用户名: 密码: 验证码:
静电旋风分离器气相流场的数值模拟及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用五孔探针测试了静电旋风分离器(电晕极安装在排气管附近,不通电)的内部流场,并对静电旋风分离器的阻力和效率进行了实验研究。采用修正的~(κ-ε)湍流模型,在贴体坐标系下,对静电旋风分离器不同电晕极安装位置的气相流场进行数值计算,所得数值计算结果与实验结果基本吻合。
     当电晕极贴近排气管安装时,在电晕极安装位置附近,切向速度被剧烈地干扰,表现为切向速度大幅度降低。在整个空间流域,切向速度平均值下降,内外涡旋交界面直径由常规旋风分离器的0.5d_e外移为1.2d_e(d_e为排气管直径)。静电旋风分离器内下行流区的切向速度有所增大(约增加5~13%左右),上行流区的切向速度明显减小,降低幅度达到20~45%。静电旋风分离器的下行流区内,轴向速度约降低1~4%。
     由于电晕极的影响,使得静电旋风分离器的阻力系数有较大幅度地降低,与不安装电晕极的旋风分离器的阻力系数相比较,阻力系数降低了约30%。这里的阻力降低不同于传统的减阻方法(以分离效率的降低为代价),在不加电压的条件下,仅仅在排气管附近安装电晕极时,与不安装电晕极相比,旋风分离器的总分离效率约提高2~3%,即在排气管上安装电晕极时有降低阻力提高分离效率的作用。
     当电晕极安装在排气管与筒体的中间位置时,与电晕极贴近排气管安装时相比,靠近旋风分离器简体的区域内(外涡区)切向速度明显下降,而在内涡区,切向速度有所增加。靠近旋风分离器筒体的外涡区是静电旋风分离器的有效分离空间,从离心力分离的角度来看,外涡区内切向速度明显下降是不利的。另一方面,当电晕极安装在排气管与筒体的中间位置时,能更大幅度地降低静电旋风分离器的阻力系数,与不
The data of the three-dimensional velocity distribution in electrocyclone are tested by using the five-orifice pitot on the basis of arranging corona wires near the vortex finder without additional voltage. Moreover, pressure drop and separation efficiency are tested for electrocyclones under different condition.The modified k — ε model are used to compute the gas turbulent flow in the electrocyclones on the basis of body-fitted coordinate system under the different corona wires' arranging position. The numerical results are in agreement with the tested data.When the corona wires are arranged close to the vortex finder, the tangential velocity fluctuate largely in the place near to corona wires, namely yielding a large decrease. From the whole measuring space, due to the effect of the corona wire, the average tangential velocity decreases, and the diameter of interface of inner-vortex and outer-vortex is increased from normal cyclone's 0.5de to electrocyclone's 1.2de (de is the vortex finder's diameter).Compared with the normal cyclone, the tangential velocity in the downward flow zone for electrocyclone increases by 5%~13%. The tangential velocity in upward flow zone decrease by 20%~45%. In the whole flow zone inside the electrocyclone, the average tangential velocity decreases obviously.Owing to the effect of corona wires, pressure drop coefficient of the electrocyclone with corona wires arranged close to vortex finder decreases by 30% in comparison with normal cyclone without the corona wires. This is the same as the conclusion derived from flow field analysis. At the same time, total separation efficiency increases by 2~3%, because of corona wires arranged close to vortex finder but no voltage, compared with same cyclone without corona wires, namely, the corona wires have effects of increasing
    separation efficiency and decreasing pressure drop.When the corona wires are arranged in the center between vortex finder and cylinder, due to the disturbance from the corona wires, in the outer-vortex zone close to cylinder, the tangential velocity decreases a little, but the tangential velocity increases in inner-vortex zone, compared with electrocyclone arranging corona wires close to vortex finder. The outer-vortex zone is effective separation region, in the aspect of centrifugal force separation, it is favorable for tangential velocity to be bigger, however, oppositely the corona wires slower the tangential velocity in outer-vortex zone and thus leads to the decrease of separation effect by centrifugal force. On the other hand, it has benefit for the reduction of pressure drop to arrange corona wires in the center between vortex finder and cylinder. Pressure drop coefficient of electrocyclone is 3.5, it decreases by 48.5% in comparison with normal cyclone without corona wires..Under the condition of corona wires arranged close to vortex finder, models for tangential velocity are given in the zone between the walls of electrocyclone and the outer side of corona wires' frame work.According to the distributions of electric field and gas flow field, the migration velocity of particles in effective separation zone is derived for electrocyclone. The calculation results and tested data show that it has respectively shortage and advantage to arrange corona wires close to vortex finder or in the center between the cylinder and vortex finder.
引文
[1] 马朝臣,魏名山.利用高温静电旋风捕集器捕集柴油机排气微粒.内燃机学报,2000,18(3):235-237
    [2] 嵇敬文.除尘器.北京:中国建筑工业出版社,1981
    [3] P. W. Dietz. Electrostatically enhanced cyclone separators. Powder Technology, 1982, 31(2), 221-226.
    [4] 史钟璋,张吉光,王永春.静电旋风除尘器性能的初步研究.通风除尘,1991,12(4):5-8
    [5] 史钟璋,孙腾阳,张吉光.静电旋风除尘器除尘机理的探讨.通风除尘,1994,13(1):36-39
    [6] 纪万里.一种新型静电强化旋风除尘器的研究.西安建筑科技大学硕士学位毕业论文,1997.
    [7] Kang Yanming, Shen Henggen, Wang Mingxing. Electrical Characteristics in An Electrocyclone. Proceedings of the 4th International Conference on Applied Electrostatic, Dalian, China, October 8-12, 2001, Dalian University of Technology Press, 2001, 368-371.
    [8] J. Plucinski, L. Gradon, j. Nowichi. Collection of aerosol particles in a cyclone with an external electric field. J Aerosol Sci, 1989. 20(6)695-700
    [9] Chi-Jen, Leonard F. S. Wang. Cost-benefit analysis of electrocyclone and cyclone. Resources Conservation and Recycling, 2001, 31, 285-292.
    [10] J. S. Shrimpton, R. I. Crane. Small Electrocyclone Performance. Chemical Engineering & Technology. 2001, 24(9), 951-955
    [11] Chen CJ, Wang LFS, Chang MT. Enhanced total collection efficiency of fly ash by comblining cyclone with electrostatic precipitator. Industr Pollut Preven Control 1999, 18(1): 40-60.
    [12] K. S. Lim;K. W. Lee;M. R. Kuhlman. An Experimental Study of the Performance Factors Affecting Particle Collection Efficiency of the Electrocyclone. Aerosol Science and Technology, 2001, 35(6), 969-977
    [13] Chi-Jen Chen. Enhanced Collection Efficiency for Cyclone by Applying an External electric Field. SEPARATION SCIENCE AND TECHNOLOGY, 2001, 36(3), 499-511
    [14] Li Jiwu;Cai Weijian;Dong Bingyan;Zhang Dachao. Experiment Study of the performance of cyclone Impulse Electrostatic Precipitation. Proceedings of the 4th International Conference on Applied Electrostatic, Dalian, China, October 8-12, 2001, Dalian University of Technology Press, 2001, 339-342.
    [15] Alx c. Hoffmann, Louis E. Sten. Gas Cyclones and Swirl Tubes. New York: Springer-Verlag Berlin Heidelberg, 2002
    [16] 龚光彩,利光裕.低阻电旋风除尘器性能研究.环境工程,1994,12(6):28-32.
    [17] 亢燕铭.静电强化旋风器合理结构的研究.西安建筑科技大学院硕士学位论文,西安:西安建筑科技大学院,1992.
    [18] 史钟璋,张吉光.CLT型静电旋风除尘器性能的实验研究.青岛建筑工程学院学报,1992,13(3):23-28
    [19] 亢燕铭,叶龙,曾汉侯.强化旋风器内的静电场.西安建筑科技大学学报,1996,28(2):142-146.
    [20] 程紫润等.电旋风除尘器性能的实验研究.中国安全科学学报,1991,10(4):1-7.
    [21] 程紫润,黄霞.高场强电旋风除尘器的实验研究.通风除尘,1993,12(2):13-15.
    [22] 王志.电晕线布置方式对静电旋风分离器性能影响的研究.沈阳航空工业学院学报,1997,17(3),77-80.
    [23] 王志,栾昌才.静电旋风除尘器除尘机理的研究.煤矿安全,1997,(11):2-5.
    [24] 魏名山,马朝臣.利用静电旋风除尘器捕集亚微米粒子的研究.环境工程,1992,(6):36-38.
    [25] Jiwu Li, Bingyan Dong and Weijian Cai. Study of Solid-gas Separator Mechanism of Cyclone with Impulse Electrostatic, The 4th International Conference on Applied Electrostatics, 2001, Dalian, China, October 8-12, 2001, Dalian University of Technology Press, 2001, 335-338.
    [26] 李济吾,蔡伟建.离心脉冲静电除尘模型的除尘性能实验研究.环境科学学报,2002,(3) 252-255.
    [27] 李明华,魏名山,马朝臣.静电旋风微粒捕集器的研究现状及其在柴油机上的应用.铁道机车车辆,2003,23(1):93-96.
    [28] 徐绍曾,马朝臣,肖宗成等.柴油机排气微粒静电旋风捕集的实验研究.内燃机学报,1993,11(1):51-56.
    [29] 唐胜卫.静电凝滤多管旋风除尘器的应用.华夏星火,2000,(10):48-49.
    [30] 汪军,杜晖,徐开义.利用高压静电技术改进旋风除尘器性能的研究.上海理工大学学报,2003,25(1):8-12.
    [31] 亢燕铭,沈恒根.高效旋风器降阻条件下的流场特征.西安建筑科技大学学报,1997,29(1):18-21。
    [32] 周力行.湍流两相流动与燃烧的数值模拟.清华大学出版社,1991
    [33] 杨卫宏,萧泽强.电厂旋风分离器计算机仿真与优化.热能动力工程,1999,14(5)387-389
    [34] 沈毅敏.循环流化床机组旋风分离器内气体流动的数值模拟.上海交通大学硕士学位论文,1999
    [35] Thompson J. F., Thames F. C. and Mastin, C. W., Automatic Numerical Generation of Body-Fitted Curvilinear Coordinate System for Field Containing Any Number of Arbitrary Two-Dimensional Bodies, J. Comput. Phys., vol. 15, 1974: 1-108
    [36] Pericleous K. A. Mathematical simulation of hydrocyclones. Appl. Math Modelling, 1987, 11: 242-255
    [37] David M. R. Numerical calculations of flow in a hydrocyclone operating without an air core. Appl. Math. Modelling, 1988, 12: 119-128
    [38] 林玮.旋风分离器内气固两相流的数值模拟及实验研究.上海理工大学博士学位论文,1997
    [39] 范维澄,万跃鹏.流动及燃烧的模型与计算.中国科技大学出版社,1992
    [40] L. Ma, D. B. Ingham and X. Wen. Numerical modeling of the fluid and partical penetration through small sampling cyclones. Pergamon PII: S0021-8502(00)00016-1
    [41] 由长福.方形分离器内气固两相流动的数值模拟.工程热物理学报,1996,17(2):252-255
    [42] 周力行 廖昌明.强旋气粒两相湍流的统一二阶矩封闭模型.工程热物理学报,1994,15(3):327-330
    [43] Patankar S.V.(美)著,张政译.传热与流体流动的数值计算.北京:科学出版社,1984
    [44] 陶文铨.数值传热学.西安交通大学出版社,1988
    [45] 陶文铨.计算传热学的近代进展.北京:科学出版社,2000
    [46] Karki K. C. and Patankar S. V. Calculation procedure for viscous incompressible flows in complex geometries. Numerical Heat Transfer, 1988, 14: 295-307
    [47] Shyy W. and Chen M. H. Pressure-based multigrid algorithm for flow at all speeds. AIAA J., 1992, 30(11): 295-307
    [48] 朱斌.采用非交错网格压力修正法计算不可压及可压亚、跨、超音速流动.工程热物理学报,15:284-287
    [49] 岑可法.气固分离理论及技术.杭州:浙江大学出版社,1999
    [50] F. Boysan, B C R Ewan, J Swithenbank, W H Ayers. Experimental and Theoretical Studies of Cyclone Separators Aerodynamics, Ⅰ. Chem. E. Symposium Series, 1983, No. 69: 305-319
    [51] F. Boysan. A Fundamental Mathematical Modeling Approach to Cyclone Design, Trans IchemE, 1982, 60: 222-230
    [52] Hidato Yoshida. Size Classification of Sobmicron Powder by Air Cyclone an Three-Dimensional Analysis. Journal of Chemical Engineering of Japan, 1991, Voi. 24, (5): 640-646
    [53] Henry F. Meier, Milton Mori. Anisotropic behavior of the Reynolds stress in gas and gas-solid flows in cyclones. Powder Technology, 1999, 101: 108-119
    [54] 林玮,王乃宁.旋风分离器内三维两相流场的数值模拟.动力工程,1999,19(1)72-76
    [55] 魏志军,张平.旋风分离器气相流场的数值模拟.北京理工大学学报,2000,20(5)561-564
    [56] 刘云龙等.旋流器结构对内流场影响的数值研究.石油大学学报,1999,23(4)62-64
    [57] 彭维明.切向旋风分离器内部流场的数值模拟及实验研究.农业机械学报,2001,32(4)20-24
    [58] 王连泽.旋风分离器三维速度的计算.暖通空调,1999,(3):35-38
    [59] 陈明绍.除尘技术的基本理论及应用.北京:中国建筑工业出版社.1981
    [60] 盛森芝.流速测量技术.北京:北京大学出版社.1987
    [61] 王连泽.旋风分离器内部流场和减阻杆的减阻机理的研究.清华大学博士研究生毕业论文,1995魏名山,马朝臣.多管静电旋风捕集器的研究.内燃机学报,2001,19(1):36-38
    [62] 柳绮年.旋风分离器三维流场的测定.力学学报.1978,(3):182-191
    [63] 上海化工研究院旋风分离器研究专题组.DII型旋风分离器的流场测定及分析.化学工程.1981,(1):44-50
    [64] 唐纯熙.旋风分离器流场和浓度场的测试与分析.通风除尘,1992,(1):27-41
    [65] 李文东,王连泽.旋风分离器内流场的数值模拟及方法分析.环境工程,2004,22(2):37-39
    [66] R. K. Duggins, P. C. W. Frith. Turbulence Anisotropy in Cyclones. Filtration & Separation. 1987, (11/12): 394-397
    [67] 张吉光,叶龙.计算粒子在旋风除尘器内平均停留时间的新方法.青岛建筑工程学院学报,1990,(3):22-27
    [68] 张吉光,沈恒根.静电旋风分离器的流场分析.热能动力工程,2002,(5):500-502
    [69] 张吉光,李华.静电旋风分离器流场的实验研究.流体机械,2002,(10):4-7
    [70] Zhang Ji-guang, Li Hua Shen Honggen. The Effect of the Corona electrode to the Electrocyclone's Flow Field. Proceedings of the Fourth China-Japan International Conference on Filtration and Separation, 2002: 395-400
    [71] Fu S, Huang, P. G.. A Comparison of Algebraic and Differential Second-Moment Closures for Ax symmetric Turbulent Shear Flows with and without Swirl. ASME Fluids Eng. 1998;110(6): 216-221
    [72] Fraser S M, Razek A M and Abdullah M Z, Computational and Experimental Investigations in a Cyclone Dust Separator, Proc Instn Mech Engrs, Part E, ImechE, 1997, vol 211, 247-257
    [73] Bradshaw P.. The Analogy between Streamline Curvature and Buoyancy in Turbulent Shear Flow, J. Fluid Mechanics, 1971, (5): 177-156
    [74] Koosinlin, M L, Launder, B E and Sharma, B I, Prediction of Momentum, Heat and Mass Transfer in Swirling Turbulent Boundary Layer, Trans. ASME, 1974, (5): 204-209
    [75] Launder, B E, Priddin, C H and Sharma, B I, The Calculation of Turbulent Boundary Layers on Spinning and Curved Surfaces, J. Fluid fngng, 1977, (3): 231-239
    [76] Abujelala, M T and Lilley, DG, Limitations and Empirical Extensions of the k-εModel as Applied to Turbulent-Confined Swirling Flows, Chem. Engng Commun., 1984, Vol31: 223-236
    [77] 徐继润,罗茜编.水力旋流器流场理论.北京:科学出版社,1998
    [78] Launder, B E and Spalding, D B, The Numerical Computation of Turbulent Flows, Comp. Methods Appl. Mech. Eng., 1974, vol. 3: 269-289
    [79] Serag-Eldin, M A and Spalding, D B, Computations of Three-Dimensional Gas Turbine Combustion Chamber Flows, ASME. J. Eng. Power, 1979, vol.101: 327-336
    [80] Thompson J. F., Warsi Z U A and Mastin C W. Numerical grid generation: Foundations and applications. New York: North-Holland, 1985
    [81] Chen C. L., M. T. Cheng. Grade efficiency of electrocyclone for fly ash particulates. J. Eng., National Chung Hsing University, 1998, 9(1): 1-8.
    [82] J. Plucinski, et al., Collection of aerosol particles in acyclone with an external electric. J. Aerosol Sci., 1989, 20 (6): 695-700.
    [83] S. M. Fraser, et al., Computational and experimental investigations in cyclone dust separator, Proc. Inst. Mech. Engis., Part E, J. Process Mech. Eng. 1997, 211 (E4): 247-257.
    [84] Noel de Nevers. Air Pollution Control Engineering, McGraw-Hill, New York, 2000, pp. 266-278.
    [85] J. Li, et al.. Study of solid-gas separation mechanism of cyclone with Impulse Excitation. J. Electrostat. 2003, 57 (3), 225-232.
    [86] Jiwu Li, Weijian Cai. Study of the cut diameter of solid-gas separation in cyclone with electrostatic excitation. Journal of Electrostatics, 2004, 60, 15-23
    [87] Venkata KN, Nay MB. Numerical simulation of swirl flow in cyclone separator with an auxiliary device. Conference Of Environmental Strategies for the 21st Century, Singapore, 8-10 Apr, 1998
    [88] 马耀星,亢燕铭.电强化型旋风器内细粒子分离研究.陕西环境,1999(3)17-19.
    [89] 王连泽,彦启森.旋风分离器减阻杆结构及减阻前后流场的测定与分析.实验力学,1998,13(4): 469-476.
    [90] A.C.霍夫曼,L.E.斯坦因.旋风分离器.北京:化学工业出版社,2004.
    [91] A. J. Ter Linder. Investigations into Cyclone Dust Collectors. The Institution of Mechanical Engineers Journal & Proceeding. 1994, 160: 233-251
    [92] C. B. Shepherd, C. E. Lapple. Flow Pattern and Pressure Drop in Cyclone Dust Collectors. Industrial and Engineering Chemistry. 1940, 32(5): 1246-1248
    [93] 上海化工研究院旋风分离器研究专题组.DIl型旋风分离器的流场测定及分析.化学工程,1981,(1):44-50
    [94] 许宏庆.旋风分离器的实验研究(上).实验技术与管理,1984,1(1):27-41
    [95] H. E. Weber, J. H. keenan. Head Loss in flow Through a Cyclone Dust Separator or Vortex Chamber. Journal of Applied Mechanics. 1957, (3): 16-21
    [96] C. B. Shepherd, C. E. Lapple. Flow Pattern and Pressure Drop. Industrial and Engineering Chemistry. 1939, 31(8): 972-985
    [97] C. J. Stairmand. Pressure Drop in Cyclone Separators. Engineering. 1949, (10): 409-412
    [98] H. Yoshida, T. Saeki, K. Hashimoto etc. Size Classification of Submicron Power by Air Cyclone and Three-dimensional Analysis. Journal of Chemical Engineering of Japan. 1991, 24(5): 640-647
    [99] K. S. Lim, H. S. Kim, K. W Lee. Comparative performances of conventional cyclones and a double cyclone with and without an electric field. Journal of Aerosol Science. 2004, (35)1: 103-115
    [100] EW Weisstein. The CRC concise encyclopedia of mathematics. London: Chapman and Hall, 1999
    [101] Alexander RMck. Fundamentals of cyclone design and opration. Proceedings Aus. Ⅰ.M. M, 1949: 203-228
    [102] W. Barth. Design and layout of the cyclone separator on the basis of new investigations. Brennst. Warme Kraft, 1956, (8)1-9
    [103] E. Muschelknautz. Die Berechnung von Zyklonabscheidern Fur gase (in german). Chemieing. Techn, 1972, 44: 63-71
    [104] 沈恒根.旋风分离器流场五孔探针测试研究.通风除尘,1995,14(3):14-18
    [105] A. J. Ter Linden: Investigation lnto Cyclone Dust Collectors. Proc. Inst. Mech. Eng. 1949, 160-233
    [106] 柳绮年,贾复等.旋风分离器三维流场的测定.力学学报,1978,3:182-185
    [107] 许宏庆.旋风分离器的实验研究.实验技术与管理.1984,1:27-31
    [108] D. Leith, W. Licht. The collection efficiency of cyclone type particle collectors: a new theoretical approach. AIChE Symposium. 1972, Series 68 (126): 196-206.
    [109] 谭天佑.工业通风除尘技术.北京:中国建筑工业出版社,984
    [110] 魏名山.用PIV进行静电旋风除尘器流场的测定.北京理工大学学报,2000,(8):496-499.
    [111] 邹声华,刘建仁.普通旋风除尘器结构尺寸优化设计.环境科学学报,1999,19(3):342-344
    [112] 孙志国,许琦.旋风除尘器结构尺寸优化设计.盐城工业专科学校学报.1996,9(2):31-33
    [113] 顾强,徐远森.利用静电凝并技术提高旋风除尘器除尘效率的半工业性试验研究.电力环境保护,1995,11(3):7-16
    [114] 许德玄,曲志和.静电旋风除尘技术的现场试验.环境科学,1997,18(6):39-41
    [115] 张国权.气溶胶力学.中国环境科学出版社,1987
    [116] 孙一坚,何泉.ZDS型静电旋风除尘器特性研究.卫生研究,1995,24(2):125-128
    [117] 郭金基,张康治.扩展式旋风静电除尘器空气粉尘驱进速度的计算.中山大学学报:自科版,1996,35(5):27-32
    [118] 杜晖,汪军,徐开义.静电旋风除尘器性能的研究.上海理工大学学报,2003,25(3):241-246.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700