用户名: 密码: 验证码:
多相光催化氧化过程中H_2-O_2耦合效应及其作用机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
虽然以TiO_2为代表的半导体光催化氧化技术能在室温下实现有机污染物的氧化分解,但仍存在光催化过程量子效率低(~4 %)而难以大规模应用的重大问题。本文以Pt/TiO_2和Pt/TiO_2-xNx为光催化剂,首次在富氧的光催化气氛中加入微量氢气,发现了光催化过程的H_2-O_2耦合效应,考察了H_2-O_2耦合效应对挥发性有机污染物光催化氧化降解效率的影响。初步揭示了H_2-O_2耦合效应的规律及其本质原因,为提高光催化量子效率提供一条崭新的途径。
    采用溶胶-凝胶技术制备了TiO_2溶胶,利用浸渍法在催化剂表面修饰贵金属Pt和掺杂N元素,得Pt/TiO_2和Pt/TiO_2-xNx光催化剂。运用X射线粉末衍射、低温N2吸附、紫外-可见漫反射光谱、透射电镜和X射线光电子能谱等分析手段对催化剂体相及表面结构进行详细表征,结合光催化反应性能的评价结果,讨论了催化剂的组成和结构对其光催化性能的影响。运用程序升温脱附仪、傅立叶变换红外光谱、表面光电压谱、电场诱导表面光电压谱、瞬态光电导谱、荧光光谱、电子顺磁共振谱和荧光分子探针等分析技术表征氢、氧在催化剂表面的吸附行为,考察了H_2-O_2耦合对光生载流子的分离及界面迁移、催化剂表面活性氧物种的生成、光催化氧化降解污染物的产物分布的影响等。
    结果表明,当反应体系处于30℃、O_2气氛和紫外光照下,催化剂Pt/TiO_2(Pt含量1wt.%)对苯的转化率和矿化率分别为3%和0%,引入微量H_2后(H_2/O_2比例0.02),转化率和矿化率分别提高至71%和78%,且催化剂不失活,当H_2/O_2比例升至0.31,催化剂具有最高的光催化活性,苯完全被转化和矿化; 在H_2/O_2比例为0.02的条件下,热处理温度300℃时,催化剂具有最佳光催化性能,Pt含量5~12 wt.%时,催化剂对苯完全矿化; 对所考察的模型污染物,催化剂的活性顺序为:环己烷<丙酮<苯<甲苯<乙苯; H_2和O_2在催化剂表面的解离吸附是产生H_2-O_2耦合效应的必要条件; Pt(0)是产生H_2-O_2耦合效应的活性中心; H_2-O_2耦合效应提高了Pt/TiO_2光生载流子的分离效率,促进了羟基自由基的生成,抑制有机难降解产物在催化剂表面的生成和沉积,使催化剂保持较高、稳定的活性。
    H_2-O_2耦合效应同样适用于Pt/TiO_2-xNx利用可见光降解有机污染物。30℃时,催化剂对苯的转化率和矿化率分别为18 %和80 %,且催化剂不失活; 对模型污染物的光催化降解活性顺序为:环己烷<苯<甲苯<乙苯<丙酮<乙烯。H_2-O_2耦合效应显著提高了Pt/TiO_2-xNx光生载流子的分离效率和羟基自由基的生成率。
TiO_2-based photocatalytic oxidation has received wide interest as a promising technique for environmental remediation,because the complete mineralization of many organic pollutants can be conducted at ambient conditions. However, the low quantum efficiency (~ 4 %) of photocatalytic process has awfully hindered the industrialization. In this paper, the H_2-O_2 synergistic effect on photooxidation of volatile organic compounds (VOCs) on Pt/TiO_2 and Pt/TiO_2-xNx has been investigated for the first time. Mechanisms are proposed to elucidate this promoting effect of the H_2 addition. Hopefully, this work may open a new door towards improving the quantum efficiency of pollutant photodegradation.
    Titanium dioxide sol was prepared by a sol-gel technique. Wet impregnation method was applied to prepare Pt/TiO_2 and Pt/TiO_2-xNx photocatalysts. Powder X-ray diffraction (XRD), nitrogen sorption (BET) at 77 K, UV-Vis diffuse reflectance spectra (DRS), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) were used to characterize the structure and composition of samples including crystal phase composition, crystalline sizes, typical specific surface area, optical absorption, and surface chemical state, respectively. Taking account of the characterization and photocatalytic analyses, relationship among structure, composition and photocatalytic performance of catalysts was studied. Temperature programmed desorption (O_2-TPD and H_2-TPD) was used to investigate the physisorption and chemisorption of hydrogen and oxygen on samples. Surface photovoltage spectroscopy (SPS), electric field induced surface photovoltage spectroscopy (EFISPS), time-resolved photoconductivity (TRPC), photoluminescence (PL), spin-trapped electron paramagnetic resonance (EPR), terephthalic acid photoluminescence probing technique (TA-PL) and Fourier transform infrared spectroscopy (FT-IR) were used to study H_2-O_2 synergistic effect on the separation efficiency of photogenerated electron-hole pairs, formation of surface oxygenous radicals and product distribution.
    Results show that unprecedented photocatalytic activity and durability of Pt/TiO_2 for decomposing benzene have been obtained by adding trace H_2 into an O_2-rich photooxidation system. In pure O_2 atmosphere, the conversion of benzene is very low
    (3%), and no detectable CO2 is observed at 30oC. Surprisingly, when the feeding gas contains both H2 and O2 (H2/O2 ratio: 0.02), the photocatalytic conversion and mineralization ratio of benzene rapidly increase up to 71% and 78%, respectively. Exceptional stability of Pt/TiO2 in H2-O2 atmosphere is demonstrated by repeated use of the catalyst four times or successional operation for 50 h. The complete decomposition of benzene is achieved when the H2/O2 ratio is 0.31. The calcination temperature and the content of Pt for Pt/TiO2 have remarkable effects on the photocatalytic performance of the catalyst. When calcined at 300 oC, Pt/TiO2 exhibits the highest photocatalytic performance in H2-O2 atmosphere (H2/O2 ratio: 0.02). The conversion and mineralization of benzene are 76 % and 82 %, respectively. While the content of Pt ranges from 5~12 wt.%, complete mineralization of benzene is observed on Pt/TiO2. The order of photodegradation efficiencies for VOCs is cyclohexane < acetone < benzene < toluene < ethylbenzene. Among Ni, Pd, Pt, Cu, Ag, Au, Fe, Co, Ru and Rh modification on TiO2, the H2-O2 synergistic effect is only observed for Pd/TiO2 and Pt/TiO2 samples. The reason may be ascribed to the dissociative adsorption of H2 and O2 on the surface of Pt particles. Moreover, the more H2 and O2 are adsorbed on catalyst, simultaneously, the higher photocatalytic activity is exhibited. Pt(0) seems to be the active site on Pt/TiO2. With an increase in the content of Pt(0), more and more benzene can be photodegraded. The H2-O2 synergistic effect in the photocatalysis is studied by FT-IR, spin-trapping EPR, SPS and PL. Results demonstrate that the introduced H2 has several beneficial effects on heterogeneous photocatalysis, namely, a comparative clean surface of Pt/TiO2 with no persistent aromatic intermediates, an increased surface hydroxyl radical in photocatalytic process, and an enhanced separation efficiency of photogenerated electron-hole pairs. When it turns to Pt/TiO2-xNx catalyst irradiated by visible light, results also indicate that the high photocatalytic activity and durability of the photocatalyst for decomposing benzene have been obtained in H2-O2 photooxidation system at 30 oC. The photocatalytic conversion and mineralization of benzene rapidly increase up to 18 % and 80 %, respectively, compared with no photodegradation in O2 atmosphere. The order of photodegradation efficiencies for volatile organic compounds is cyclohexane < benzene < toluene < ethylbenzene < acetone < ethylene.The H2-O2 synergistic effect on the Pt/TiO2-xNx photocatalytic system is studied by EFISPS and TA-PL. Results demonstrate that the introduced H2 has several
    beneficial effects on heterogeneous photocatalysis, including an increased surface hydroxyl radical in photocatalytic process, and an enhanced separation efficiency of photogenerated electron-hole pairs.
引文
[1] Fujishima A., Honda K., Electrochemical photolysis of water at a semiconductor electrode, Nature, 1972, 238: 37-38
    [2] Parmon V. N., Zamaraev K. I., In Photo Catalysis Foundamentals and Applications, Serpone N., Pelizzetti E. Eds, WileyInterscience, New York, 1989, p565
    [3] Pelizzetti E., Schiavello M. Eds, Photochemical Conversion and Storage of Solar Energy, Kluwer Academic Publishers, Dordrecht, 1991
    [4] Matsumura M., Saho Y., Tsubomura H., Photocatalytic hydrogen production from solutions of sulfite using platinized cadmium sulfide powder, J. Phys. Chem., 1983, 87(20): 3807-3808
    [5] Domen K., Kudo A., Onishi T., et al., Photocatalytic decomposition of water into hydrogen and oxygen over nickel (II) oxide-strontium titanate (SrTiO3) powder, J. Phys. Chem., 1986, 90: 292-295
    [6] 上官文峰, 太阳能光解水制氢的研究进展, 无机化学学报,2001, 17(5): 619-626
    [7] 韩世同, 习海玲, 史瑞雪, 等, 半导体光催化研究进展与展望, 化学物理学报, 2003, 16(5): 339-349
    [8] Cary J. H., Photodechlorination of PCB’s in the presence of titanium dioxide in aqueous suspension, Bull. Environ. Contam. Toxicol., 1976, 16: 697-701
    [9] Ollis D. F., Contaminant Degradation in Water, Environ. Sci. Technol., 1985, 19: 48-484
    [10] Ollis D. F., Pelizzetti E., Serpone N., Destruction of Water Contaminant, Environ. Sci. Technol., 1991, 25(9): 1523-1529
    [11] Ollis D. F., Heterogeneous Photocatalysis for Water Purification: Prospects and Problem. Homogeneous and Heterogeneous Photocatalysis, Ed by Pelizzetti E., Serpone, N., Dordrecht: D. Reidel Publishing Company, 1986, p673-689
    [12] Brogarello E., Serpone N., Barbeni M., et al., Photocatalysis to Work, Homogeneous and Heterogeneous Photocatalysis, Ed by Pelizzetti E, Serpone N., Dordrecht: D. Reidel Publishing Company, 1986, p673-689.
    [13] Oliver B. G., Cary J. H., Photodegradation of wastes and Pollutants in Aquatic Environment: Homogeneous and Heterogeneous Photocatalysis, Ed by Pelizzetti E., Serpone N., Dordrecht: D. Reidel Publishing Company, 1986, p629-650
    [14] Ollis D. F., Elizzetti P. E., Serpone N., Heterogeneous Photocatalysis in the Environment: Application to Water Purification. Photocatalysis, Fundamentals and Applications, Ed. by Serpone N, Pelizzetti E., New York: John Wiley&Sons, 1989, p609-637
    [15] Ollis D. F., Process Economics for Water Purification: A Comparative Assessment: Photocatalysis and Environment, Trends and Applecation, Ed by Schiavello M., Dordrecht: Kluwer Academic Publishers, 1988, p663-677
    [16] Pelizzetti E., Minero C., Pramauro E., Photocatalytic Processes for Destruction of Organic Water Contaminants, Chemical Reactor Technology of Environmentally safe Reactors and Products, Ed by de Lasa H. I. et al., Dordrecht: Kluwer Academic Publishers, 1993, p577-608
    [17] Hoffmann M. R., Martin S. T., Choi W., et al, Environmental applications of semiconductor Photocatalysis, Chem. Rev., 1995, 95: 69-96
    [18] Fujishima A., Rao T. N., Tryk D. A., Titanium dioxide photocatalysis, J. Photochem. Photobiol. C: Photochem. Rev., 2000, 1: 1-21
    [19] Herrmann J. M., Guillard C., Pichat P., Heterogeneous photocatalysis: an emerging technology for water treatment, Catalysis Today, 1993, 17: 7-20
    [20] Khalil L. B., Moural W. E., Rophael M. W., Photocatalytic reduction of environmental pollutant Cr(VI) over some semiconductors under UV/visible light illumination, Appl. Cata. B: Eviron., 1998, 17: 267-273
    [21] Ollis D. F., Al-Ekabi E., Photocatalytic purification and treatment of water and air, Elsevier, Amsterdam, 1993
    [22] Fu X. Z., Zeltner W. A., Anderson M. A., Applications in photocatalytic purification of air, 1996, Elsevier Science B. V., 103: 445-461
    [23] 藤屿昭, 工业材料, 1997,45(10): 25
    [24] 付贤智, 多相光催化在环境污染治理应用中的关键基础问题研究,2000’全国光催化学术会议会议论文集, 福州, 2000: 19-20
    [25] Linsebigler A. L., Lu G., Yates J. T., et al., Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, Chem. Rev., 1995, 95: 735-758
    [26] Fox M. A., Dulay M. T., Heterogeneous photocatalysis, Chem. Rev., 1993, 93: 341-357
    [27] Pera J. L., Domenech X., Ollis D. F., Heterogeneous Photocatalysis for Purification, Decontamination and Deodorization of Air, J. Chem. Technol. Biotechnol., 1997, 70(2): 117-140
    [28] Teichner S. J., Forment M., Heterogeneous Photocatalysis: Photoelectrochemistry, Photocatalysis and Photoreactors. Ed. by Schiavello M., D. Reidel Publishing Company, 1985, p 457-489
    [29] Fujishima A., Hashimoto K., Watanab T. et al., TiO2 photocatalysis: fundamentals and applicaations, BKC, Inc., Tokyo, 1999
    [30] Fujishima A., Rao T. N., Tryk D. A., Titanium dioxide photocatalysis, J. Photochem. Photobio. C: Photochem. Rev., 2000, 1: 1-21
    [31] Pehkonen S., Siefert R., Webb S., et al., Photoreduction of iron oxyhydroxides in the presence of important atmospheric organic compounds, Environ. Sci. Technol., 1993, 27(10): 2056-2062
    [32] Hagfedt A., Gratzel M., Light-Induced Redox Reactions in Nanocrystalline Systems, Chem. Rev., 1995, 95(1): 49-68
    [33] Spanhel L., Weller H., Henglein A., Photochemistry of semiconductor colloids: electron ejection from illuminated cadmium sulfide into attached titanium and zinc oxide particles, J. Am. Chem. Soc., 1987, 109(22): 6632-6635
    [34] Gopias K. R., Bohorquez M., Kamat P. V., Photophysical and photochemical aspects of coupled semiconductors: charge-transfer processes in colloidal cadmium sulfide-titania and cadmium sulfide-silver(I) iodide systems, J. Phys. Chem., 1990, 94(16): 6435-6440
    [35] Herrmann J. M., Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants, Catal. Today, 1999, 53(1): 115-129
    [36] Li X. Z., Li F. B., Yang C. L., Ge W. K., Photocatalytic activity of WOx-TiO2 under visible light irradiation, J. Photochem. Photobiol. A: Chem., 2001, 141: 209-217
    [37] Ray A. K., Antonie A. C., Beenackers M., Development of a new photocatalytic reactor for water purification, Catal. Today, 1998, 40(1): 73-83
    [38] Lee S. H., Kang M., Cho S. M., et al., Synthesis of TiO2 photocatalyst thin film by solvothermal method with a small amount of water and its photocatalytic performance, J. Photochem. Photobiol. A: Chem. 2001, 146: 121
    [39] Bickley I. B., Gonzalez-Carreno T., Lees J. S., et al., A structural investigation of titanium dioxide photocatalysts, J. Solid State Chem., 1991, 92: 178-190
    [40] 范崇政, 肖建平, 丁延伟, 钠米TiO2的制备与光催化反应研究进展,科学通报, 2001, 46: 265-273
    [41]李学萍, 尹峰, 肖绪瑞, 活性碳对二氧化钛光催化性能的影响, 2000’全国光催化学术会议论文集, 福州, 2000: 158-158
    [42] 魏子栋, 殷菲, 谭君, TiO2光催化氧化研究进展, 化学通报, 2001, 64(2): 76-80
    [43] Kominami H., Kato J., Murakami S., et al., Solvothermal synthesis of semiconductor photocatalysts of ultra-high activities, Catal. Today, 2003(84): 181-189
    [44] Kominami H., Kato J., Murakami S., et al., Nanocrystaline brookite-type titanium oxide photocatalysts prepared by a solvothermal method: correlation between their physical properties and photocatalystic activities, Catal. Lett., 2003, 91(1-2): 41-47
    [45] Henglein A., Mechanism of reactions on colloidal microelectrodes and size quantization effects, Top. Curr. Chem., 1988, 143: 113-180
    [46] Brus L. E., A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites , J. Chem. Phys., 1983, 79: 5566-5571
    [47] Brus L.E., Electron–electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state, J. Chem. Phys., 1984, 80, 4403-4409
    [48] Tarc J., In Optical Properties of Solids, Ed. By Albeles F., North Holland, Amsterdam, 1970, 279
    [49] Anpo M., Shima T., Kubokawa Y., Electron-spin-resonance and photoluminescence evidence for the photocatalytic formation of hydroxyl radicals on small TiO2 particles,Chem. Lett., 1985: 1799-1802
    [50] Anpo M., Shima T., Kodama S., et al., Photocatalytic hydrogenation of propyne with water on small-particle titania: size quantization effects and reaction intermediates, J. Phys. Chem., 1987, 91(16): 4305-4310
    [51] Anpo M., Kubodawa Y., Photoinduced and photocatalytic reactions on supported metal-oxide catalysts excited-states of oxides and reaction intermediates, Rev. Chem. Intermed., 1987, 8: 105-124
    [52] Anpo M., Nakaya H., Kodama S., et al., Photocatalysis over binary metal oxides. Enhancement of the photocatalytic activity of titanium dioxide in titanium-silicon oxides, J. Phys. Chem., 1988, 90(8): 1633-1636
    [53] Anpo M., Kawamura T., Kodama S., et al., Photocatalysis on titanium-aluminum binary metal oxides: enhancement of the photocatalytic activity of titania species, J. Phys. Chem., 1988, 92(2): 438-440
    [54] Anpo M., Shima T., Che M., Chem. Express, 1988, 3: 403
    [55] Bedja I., Kamat P. V., Capped Semiconductor Colloids. Synthesis and Photoelectrochemical Behavior of TiO2 Capped SnO2 Nanocrystallites, J. Phys. Chem., 1995, 99(22): 9182-9188
    [56] Liu D., Kamat P. V., Electrochemical rectification in CdSe-TiO2 coupled semiconductor-films, J. Elec. Chem., 1993, 347(1-2): 451-456
    [57] Fu X., Enhanced Photocatalytic Performance of Titania-Based Binary Metal Oxides: TiO2/SiO2 and TiO2/ZrO2, Environ. Sci. & Tech., 1996, 30 (2): 647-653
    [58] Vogel R., Quantum-Sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 Particles as Sensitizers for Various Nanoporous Wide-Bandgap Semiconductors, J. Phys. Chem., 1994, 98(12): 3183-3188
    [59] Lu W. S., Xiao G. C., Li D. Z., Fu X. Z., Wang X. X., Synthesis and characterization of visible light-driven photocatalyst Pt/InVO4/TiO2, Chin. J. Inorg. Chem. 2005, 21, (10): 1495-1499.
    [60] Xiao G. C., Lu W. S., Li D. Z., Fu X. Z., Wang X. X., Degradation of ethylene on nano-crystalline InVO4-TiO2 under visible light irradiation, Chin. J. Inorg. Chem. 2005, 21, (4): 551-555.
    [61] Xiao G. C., Li D. Z., Fu X. Z., Wang X. X., Liu P., Synthesis for single dispersing nano-crystalline InVO4 (orthorhombic) at low temperature, Chin. J. Inorg. Chem. 2004, 20, (2): 195-198.
    [62] Anpo M., Takeuchi M., The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation, J. Catal., 2003, 216: 505-516
    [63] Gerischer H., Heller A., J. Phys. Chem., 1991, 95 (13): 5261-5267
    [64] Gerisher H., Heller A., J. Electrochem. Soc., 1992, 139: 113
    [65] Kesselman, J. M., et al., J. Phys. Chem., 1994, 98 (50): 13385-13395
    [66] Wang C., et al., J. Am. Chem. Soc., 1992, 114: 5230-5234
    [67] Nicole J. R., Pichat P., J. Phys. Chem., 1986, 90 (12): 2733-2738
    [68] Hayward D. O., Trapnell B. M. W., Chemisorption, Butterworths, London, 1964
    [69] Berry R. S., Mackie J. C., Taylor R. L., et al., Spin-Orbit Coupling and Electron-Affinity Determinations from Radiative Capture of Electrons by Oxygen Atoms, J. Chem. Phys., 1965, 43, 3067-3074
    [70] Pack J. L., Phelps A. V., Electron Attachment and Detachment. I. Pure O2 at Low Energy, J. Chem. Phys., 1966, 44, 1870
    [71] Prentice J. D., Lequinas A., Sheppard N., J. Chem. Soc. Chem. Commun., 1976: 76-82
    [72] Kesmodel L. L., Dubios L. H., Somorjai G. A., J Chem. Phys., 1979, 70(2): 180-188
    [73] Li X. Z., Li F. B., Study of Au/Au3+-TiO2 Photocatalysts toward Visible Photooxidation for Water and Wastewater Treatment, Environ. Sci. Technol., 2001, 35(11): 2381-2387
    [74] Fu X. Z., Zeltner W. A., Anderson M. A., The gas-phase photocatalytic mineralization of benzene on porous titania-based catalysts, Appl. Catal. B: Environ., 1995, 6: 209-224
    [75] Hino M., Arata K., Synthesis of solid superacid of tungsten-oxide supported on zirconia and its catalytic action for reactions of butane and pentane, J.Chem. Soc., Chem. Commun., 1988,18: 1259-1260
    [76] (a) 付贤智, 丁正新, 苏文悦, 等, 二氧化钛基固体超强酸的结构及其光催化氧化性能, 催化学报, 1999, 20: 321-324 (b) 苏文悦, 付贤智, 魏可镁, 溴代甲烷在 TiO2 上的光催化降解研究, 高等学校化学学报, 2001, 22(2): 272-275 (c) 苏文悦, 付贤智, 魏可镁, 溴代甲烷在 SO42-/TiO2 上的光催化降解, 环境科学, 2001, 22(2): 91-94 (d) 苏文悦, 付贤智, 魏可镁, 光催化剂 SO42-/TiO2和 TiO2的光谱行为比较, 光谱学与光谱分析, 2000, 20(5): 655-657 (e) 苏文悦, 付贤智, 魏可镁, SO42-/TiO2 固体酸的红外和拉曼光谱研究, 光谱学与光谱分析, 2000, 20(6): 840-841
    [77] Muggli D. S., Ding L., Photocatalytic performance of sulfated TiO2 and Degussa P-25 TiO2 during oxidation of organics, Appl. Catal., B: Environ., 2001, 32: 181-194
    [78] Oosawa Y., et al., Effect of surface hydroxyl density on photocatalytic oxygen generation in aqueous TiO2 suspensions, J.Chem.Soc .Faraday Trans., I 84: 197-205 Part 1 1988 ,J. Chem. Soc. Faraday Trans., 1988, 84, 1: 197
    [79] Cui H., Dwight K., Soled S., et al., Surface-acidity and photocatalytic activity of Nb2O5/TiO2 photocatalysts, Journal of solid state chemistry., 1995 ,115 (1): 187-191
    [80] Papp J., Soled S., Dwight K., et al., Surface Acidity and Photocatalytic Activity of TiO2, WO3/TiO2, and MoO3/TiO2 Photocatalysts, Chem. Mater., 1994, 6(4): 496-500
    [81] Okazaki S., Okuyama T., Nb2O5 supported on TiO2 – catalytic activity for reduction of NO with NH3, Bull. Chem. Soc. Jpn., 1983, 56: 2159-2160
    [82] Lee W. I., Choi G. J., Do Y. R., Effect of Au and WO3 on the surface structure and photocatalytic activity of TiO2, Bull. Kor. Chem. Soc., 1997, 18(6): 667-670
    [83] Kozlov D. V., Paukshtis E. A., Savinov E. N., The comparative studies of titanium dioxide in gas-phase ethanol photocatalytic oxidation by the FTIR in situ method, Appl. Catal. B, 2000, 24: 7-12
    [84] Takeuchi M., Yamashita H., Matsuoka M., et al., Photocatalytic decomposition of NO under visible light irradiation on the Cr‐ ion‐ implanted TiO2 thin film photocatalyst Catal. Lett., 2000, 67: 135-137
    [85] Choi W. K., Hoffmann M. R., The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics, J. Phys. Chem., 1994, 98(51): 13669-13679
    [86] Sato S., Photocatalytic activity of NOx-doped TiO2 in the visible light region. Chem. Phys. Lett., 1986, 123: 126
    [87] Asahi R., Morikawa T., Ohwaki T., et al., Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides., Science, 2001, 293, 269
    [88] Diwald O., Thompson T. L., Goralski E. G., et al., The Effect of Nitrogen Ion Implantation on the Photoactivity of TiO2 Rutile Single Crystals, J. Phys. Chem. B., 2004, 108(1): 52-57
    [89] Irie H., Watanabe Y., Hashimoto K., Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO2-xNx Powders, J. Phys. Chem. B., 2003, 107(23): 5483-5486
    [90] Diwald O., Thompson T. L., Zubkov T., et al., Photochemical Activity of Nitrogen-Doped Rutile TiO2 (110) in Visible Light, J. Phys. Chem. B., 2004, 108(19): 6004-6008
    [91] Ihara T., Miyoshi M., Iriyama Y., et al., Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping, Appl. Catal. B: Environ., 2003, 42(4): 403-409
    [92] Sato S., Nakamura R., Abe S., Visible-light sensitization of TiO2 photocatalysts by wet-method N doping, Appl. Catal. A: General, 2005, 284: 131-137
    [93] Wang Z., Cai W., Hong X., et al., Photocatalytic degradation of phenol in aqueous nitrogen-doped TiO2 suspensions with various light sources, Appl. Catal. B: Environ., 2004, 57: 223-231
    [94] Sakatani Y., Koike H., Japan Patent, P2001-72419A, 2001
    [95] Gole J. L., Stout J. D., Burda C., et al., Highly Efficient Formation of Visible Light Tunable TiO2-xNx Photocatalysts and Their Transformation at the Nanoscale, J. Phys. Chem. B., 2004, 108(4): 1230 -1240
    [96] Yin S., Yamaki H., Komatsu M., et al., Preparation of nitrogen-doped titania with high visible light induced photocatalytic activity by mechanochemical reaction of titania and hexamethylenetetramine, J. Mater. Chem., 2003, 13: 2996
    [97] Sano T., Negishi N., Koike K., et al., Preparation of a visible light-responsive photocatalyst from a complex of Ti4+ with a nitrogen-containing ligand, J. Mater. Chem., 2004, 14: 380
    [98] Nukumizu K., Nunoshige J., Takata T., et al., TiNxOyFz as a Stable Photocatalyst for Water Oxidation in Visible Light (<570 nm), Chem. Lett., 2003, 32(2): 196
    [99] Li D., Haneda H., Synthesis of nitrogen-containing ZnO powders by spray pyrolysis and their visible-light photocatalysis in gas-phase acetaldehyde decomposition, J. Photochem. Photobiol. A: chem., 2003, 155: 171-178
    [100] Morikawa T., Asahi R., Ohwaki T., et al., Band-gap narrowing of titanium dioxide by nitrogen doping,Jpn. J. Appl.Phys., 2001, 40: 561-563
    [101] Ohno T., Mitsui T., Matsumura M., Photocatalytic Activity of S-doped TiO2 Photocatalyst under Visible Light, Chem. Lett., 2003, 32: 364
    [102] Umebayashi T., Yamaki T. S., Tanaka S., et al., Visible Light-Induced Degradation of Methylene Blue on S-doped TiO2, Chem. Lett., 2003, 32: 330
    [103] Umebayashi T., Yamaki T., Itoh H., et al., Band gap narrowing of titanium dioxide by sulfur doping, Appl. Phys. Lett., 2002, 81(3): 454-456
    [104] Yu J. C., Yu J., Ho W., et al., Effects of F-doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 Powders, Chem. Mater., 2002, 14(9): 3808-3816
    [105] Luo H., Takata T., Lee Y., et al., Photocatalytic Activity Enhancing for Titanium Dioxide by Co-doping with Bromine and Chlorine, Chem. Mater., 2004, 16(5): 846 -849
    [106] Irie H., Watanabe Y., Hashimoto K., Carbon-doped Anatase TiO2 Powders as a Visible-light Sensitive Photocatalyst, Chem. Lett., 2003, 32(8): 772
    [107] Lettmann C., Hildenbrand K., Kisch H., et al., Visible light photodegradation of 4-chlorophenol with a coke-containing titanium dioxide photocatalyst, Appl. Catal. B: Environ., 2001, 32: 215-227
    [108] Wu T., Liu G., Zhao J., et al., Photoassisted degradation of dye pollutants: Self-Photosensitized oxidative transformation of rhodamine B under visible light irradiation in aqueous TiO2 dispersions, J. Phys. Chem. B, 1998, 2: 5845-5851
    [109] Liu G., Zhao J., photocatalytical degradation of dye sulforhodamineB: A comparative study of Photocatalysis with Photosensitization, New J. Chem., 2000, 24: 411-417
    [110] Zhang F., Zhao J., Shen T., et al., Photoassisted Degradation of dye pollutant II: adsorption and degradation kinetics of eosin in TiO2 dispersions under visible light irradiation, Appl. Catal. B: Environ., 1998, 15: 147-156
    [111] Liu G.., Wu T., Zhao J., et al., Photo-assisted degradation of dye pol1tants VIII: irreversible degradation of alizarin red under visible 1ight irradiation in air-equilibrated aqueous TiO2 dispersions, Environ. Sci. Technol., 1999, 33: 2081-2087
    [112] Liu G., Zhao J., Hidka H., et al., ESR Spin-trapping detection of radical intermediates in the Ti02-assisted photooxidation of sulforhodamine B under visible irradiation, J. Photochem. Photobiol. A: Chem., 2000, 33: 83-88
    [113] Liu G., Li X., Zhao J., et al., Photooxidation mechanism of dye alizarin red in TiO2 dispersions under visible illumination: an experimental and theoretical examination, J Mol. Catal. A: Chem., 2000, 153: 211-229
    [114] Li X., Zhao W., Zhao J., Visible light-sensitized semiconductor photocatalytic degradation of 2, 4-DCP, Science in China, Ser B, 2002, 45: 421-425
    [115] Zhao J., Wu T., Wu K., et al., Photoassisted degradation of dye pollutants 3: Evidence for the need for substrate adsorption on TiO2 particles, Environ. Sci. Technol., 1998, 32: 2394-2400
    [116] Macyk W., Kisch H., Photosensitization of crystalline and amorphous titanium dioxide by platinum(IV) chloride surface complexes, Chemistry-A European Journal, 2001, 7: 1862-1867
    [117] Macyk W., Burgeth G., Kisch H., Photoelectrochemical properties of platinum(IV) chioride surface modified TiO2, Photochemical&Photobiological Sciences, 2003, 2: 322-328
    [118] Zang L., Lang C., Abraham I., et al., Amorphous microporous Titania modified with with platinum(IV) chloride-A new type of hybrid photocatalyst for visible light detoxification, Journal of Physical Chemistry B, 1998, 102: 10765-10771
    [119] Zhao W., Ma W., Zhao J., et al., Efficient Photoinduced conversionof an azo dye on hexachlor Platinate(IV)-modified TiO2 surface under visible light irradiation-A Photosensitization Pathway, Chem. Eur. J., 2003, 9: 3292-3299
    [120] 朱洪法, 催化剂载体制备及应用技术, 北京, 石油工业出版社, 2002
    [121] 贺飞, 唐怀军, 赵文宽, 等, 纳米TiO2光催化剂负载技术研究, 环境污染治理技术与设备, 2001, 2: 47-58
    [122] Sun R. D., Akira N., Itaru W., et al., TiO2-coated optical fiber bundles used as a photocatalytic filter for decomposition of gaseous organic compounds, J. Photochem. Photobiol. A: Chem., 2000, 136: 111-116
    [123] Robert D., Piscopo A., Heintz O., et al., Photocatalytic detoxification with TiO2 supported on glass-fibre by using artificial and natural light, Catal. Today, 1999, 54: 291-296
    [124] Xu Y., Zheng W., Liu W., Enhanced photocatalytic activity of supported TiO2: dispersing effect of SiO2, J. Photochem. Photobiol. A: Chem., 1999, 122: 57-60
    [125] Grieken R., Aguado J., Marugán J., Synthesis of size-controlled silica-supported TiO2 photocatalysts, J. Photochem. Photobiol. A: Chem., 2002, 148: 315-322
    [126] Kumar A., Jain A. K., Photophysics and photochemistry of colloidal CdS-TiO2 coupled semiconductors-photocatalytic oxidation of indole, J. Mol. Catal. A: Chemical., 2001, 165: 265-273
    [127] 赵青南, 余家国, 赵建修, 等, 溶胶-凝胶法制备釉面砖表面TiO2涂层的XPS研究及其光催化性能, 中国陶瓷, 1999, 35: 16-39
    [128] 方佑龄, 赵文宽, 尹少华, 等, 纳米TiO2在空心陶瓷微球上的固定化及光催化分解辛烷应用化学, 1997, 14 (2): 81-83
    [129] Moazzem M., Gregory H., Raupp B., Polychromatic radiation field model for a honeycomb monolith photocatalytic reactor, Chem. Eng. Sci.,1999, 54: 3027-3034
    [130] 程沧沧, 胡德文, 赵俐敏,水泥负载TiO2光催化降解染料水溶液的研究, 重庆环境科学, 1998, 20 (4): 28-31
    [131] 胡春, 王怡中, 凹凸棒负载TiO2对偶氮染料和纺织废水光催化脱污, 环境科学学报, 2001, 21(1): 123-125
    [132] 杨阳, 陈爱平, 古宏晨, 等, 以膨胀珍珠岩为载体的漂浮型TiO2光催化剂降解水面浮油, 催化学报, 2001, 22 (2): 177-180
    [133] Italo M., Paolo P., Photocatalytic oxidation of organic acids in aqueous media by a supported catalyst, Chem. Eng. Sci., 1999, 54: 3107-3111
    [134] Liu H., Cheng S., Zhang J., Cao C., The photocatalytic degradation of sulfosalicylic acid using TiO2 supported on porous nickel, Chin. Environ. Sci., 1998, 18 (6): 548-551
    [135] 藤山岛, 桥本和仁, 光触媒ぉょびその制造方法, 日本: 公开特许公报, 平72171408, 1995207211
    [136] 西方聪, 西村智明, 北野功, 污染物质除去用の光触媒, 日本: 公开特许公报, 平9257096, 1997203204
    [137] Durgakumari V., Subrahmanyan M., Subba K. V., et al., An easy and efficient use of TiO2 supported HZSM-5 and TiO2-HZSM-5 zeolite combinate in the photodegradation of aqueous phenol and p-chlorophenol, Appl. Catal. A: General, 2002, 234: 155-165
    [138] Shoji N., Yu H., Ishihara S. I., et al., Preparation of carbon/TiO2 microsphere composites from cellulose/TiO2 microsphere composites and their evaluation, J. Mol. Catal. A: Chem., 2002, 177: 255-263
    [139] Ku Y., Ma C. M., Shen Y. S., Decomposition of gaseous trichloroethylene in a photoreactor with TiO2-coated nonwoven fiber textile, Appl. Catal . B: Environ., 2001, 34: 181-190
    [140] Zhang P., Yu G., Jiang Z., Preparation and photocatalytic performance of fixed titanium dioxide film, Chin. Environ. Sci., 2000, 20(5): 436-440
    [141] Zhang F., Li Q., Yan J., et al., Study of visible spectral sensitization of nanocrystalline TiO2 photocatalyst, Chin. J. Catal., 1999, 20(3): 229-332
    [142] 颜秀茹, 李晓红, 霍明亮, 等, 纳米SnO2@TiO2的制备及其光催化性能, 物理化学学报, 2001, 17(1): 23-27
    [143] 黄汉生, 日本二氧化钛光催化剂环境净化技术开发动向, 现代化工, 1998, 12: 39-42
    [144] Shen H., Tang X., Guan M., et al., Study on the preparation of supported TiO2 catalyst and photocatalytic degradation acetone, Chin. J. Mol. Catal., 1999, 13(6): 435-440
    [145] Fan F. R., Liu H. Y., Bard A. J., Integrated chemical systems: photocatalysis at titanium dioxide incorporated into Nafion and clay, J. Phys. Chem., 1985, 89(21): 4418-4420
    [146] Tennakone K., Kottegoda I. R. M., Photocatalytic mineralization of paraquat dissolved in water by TiO2 supported on polythene and polypropylene films, J. Photochem. Photobiol. A: Chem., 1996, 93: 79-81
    [147] 曹茂盛, 关长斌, 徐甲强, 纳米材料导论, 哈尔滨, 哈尔滨工业大学出版社, 2001
    [148] Anpo M., Takeuchi M., Ikeue K., Dohshi S., Design and development of titanium oxide photocatalysts operating under visible and UV light irradiation.: The applications of metal ion-implantation techniques to semiconducting TiO2 and Ti/zeolite catalysts, Current Opinion in Solid State and Material Science, 2002 , 6: 381-388
    [149] 周幸福, 褚道葆, 韩爱杰, 等, 电化学溶解钛金属直接水解法制备纳米TiO2, 物理化学学报, 2001, 17(4): 367-371
    [150] Byun D., Jin Y., Kim B., et al., Photocatalytic TiO2 deposition by chemical vapor deposition, Hazardous Mater. B., 2000, 73(2): 199-206
    [151] Fu X. Z., Zeltner W. A., Anderson M. A., The gas-phase photocatalytic mineralization of benzene on porous titania-based catalysts, Appl. Catal. B, 1995, 6: 209-224
    [152] Falconer J. L., Magrini-Bair K. A., Photocatalytic and Thermal Catalytic Oxidation of Acetaldehyde on Pt/TiO2, J. Catal., 1998, 179: 171-178.
    [153] Obee T. N., Brown R. T., TiO2 Photocatalysis for Indoor Air Applications: Effects of Humidity and Trace Contaminant Levels on the Oxidation Rates of Formaldehyde, Toluene, and 1, 3-Butadiene, Environ. Sci. Technol., 1995, 29(5): 1223-1231
    [154] Obee T. N., Hay S. O., Effects of Moisture and Temperature on the Photooxidation of Ethylene on Titania, Environ. Sci. Technol., 1997, 31(7): 2034-2038
    [155] Blake N. R., Griffin G. L., Selectivity control during the photoassisted oxidation of 1-butanol on titanium dioxide, J. Phys. Chem., 1988, 92(20): 5697-5701
    [156] Kennedy J. C., Datye A. K., Photothermal Heterogeneous Oxidation of Ethanol over Pt/TiO2 J. Catal.: 1998, 179: 375-389
    [157] Anderson M. A., Yamazaki-Nishidda S., Cervera-March S., Photocatalytic Purification and Treatment of Water and Air, Eds by Ollis D.F., Al-Ekabi H., Elsevier, Ansterdam, 1993, p405
    [158] Pichat H., Herrman J. M., Disdler J., Mozzanega M. N., Photocatalytic oxidation of propene over various oxides at 320 K. Selectivity, J. Phys. Chem., 1979, 83(24): 3122-3126
    [159] Hidaka H., Nagaoka H., Nohara K., et al., A mechanistic study of the photoelectrochemical oxidation of organic compounds on a TiO2/TCO particulate film electrode assembly, J. Photochem. Photobiol, A: Chem., 1996, 98: 73-78
    [160] Vinodgopal K., Hotchandani S., Kamat P. V., Electrochemically assisted photocatalysis: titania particulate film electrodes for photocatalytic degradation of 4-chlorophenol, J Phys Chem., 1993, 97: 9040-9044
    [161] Kesselman J. M., Lewis N. S., Hoffmann M. R., Photoelectrochemical Degradation of 4-Chlorocatechol at TiO2 Electrodes: Comparison between Sorption and Photoreactivity, Environ. Sci. Technol., 1997, 31: 2298-2302
    [162] Ronaldo P., Patricio P., Electrochemically assisted photocatalytic degradation of reactive dyes, Appl. Catal. B: Environ., 1999, 22: 83-90.
    [163] Butterfield I. M., Christensen P. A., Hamnett A., et al., Applied studies on immobilized titanium dioxide films as catalysts for the photoelectrochemical detoxification of water,J. Appl. Electrochem., 1997, 27: 385-395
    [164] Kim D. H., Anderson M. A., Photoelectrocatalytic degradation of formic acid using a porous titanium dioxide thin-film electrode, Environ. Sci. Technol., 1994, 28: 479-483
    [165] Vinodgopal K., Hotchandani S., Kamat P. V., Electrochemically assisted photocatalysis: titania particulate film electrodes for photocatalytic degradation of 4-chlorophenol, J Phys Chem., 1993, 97: 9040-9044
    [166] Vinodgopal K., Stafford U., Gray K. A., Kamat P. V., Electrochemically Assisted Photocatalysis. 2. The Role of Oxygen and Reaction Intermediates in the Degradation of 4-Chlorophenol on Immobilized TiO2 Particulate Films, J. Phys. Chem., 1994, 98: 6797-6803
    [167] Vinodgopal K., Kamat P.V., Electrochemically assisted photocatalysis using nanocrystalline semiconductor thin films, Solar Energy Mater. Solar Cells, 1995, 38: 401-410
    [168] Leng W. H., Zhang Z., Zhang J. Q., Photoelectrocatalytic degradation of aniline over rutile TiO2/Ti electrode thermally formed at 600°C, J. Mol. Catal. A: Chemical, 2003, 206: 239–252
    [169] 梅燕, 贾振斌, 邱丽, 等, 负载型TiO2纳米薄膜电极光电催化氧化甲醇的研究, 稀有金属材料与工程, 2003, 32: 662-665
    [170] 颜晓莉, 史惠祥, 雷乐成, 等, 负载型二氧化钛光电催化降解苯酚废水的反应动力学,化工学报, 2004, 55: 426-433
    [171] He C., Xiong Y., Zhu X., A novel method for improving photocatalytic activity of TiO2 film: the combination of Ag deposition with application of external electric field, Thin Solid Films, 2002, 422: 235-238
    [172] Hidaka H., Ajisaka K., Horikosi S., et al., Comparative assessment of the efficiency of TiO2/OTE thin film electrodes fabricated by three deposition methods: Photoelectrochemical degradation of the DBS anionic surfactant, J. Photochem. Photobiol. A: Chem., 2001, 138(2):185-192
    [173] Hajek M, Microwave activation of homogeneous and heterogeneous catalytic reactions, Collection of Czechoslovak chemical communications, 1997, 62 (2): 347-354
    [174] Cirkva V., Hajek M., Microwave photochemistry Photoinitiated radical addition of tetrahydrofuran to perfluorohexylethene under microwave irradiation, J. Photochem. Photobiol. A: Chem., 1999, 123: 21-23
    [175] Klan P., Literak J., Hajek M., The electrodeless discharge lamp: a prospective tool for photochemistry, J. Photochem. Photobiol. A: Chem., 1999, 128: 145-149
    [176] Horikoshi S., Hidaka H., Serpone N., Environmental Remediation by an Integrated Microwave/UV-Illumination Method. 1. Microwave-Assisted Degradation of Rhodamine-B Dye in Aqueous TiO2 Dispersions, Environ. Sci. Technol., 2002, 36(6): 1357-1366
    [177] Horikoshi S., Hidaka H., Chem. Ind., 2002, 53: 740
    [178] Horikoshi S., Hidaka H., Serpone N., Hydroxyl radicals in microwave photocatalysis. Enhanced formation of OH radicals probed by ESR techniques in microwave-assisted photocatalysis in aqueous TiO2 dispersions, Chem. Phys. Lett., 2003, 376: 475-480
    [179] (a)李旦振, 郑宜, 付贤智, 微波-光催化耦合效应及其机理研究,物理化学学报,2002,18(4): 332-335 (b)郑宜, 李旦振, 付贤智, 水蒸气对有机污染物微波光催化氧化反应的影响, 催化学报, 2001, 22(2): 165-166 (c)李旦振, 郑宜, 付贤智, 微波法制备 SO42-/TiO2 催化剂及其光催化氧化性能, 物理化学学报, 2001, 17( 3 ): 270-272 (d)王心晨, 硕士学位论文, 福州大学, 多相光催化过程中的酸性作用机理研究, 2001: p10
    [180] Atchley A. A., Crum L.A., Ultrasound-Its Chemical, Physical and Biological Effects, Suslick K. S. (Ed.), VCH, New York, 1988, Chapter 1, p1
    [181] Suslick K. S., Science, Sonochemistry science, 1990, 247 (4949): 1439-1445
    [182] Suslick K. S., Choe S. B., Cichowlas A. A., et al, Sonochemical synthesis of amorphous iron, Nature, 1991, 353 (6343): 414-416
    [183] Hyeon T. H., Fang M. M., Suslick K. S., Nanostructured Molybdenum Carbide: Sonochemical Synthesis and Catalytic Properties, J. Am. Chem. Soc., 1996, 118(23): 5492-5493
    [184] Walton A. J., Reynolds G. T., Sonoluminescence advances in physics, Adv. Phys.,1984, 33 (6): 595-660
    [185] Hua I., Hoechemer R.H., Hoffmann M.R., Sonolytic Hydrolysis of p-Nitrophenyl Acetate: The Role of Supercritical Water, J. Phys. Chem., 1995, 99(8): 2335-2342
    [186] Serpone N., Terzian R., Hidaka H., Ultrasonic Induced Dehalogenation and Oxidation of 2-, 3-, and 4-Chlorophenol in Air-Equilibrated Aqueous Media. Similarities with Irradiated Semiconductor Particulates, Pelizzetti E., J. Phys. Chem., 1994, 98(10): 2634-2640
    [187] Mason T. J., Current trends and future prospects, Price G. J. (Ed.), Current Trends in Sonochemistry, The Royal Society of Chemistry, Cambridge, London, 1992, p171
    [188] Harada H., Sonophotocatalytic decomposition of water using TiO2 photocatalyst, Ultrason. Sonochem., 2001, 8: 55-58.
    [189] Davydov L., Reddy E. P., France P., et al., Sonophotocatalytic destruction of organic contaminants in aqueous systems on TiO2 powders, Appl. Catal. B: Environ., 2001, 32: 95-105
    [190] Theron P., Pichat P., Guillard C., et al., Degradation of phenyltrifluoromethylketone in water by separate or simultaneous use of TiO2 photocatalysis and 30 or 515 kHz ultrasound, Phys. Chem. Chem. Phys., 1999, 1: 4663-4668
    [191] David B., Lhote M., Faure V., et al., Ultrasonic and photochemical degradation of chlorpropham and 3-chloroaniline in aqueous solution, Water Res., 1998, 32(8): 2451-2461
    [192] Petrier C., David B., Laguian S., Ultrasonic degradation at 20 kHz and 500 kHz of atrazine and pentachlorophenol in aqueous solution: preliminary results, Chemosphere, 1996, 32(9): 1709-1718
    [193] Francony A., Petrier C., Sonochemical degradation of carbon tetrachloride in aqueous solution at two frequencies: 20 kHz and 500 kHz, Ultrasonics, 1996, 3: 77-82
    [194] Kudo A., Photocatalyst materials for water splitting catalysis, Surveys from Asia, 2003, 7 (1): 31-38
    [195] Takata T., Shinohara K., Tanaka A., et al., A highly active photocatalyst for overall water splitting with a hydrated layered perovskite structure, J. Photo. Chem. Photobiol. A: Chem., 1997, 106: 45-49
    [196] Takata T., Furumi Y., Shinohara K., et al., Photocatalytic decomposition of water on spontaneously hydrated layered perovskites, Chem. Mater., 1997, 9: 1063-1064
    [197] Takata T., Tanaka A., Hara M., et al., Recent progress of photocatalysts for overall water splitting, Catal. Today, 1998, 44: 17-26
    [198] Tang J., Zou Z., Ye J., Photophysical and photocatalytic properties of AgInW2O8, J. Phys. Chem. B. 2003 107(51): 14265-14269
    [199] Zou Z., Ye J., Arakawa H., Structural properties of InNbO4 and InTaO4: correlation with photocatalytic and photophysical properties, Chem. Phys. Lett., 2000, 332: 271-277
    [200] Zou Z., Ye J., Arakawa H., Photocatalytic and photophysical properties of a novel series of solid photocatalysts: Bi2MNbO7 (M=Al3+, Ga3+ and In3+), Chem. Phys. Lett., 2001, 333: 57-62
    [201] Zou Z., Ye J., Sayama K., Arakawa H., Photocatalytic and photophysical properties of a novel series of solid photocatalysts: BiTa1?xNbxO4 (0    [202] Zou Z., Ye J., Sayama K., Arakawa H., Direct splitting of water under visible light irradiation with an oxide semiconductor, Nature, 2001, 414: 625-627
    [203] Zou Z., Ye J., Arakawa H., Synthesis, magnetic and electrical transport properties of the Bi2InNbO7 compound, Solid State Commun., 2000, 116: 259-263
    [204] Zou Z., Ye J., Arakawa H., Effect of Ni substitution on the structure and photocatalytic activity of InTaO4 under visible light irradiation, J. Mater. Res., 2002, 17: 1419-1424
    [205] Zou Z., Ye J., Single crystal growth and characterization of a new bismuth indium niobate compound: Bi5In2Nb3O18?x, J. Alloys Comp., 1999, 292: 72-76
    [206] Ye J., Zou Z., Arakawa H., et al., Correlation of crystal and electronic structures with photophysical properties of water splitting photocatalysts InMO4 (M=V5+, Nb5+, Ta5+), J. Photochem. Photobiol. A: Chem., 2002, 148: 79-83
    [207] Zou Z., Ye J., Arakawa H., Substitution Effects of In3+ by Al3+ and Ga3+ on the Photocatalytic and Structural Properties of the Bi2InNbO7 Photocatalyst, Chem. Mater., 2001, 13: 1765-1769
    [208] Zou Z., Ye J., Arakawa H., Role of R in Bi2RNbO7 (R=Y, Rare Earth): Effect on Band Structure and Photocatalytic Properties, J. Phys. Chem. B, 2002, 106: 517-520
    [209] Zou Z., Ye J., Arakawa H., Optical and structural properties of solid oxide photocatalyst Bi2FeNbO7, J. Mater. Res., 2001, 16: 35-37
    [210] Zou Z., Ye J., Arakawa H., Substitution effects of In3+ by Fe3+ on photocatalytic and structural properties of Bi2InNbO7 photocatalysts, J. Mol. Catal. A: Chem., 2001, 168: 289-297
    [211] Zou Z., Ye J., Arakawa H., Optical and structural properties of the BiTa1?xNbxO4 (0≤x≤1) compounds, Solid State Commun., 2001, 119: 471-475
    [212] Zou Z., Ye J., Arakawa H., Effect of Ni substitution on the structure and photocatalytic activity of InTaO4 under visible light irradiation, J. Mater. Res., 2002, 17: 1446-1454
    [213] Zou Z., Ye J., Arakawa H., Photophysical and photocatalytic properties of InMO4 (M = Nb5+, Ta5+) under visible light irradiation, Mater. Res. Bull., 2001, 36: 1185-1193
    [214] Ye J., Zou Z., Arakawa H., et al., A novel hydrogen-evolving photocatalyst InVO4 active under visible light irradiation, Chem. Phys. Lett., 2002, 356: 221-226
    [215] Zou Z., Ye J., Abe R., et al., Photocatalytic behavior of a new series of In0.8M0.2TaO4 (M=Ni, Cu, Fe) photocatalysts in aqueous solutions, Catal. Lett., 2001, 75: 209-213
    [216] Zou Z., Ye J., Abe R., et al., Photocatalytic hydrogen and oxygen formation under visible light irradiation with M-doped InTaO4 (M=Mn, Fe, Co, Ni and Cu) photocatalysts, J. Photochem. Photobiol. A: Chem., 2002, 148: 65-69
    [217] Zou Z., Ye J., Arakawa H., Photocatalytic water splitting into H2 and/or O2 under UV and visible light irradiation with a semiconductor photocatalyst Intern, J. Hydrogen Energy, 2003, 28: 663-669
    [218] Tang, J., Zou, Z., Ye, J., Effects of substituting Sr2+ and Ba2+ for Ca2+on the structural properties and photocatalytic behaviors of CaIn2O4, Chem. Mater., 2004, 16(9): 1644-1649
    [219] Tang J., Zou Z., Ye J., Photocatalytic degradation of MB on MIn2O4 (M=alkali earth metal) under visible light: effects of crystal and electronic structure on the photocatalytic activity, Catal. Today, 2004, 93-95: 885-889
    [220] Tang J., Zou Z., Ye J., Photocatalytic degradation of methylene blue on CaIn2O4 under visible light irradiation, Chem. Phys. Lett., 2003, 382: 175-179
    [221] Tang J., Zou Z., Ye J., Efficient photocatalytic decomposition of organic contaminants on CaBi2O4 under visible light irradiation, Angew. Chem. Int. Ed., 2004, 43: 4463-4466
    [222] Tang J., Zou Z., Ye J., Photocatalytic decomposition of organic contaminants by Bi2WO6 under visible light irradiation, Catal. Lett., 2004, 92: 53-56
    [223] 白树林, 傅希贤, 王俊珍, 等, LaFeO3的光催化性, 应用化学, 2000, 3(17): 343-345
    [224] 桑丽霞, 傅希贤, 杨秋华, 等, 制备方法对 LaFeO3 及掺杂 LaFeO3 光催化活性的影响,化学工业与工程, 2000, 6(17): 336-340
    [225] 杨秋华, 傅希贤, 王俊珍, 等, La(1-x)SrxFeO3 光催化降解水溶性染料应用化学, 2000, 6(17): 585-588
    [226] 傅希贤, 桑丽霞, 王俊珍, 等, 钙钛矿型(ABO3)化合物的光催化活性及其影响因素, 天津大学学报, 2001, 2(34): 229-231
    [227] 白树林, 傅希贤, 桑丽霞, 等, 钙钛矿(ABO3)型复合氧化物的光催化活性变化趋势与分析, 高等学校化学学报, 2001, 4(22): 663-665
    [228] 杨秋华, 傅希贤, 桑丽霞, 纳米 LaCoO3 的光催化氧化还原活性, 燃料化学学报, 2002, 4(30): 368-371
    [229] 杨秋华, 傅希贤, 纳米 LaMO3(M=Cr, Mn, Fe, Co)化合物的光催化氧化活性分析,硅酸盐学报, 2003, 3(31): 254-257
    [230] Li J., Ma W., Zhao J., et al., A highly selective photooxidation approach using O2 in water catalyzed by iron(II) bipyridine complex supported on NaY zeolite, Chem. Commun., 2003, 2214-2215
    [231] Tao X., Ma W., Zhao J., A novel approach for the oxidative degradation of organic pollutants in aqueous solutions mediated by iron tetrasulfophthalocyanine under visible light radiation, Chem. Eur. J., 2002, 8( 6): 1321-1326
    [232] Huang Y., Ma W., Zhao J., A novel CD-Hemin complex photocatalyst for efficient degradation of organic pollutants at neutral pHs under visible irradiation, J. Phys. Chem. B, 2003, 107: 9409-9414
    [233] Ma W., Huang Y., Zhao J. An efficient approach for the photodegradation of organic pollutants by immobilized iron ions at neutral pHs, Chem. Commun., 2003, 1582-1583
    [234] Ma W., Li J., Zhao J.,Efficient degradation of organic pollutants by using dioxygen activated by resin-exchanged iron(ii) bipyridine under visible irradiation, Angew. Chem. Int. Ed., 2003, 42(9):1029-1032
    [235] Tao X., Ma W., Zhao J., Efficient degradation of organic pollutants mediated by immobilized iron tetrasulfophthalocyanine under visible light irradiation, Chem. Commun., 2003, 80–81
    [236] Tao X., Ma W., Zhao J., Efficient photooxidative degradation of organic compounds in the presence of iron tetrasulfophthalocyanine under visible light Irradiation, Angew. Chem. Int. Ed., 2001, 40 (16): 3014-3016
    [237] Cheng M., Ma W., Zhao J., Visible-light-assisted degradation of dye pollutants over Fe(III)-loaded resin in the presence of H2O2 at neutral pH values, Environ. Sci. Technol., 2004, 38:1569-1575
    [238] Song W., Ma W., Zhao J., Photochemical oscillation of Fe(II)/Fe(III) ratio induced by periodic flux of dissolved organic matter, Environ. Sci. Technol., 2005, 39(9): 3121-3127
    [239] Hu M., Xu Y., Zhao J., Efficient photosensitized degradation of 4-Chlorophenol over immobilized aluminum tetrasulfophthalocyanine in the presence of hydrogen peroxide, Langmuir, 2004, 20(15): 6302-6307
    [240] Xiong Z., Xu Y., Zhao J., Photosensitized oxidation of substituted phenols on aluminum phthalocyanine-intercalated organoclay, Environ. Sci. Technol., 2005, 39(2): 651-657
    [241] Dai Q., Li P., Miao Y., et al., Synthesis of pure TiO2 mesoporous molecular sieves and their photocatalytic activity, Chinese Journal of Catalysis, 1998, 19(6): 483-484
    [242] Anpo M., Yamashita H., Ikeue K., et al., Photocatalytic reduction of CO2 with H2O on Ti-MCM-41 and Ti-MCM-48 mesoporous zeolite catalysts, Catal. Today, 1998, 44(1-4): 327-332
    [243] Ikeue K., Yamashita Y., Anpo M., et al., Photocatalytic reduction of CO2 with H2O on Ti-beta zeolite photocatalysts: effect of the hydrophobic and hydrophilic properties, Journal of Physical Chemistry B, 2001, 105(35): 8350-8355
    [244] Ikeue K., Yamashita H., Anpo M. Photocatalytic reduction of CO2 with H2O on titanium oxides prepared within the FSM-16 mesoporous zeolites, Chemical Letter, 1999, (11): 1135-1136
    [245] Higashimoto S., Matsuoka M., Zhang S. G., et al., Charaterization of the VS-1 catalyst using various spectroscopic techniques and its unique photocatalytic reactivity for the decomposition of NO in the absence and presence of C3H8, Microporous and Mesoporous Materials, 2001, 48: 329-335
    [246] Zhang S. G., Ariyuki M., Yamashita H., et al., Photoluminescence property and photocatalytic reactivity of V-HMS mesoporous zeolites: effect of pore size of zeolites on the photocatalytic reactivity, Microporous and Mesoporous Materials, 1998, 21: 621-627
    [247] Fu X. Z., Zeltner W. A., Yang Q., et al., Catalytic Hydrolysis of Dichlorodifluoromethane (CFC-12) on Sol-Gel-Derived Titania Unmodified and Modified with H2SO4, J. Catal., 1997, 168(2): 428-490
    [248] Komarneni S., Li D. S., Newalkar B., et al., Microwave-Polyol Process for Pt and Ag Nanoparticles, Langmuir, 2002, 18: 5959-5962
    [249] Einaga H., Futamura S., Ibusuki T., Complete Oxidation of Benzene in Gas Phase by Platinized Titania Photocatalysts, Environ. Sci. Technol., 2001, 35(9): 1880-1884
    [250] Subramanian V., Wolf E., Kamat P. V., Semiconductor-Metal Composite Nanostructures. To What Extent Do Metal Nanoparticles Improve the Photocatalytic Activity of TiO2 Films, J. Phys. Chem. B, 2001, 105(46): 11439-11446
    [251] 沈伟韧, 赵文宽, 贺飞, 等, TiO2 光催化反应及其在废水处理中的应用, 化学进展, 1998, 10 (4): 349-361
    [252] Kortum G., Reflectance Spectroscopy Spring-Verlag: New York, 1969
    [253] Kronik L., Shapira Y., Kronik L, Shapira Y,Surface photovoltage phenomena: theory, experiment, and applications,Surf. Sci. Rep., 1999, 37 (1-5): 1-206
    [254] Baikie I., Petermann U., L?gel B., UHV-compatible spectroscopic scanning Kelvin probe for surface analysis, Surf. Sci., 1999, 433-435, 249-253
    [255] Shalish I., Shapira Y., Burstein L., et al., Surface states and surface oxide in GaN layers, J. Appl. Phys., 2001, 89, 390-395
    [256] L?gel B., I. Baikie D., Petermann U., A novel detection system for defects and chemical contamination in semiconductors based upon the Scanning Kelvin Probe, Surf. Sci., 1999, 433-435, 622-626
    [257] Li L. S., Zhang J., Wang L. J., et al., Nanoscale organized assembly of nanoparticulate TiO2-stearate monolayers through the Langmuir-Blodgett method, J. Vac. Sci. Technol. B, 1997, 15(5): 1618-1622
    [258] Du H., Cao Y., Bai Y., et al., Photovoltaic Properties of Polymer/Fe2O3/Polymer Heterostructured Microspheres, J. Phys. Chem. B, 1998, 102(13): 2329-2332
    [259] O’Shea K. E., Pernas E., Saiers J., The Influence of Mineralization Products on the Coagulation of TiO2 Photocatalyst, Langmuir, 1999, 15(6): 2071-2076
    [260] Lindner M., Theurich J., Bahnemann D. W., Photocatalytic degradation of organic compounds: accelerating the process efficiency, Water Sci. Technol., 1997, 35(4):79-86
    [261] Bekbolet M., Lindner M., Weichgrebe D., et al., Photocatalytic detoxification with the thin-film fixed-bed reactor (TFFBR): clean-up of highly polluted landfill effluents using a novel TiO2-photocatalyst, Sol. Energy, 1996, 56, 455-469
    [262] Hirakawa T., Nosaka Y., Properties of O2·-and ·OH formed in TiO2 aqueous suspensions by photocatalytic reaction and influence of H2O2 and some ions, Langmuir, 2002, 18: 3247-3254
    [263] Sun L. Z., Bolton R. J., Determination of the quantum yield for the photochemical generation of hydroxyl radicals in TiO2 suspensions, J. Phys. Chem., 1996, 100: 4127-4134
    [264] Nosaka Y., Mitsuo K., Junichi N., Factors governing the initial process of TiO2 photocatalysis studied by means of in-situ electron spin resonance measurements, J. Phys. Chem. B, 1998, 102: 10279-10283
    [265] Zhao W., Chen C., Li X., et al., Photodegradation of Sulforhodamine-B Dye in Platinized Titania Dispersions under Visible Light Irradiation: Influence of Platinum as a Functional Co-catalyst, J. Phys. Chem. B, 2002, 106(19): 5022-5028
    [266] Wu T., Liu G., Zhao J., et al., Mechanistic study of the TiO2-assisted photodegradation of squarylium cyanine dye in methanolic suspensions exposed to visible light, New J. Chem., 2000, 24, 93
    [267] Martin S. T., Herrmann H., Chol W., et al., Time-resolved microwave conductivity, Part 1-TiO2 photoreactivity and size quantization, J. Chem. Soc. Faraday Trans., 1994, 90, 21: 3315-3322
    [268] Martin S. T., Herrmann H., Chol W., et al., Time-resolved microwave conductivity, Part 2-Quantum-sized TiO2 and the effect of adsorbates and light intensity on charge-carrier dynamics, J. Chem. Soc. Faraday Trans., 1994, 90, 21: 3323-3330
    [269] 陈亦琳, 李旦振, 付贤智, 等, 乙烯在Pt/Pt4+-TiO2上的可见光降解, 高等学校化学学报, 2004, 2(25): 342-344
    [270] Weetman D. F., Volatile organic chemicals in the environment, Indoor Environ.,1994, 3 (1): 55-57
    [271] Molhave T. J., Volatile organic compounds, indoor air quality and health, Indoor Air, 1991, 1(1): 357-376
    [272] Molhave L., The sick building and other buildings with in door climate problems, Environ Int., 1989, 15: 65-74
    [273] Ramanathan K., Debler V. L., Kosusk O. M., et al., Evaluation of control strategies for volatile organic compunds in indoor air, Environ. Progress, 1988, 7 (4): 230-235
    [274] Ruddy E. N., Carroll L., A select the VOCs control strategy, Chemical Enginering Progress, 1993, 89 (7): 28-34
    [275] Wang B. G., Miyazaki Y., Yamaguchi T. et al., Design of a vapor permeation membrane for VOC removal by the filling membrane concept, J. Membrane Science, 2000, 164 (1-2): 25-35
    [276] Majumdar S., Bhaumik D., Sirkar K. K., A pilot scale demonstration of a membrane based absorption-stripping process for removal and recovery of volatile ogranic compounds, Environmental Progress, 2001, 20 (l): 37-43
    [277] Zhang P.Y., Liu J., Photocatalytic degradation of trace hexane in the gas phase with and without ozone addition: kinetic study, J. Photochem. Photobiol. A: Chem., 2004, 167: 87–94
    [278] Shen Y. S., Ku Y., Treatment of Gas-phase Volatile Organic Compounds (VOCs) by the UV-O3 Process, Chemosphere 1999, 38(8): 1855-1866
    [279] Ogata A., Einaga H., Kim H. H., Effective combination of nonthermal plasma and catalysts for decomposition of benzene in air, Appl. Catal. B: Environ., 2003, 46: 87-95
    [280] Futamura S.,Einaga H.,Hwan L. Y., et al., Synergistic effect of silent discharge plasma and catalysts on benzene decomposition, Catal. Today, 2004, 89: 89-95
    [281] Einaga H., Futamura S., Catalytic oxidation of benzene with ozone over alumina-supported manganese oxides, J. Catal., 2004, 227: 304-312
    [282] Zhao J., Yang X. D., Photocatalytic oxidation for indoor air purification a literature review, Building Environ., 2003, 38: 645-654
    [283] 付贤智, 李旦振, 提高多相光催化氧化过程效率的新途径, 福州大学学报(自然科学版), 2001, 29(6): 104-114
    [284] Zhang Q. C., Zhang F. B., Zhang G. L., Reaction Mechanism of Gas-Phase Photocatalytic Oxidation of Benzene on TiO2, Chin. J. Catal., 2004, 25 39-44
    [285] Einaga H., Futamura S., Ibusuki T., Improvement of Catalyst Durability in Benzene Photooxidation by Rhodium Deposition on TiO2, Chem. Lett., 2001, 6: 582 -583
    [286] Schrauzer N., Guth T. D., Photocatalytic reactions. 1. Photolysis of water and photoreduction of nitrogen on titanium dioxide, J. Am. Chem. Soc., 1977, 99(22): 7189-7193
    [287] Baba R., Nakabayashi S., Fujishima A., et al., Investigation of the mechanism of hydrogen evolution during photocatalytic water decomposition on metal-loaded semiconductor powders, J. Phys. Chem., 1985, 89(10): 1902-1905
    [288] Heller A., Optically transparent metallic catalysts on semiconductors, Pure Appl. Chem., 1986, 58, 1189-1192
    [289] Domen K., Sakata Y., Kudo A., et al., The photocatalytic activity of a platinized titanium-dioxide catalyst supported over silica, Bull. Chem. Soc. Jpn., 1988, 61, 359-362
    [290] Anpo M., Chiba K., Tomonari M.,et al., Photocatalysis on native and platinum-loaded TiO2 and ZnO catalysts-origin of different reactivities on wet and dry metal-oxides, Bull. Chem. Soc. Jpn., 1991, 64, 543-551
    [291] Bard A. J., Fox M. A., Artificial Photosynthesis: Solar Splitting of Water to Hydrogen and Oxygen, Acc. Chem. Res., 1995, 28(3): 141-145
    [292] Ohtani B., Ogawa Y., Nishimoto S., Photocatalytic activity of amorphous-anatase mixture of titianium oxide particles suspended in aqueous solutions, J. Phys. Chem B, 1997, 101: 3746-3752
    [293] Ulrike D., The surface science of titanium dioxide, Surf. Sci. Rep., 2003, 48: 53-229
    [294] Kazantsev R. V., Gaidai N. A., Nekrasov N. V., et al., Kinet. Catal., 1998, 39, 363
    [295] 黄量, 于德泉, 紫外光谱在有机化学中德应用, 科学出版社, 北京, 2000: 122-124
    [296] 李春忠, 朱以华, 施利毅, 等, TiCl4-O2 体系高温反应制备超细 TiO2 光催化材料的研究, 无机材料学报, 1999, 14 (5): 717-725
    [297] Hurum D. C., Agrios A. G., Gray K. A., et al., Explaining of the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR, J. Phys. Chem. B., 2003, 107: 4545-4549
    [298] Sitkiewitz S., Heller A., Photocatalytic oxidation of benzene and stearic acid on sol-gel derived TiO2 thin films attached to glass, New J. Chem., 1996, 20, 233-241
    [299] Conner W. C., Falconer J. L., Spillover in heterogeneous catalysis, Chem. Rev., 1995, 95: 759-788
    [300] Briggs D., Seah M. P., Pratical surface Analysis, second edition, Volume 1: Auger and X-ray photoelectron spectroscopy, John Willey & Sons, 1990
    [301] Zang, L., Lange C., Abraham, I., et al., Amorphous Microporous Titania Modified with Platinum(IV) Chloride-A New Type of Hybrid Photocatalyst for Visible Light Detoxification, J. Phys. Chem. B, 1998, 102(52): 10765-10771
    [302] Randall J.T., Wilkins M.H.F., Phosphorescence and electron traps .2. The interprentation of long-period phosphorescence, Proc. Royal. Soc. A, 1945, 184: 136-390
    [303] Serpone N., Lawless D., Terzian R., et al., In Electrochemistry in Colloids and Dispersions, Ed. by Mackay R. A. and Texter J., VCH, New York, 1992, Ch. 30, pp399-416
    [304] Turchi C. S., Ollis D. F., Photocatalytic degradation of organic water contaminants: Mechanisms involving hydroxyl radical attack, J. Catal., 1990, 122: 178-192
    [305] Rothenberger G., Moser J., Gratzel M., et al., Charge carrier trapping and recombination dynamics in small semiconductor particles, J. Am. Chem. Soc., 1985, 107(26): 8054-8059
    [306] Boxall C., Kelsall G. H., Photoelectrophoresis of colloidal semiconductors, Part 2-Transient experiments on TiO2 particles, J. Chem. Soc., Faraday Trans., 1991, 87, 3547
    [307] Kolle U., Moser J., Gratzel M., Dynamics of interfacial charge-transfer reactions in semiconductor dispersions, Reduction of cobaltoceniumdicarboxylate in colloidal titania, Inorg. Chem., 1985, 24(14): 2253-2258
    [308] Howe R.F., Gratzel M., EPR observation of trapped electrons in colloidal titanium dioxide, J. Phys. Chem., 1985, 89(21): 4495-4499
    [309] Lawless D., Serpone N., Meisel D., Role of hydroxyl radicals and trapped holes in photocatalysis, A pulse radiolysis study, J. Phys. Chem., 1991, 95(13): 5166-5170
    [310] Micic O.I., Zhang Y., Cromack K.R., et al., Trapped holes on titania colloids studied by electron paramagnetic resonance, J. Phys. Chem., 1993, 97(28): 7277-7283
    [311] Fonash S. J., Solar Cell Device Physics, Academic Press, New York, London, 1981
    [312] Timoshenko V. Y., Duzhko V., Dittrich T., Diffusion Photovoltage in Porous Semiconductors and Dielectrics, Phys. Stat. Sol. A, 2000, 182, 227-232
    [313] Henglein A, Colloidal TiO2 catalyzed photo and radiation chemical processes in aqueous-solution, Berichte Der Bunsen-Gesellschaft-Physical Chemistry, 1982, 86(3): 241-246
    [314] Bahnemann D., Henglein A., Lilie J., et al., Flash photolysis observation of the absorption spectra of trapped positive holes and electrons in colloidal titanium dioxide, J. Phys. Chem., 1984, 88(4): 709-711
    [315] Bahnemann D., Henglein A., Spanhel L., Detection of the intermediates of colloidal TiO2-catalyzed photoreactions, Faraday Discuss, Chem. Soc., 1984, 78: 151-163
    [316] 陈治明, 王建农, 半导体器件的材料物理学基础, 北京: 科学出版社, 1999: 283
    [317] Bellamy L. J., The Infra-red Spectra of Complex Molecules Chapman and Hall, London, 1975
    [318] Williams D. H., Fleming I., Spectroscopic methods in organic chemistry, McGraw-Hill Book Company (UK) Limited, London, 1987
    [319] Kunai A., Hata S., Ito S., et al., The role of oxygen in the hydroxylation reaction of benzene with Fenton's reagent. Oxygen 18 tracer study, J. Am. Chem. Soc., 1986, 108(19): 6012-6016
    [320] Einaga H., Futamura S., Ibusuki T., Photocatalytic decomposition of benzene over TiO2 in a humidified airstream, Phys. Chem. Chem. Phys., 1999, 1: 4903
    [321] Fox M. A., In Photocatalysis: Fundamentals and Applications, Ed. by Serpone N. and Pelizzetti E., Wiley-Interscience, New York, 1989, pp421
    [322] Sawyer D. T., Sobkowiak A., Roberts J. L., Jr., In Electrochemistry for Chemists, Wiley-Interscience, New York, 1995, pp460
    [323] Komatsu T., Lund A., Electron spin resonance studies on irradiated heterogeneous systems, IX. Anisotropy of the g factor and the hyperfine coupling constant of the benzene cation in the adsorbed state, J. Phys. Chem., 1972, 76(12): 1727-1728
    [324] Bedilo A. F., Kim V. I., A. Volodin M., Effect of Light on Reactions over Sulfated Zirconia , J. Catal., 1998, 176, 294-304
    [325] Kurita Y., Sonoda T., Sato M., ESR study of cation radicals derived from benzene and methyl-substituted benzenes adsorbed on a synthetic mordenite: Formation of biphenyl cation radical from benzene, J. Catal., 1970, 19, 82-85
    [326] Larson S. A., Falconer J. L., Initial reaction steps in photocatalytic oxidation of aromatics , Catal. Lett., 1997, 44, 57-65
    [327] Penner S., Wang D., Su D. S., et al., Platinum nanocrystals supported by silica, alumina and ceria: metal–support interaction due to high-temperature reduction in hydrogen, Surf. Sci., 2003, 532-535:276-280
    [328] Delmon B., In Studies in Surface Science and Catalysis 77, Ed. by Inui T., Fujimoto K., Uchijima T., Masai M., Elsevier: Kyoto, Japan, 1933
    [329] Chen H., White J. M., TPD of deuterium spillover on Pt/Al2O3, J. Mol. Catal., 1986, 35, 355-364
    [330] Yuliarto B., Zhou H., Yamada T., et al., Effect of Tin Addition on Mesoporous Silica Thin Film and Its Application for Surface Photovoltage NO2 Gas Sensor , Anal. Chem., 2004, 76(22): 6719-6726
    [331] Lide D. R. (Editor), CRC Handbook of Chemistry and Physics, 86th Ed., CRC Press, 2005-2006
    [332] 张立德,牟季美, 纳米材料和纳米结构, 北京: 科学出版社, 2002: 309-312
    [333] Ghigo G., Tonachini G., From Benzene to Muconaldehyde: Theoretical Mechanistic Investigation on Some Tropospheric Oxidation Channels, J. Am. Chem. Soc., 1999, 121(36): 8366-8372
    [334] Zheng S., Gao L., Synthesis structure characterization and photoactivities of nanosized Pd clusters on titania-modified MCM-41 by photodeposition method, Chem J. Chinese Universities, 2002, 23 (6): 1126-1130
    [335] Cao Y., Shen D., Zhang X., Effect of Sn-doping on photocatalytic activity of TiO2 film for degradation of phenol, J. Chinese Universities, 2001, 22 (11): 1910-1912
    [336] Nakamura R., Tanaka T., Nakato Y., Mechanism for Visible Light Responses in Anodic Photocurrents on N-Doped TiO2 Film Electrodes, J. Phys. Chem. B, 2004, 108: 10617-10620
    [337] Hagfeidt A., Gratzel M., Light-induced redox reactions in nanocrystalline Systems, Chem. Rev., 1995, 95: 49-75
    [338] Tang Y., Huang X., Yu H., et al., Characterization and visible-light-activity of nitrogen-doped TiO2 photocatalyst, Chin. J. Inorg. Chem., 2005, 21(11): 1747-1751
    [339] Saha N. C., Tomkins H. C., Titanium nitride oxidation chemistry: An x-ray photoelectron spectroscopy study, J. Appl. Phys., 1992, 72:3072-3079
    [340] Chen X. B., Burda C., Photoelectron Spectroscopic Investigation of Nitrogen-Doped Titania Nanoparticles, J. Phys. Chem. B, 2004, 108(40): 15446-15449
    [341] Price G. J., Lenz E. J., The use of dosimeters to measure radical production in aqueous sonochemical systems, Ultrasonics, 1993, 31: 451-456
    [342] Mason T. J., Lorimer J. P., Bates D. M., et al., Dosimetry in sonochemistry: the use of aqueous terephthalate ion as a fluorescence monitor, Ultrasonics Sonochem., 1994, 1:91-95
    [343] Fang X., Mark G., Sonntag C., OH radical formation by ultrasound in aqueous solutions Part I: the chemistry underlying the terephthalate dosimeter, Ultrasonics Sonochem., 1996, 3: 57-63
    [344] Mclean J. R., Mortinner A. J., A cavitation and free-radical dosimeter for ultrasound, Ultrasond Med. Biol., 1988, 14: 59-64
    [345] Collins A. K., Pickering M. A., Taylor R. L., Coumarin chemical dosimeter for radiation-therapy, Medical physics., 1994, 21 (11): 1741-1747
    [346] Khan H.M., Anwar M., Ahmad G., et al., Effect of temperature and light on the response of an aqueous coumarin dosimeter, Nucl. Chem. Lett., 1995, 200: 521-527
    [347] Gopakumar K., Kini U. R., Ashawa S. C., et al., Gamma-irradiation of coumarin in aqueous-solution, Radiat. Eff., 1977, 32: 199-203
    [348] Matthews R. W., The radiation-chemistry of the terephthalate dosimeter, Radiat. Res., 1980, 83: 27-41
    [349] Ashawa S. C., Kini U. R., Madlhvanath U., Aqueous coumarin system as a low range chemical dosimeter , Int. J. Appl. Radiat. Isot., 1979, 30(1): 7-10
    [350] Armstrong W. A., Facey R. A., Grant D. W., et al., A tissue-equivalent chemical dosimeter sensitive to 1 rad, Can. J. Chem., 1963, 1575

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700