. Pravda J. Radical induction theory of ulcerative colitis. World J Gastroenterol,2005,11: 2371-2384
    67. Wallace JL, MacNaughton WK, Morris GP, et al. Inhibition of leukotriene synthesis markedly accelerates healing in a rat model of inflammatory bowel disease. Gastroenterol,1989,96:29-36
    68. Almog T, Naor Z. Mitogen activated protein kinases (MAPKs) as rugulators of spermatogenesis and spermatozoa functions. Mol Cell Endocrinol,2008,282 (122):39-44.
    69. Spickett CM, Pitt AR, Morrice N, et al. Proteomic analysis of phosphorylation, oxidation and nitrosylation in signal transduction. Biochim BiophysActa,2006,1764(12):1823-1841.
    70. Mc-Cubrey JA, Steelman LS, ChappellWH, et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant, transformation and drug resistance. Biochim Biophys Acta,2007,1773(8): 1263-1284
    71. Angel P, Imagawa M, Chiu R, et al. Phorbol ester-inducible genes contain a common cis element recognized by a TPA-modulated trans-acting factor. Cell,1987,49(6):729-739
    72. Playford RJ, Handy A, Gschmeis sner S, et al. The epidermal growth factor receptor (EGFR) is present on the basolateral, but not the apical, surface of enterocytes in the human gastrointestinal tract. Gut,1996,39:262-266
    73. Catley MC, Cambridge LM, Nasuhara Y, et al. Inhibitors of Protein Kinase C (PKC) Prevent Activated Transcription. Role of events downstream of NF-(?)b DNA binding. J Biol Chem,2004, 279(18):18457-18466
    74. Farhadi A, Farhadi A, Keshavarzian A, et al. The role of protein kinase C isoforms in modulating injury and repair of the intestinal. J Pharmacol Exp Ther,2006,316:1-7
    75. Andresen L, Jorgensen VL, Perner A, et al. Activation of nuclear factor κB in colonic mucosa from patients with collagenous and ulcerative colitis. Gut,2005,54:503-509
    76. Barnes PJ, Karin M. Nuclear Factor-κB-A pivotal transcription factor in chronic inflammatory diseases. NEJM,1997,336(15):1066-1071
    77. Brown JF, Chang Q, Soper BD, et al. Protein kinase C mediates experimental colitis in the rat. Am J Physiol Gastrointest Liver Physiol,1999,276(3):G583-G590
    78. Singer Ⅱ, Kawka DW, Scott S, et al. Expression of inducible nitric oxide synthase and nitrotyrosine in colonic epithelium in inflammatory bowel disease. Gastroenterology,1996,111(4): 871-885
    79.周进,吴正祥,杨九华,等.实验性结肠炎p38丝裂原活化蛋白激酶表达的研究.胃肠病学和肝病学杂志,2009,18(3):250-252
    80. Assi K, Pillai R, Gomez-Munoz A, et al. The specific JNK inhibitor SP600125 targets tumour necrosis factor-alpha production and epithelial cell apoptosis in acute murine colitis. Immunology,2006,118(1):112-121
    81. Mitsuyama K, Suzuki A, Tomiyasu N, et al. Pro-inflammatory signaling by Jun-N-terminal kinase in inflammatory bowel disease. Int J Mol Med,2006,17:449-455
    82. Waetzig GH, Seegert D, Rosenstiel P, et al. p38 mitogen-activated protein kinase is activated and linked to TNF-alpha signaling in inflammatory bowel disease. J Immunol,2002,168: 5342-5351
    83. Thiele K, Bierhaus A, Autschbach F, et al. Cell specifie effects of glucocorticoid treatment on the NFkappaBp65, IkappaBalpha system in patients with Crohn'S disease. Gut,1999,45:693-704
    84. Ruetten H, Thiemermann C. Effect of calpain inhibitor I, an inhibitor of the proteolysis of IkappaB,on the circulatory failure and multiple organ dysfunction caused by endotoxin in the rat. Br JPharmaco,1997,121:695-704
    85. Wahl C, Liptay S, Adler G, et al. Sulfasalazine:a potent and specific hibitor of nuclear Factor kappa B. J CIin Invest,1998,101(5):1163-1174
    105. Karin M. How NF-κB is activated:the role of the IkappaB kinase (IκK) complex. Oncogene, 1999,18(49):6867-6874
    86. Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination:the control of NF-κB activity. Annu Rev Immunol,2000,18(2):21-663

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700