用户名: 密码: 验证码:
不同粒径纳米碱土氟化物粉体的制备及热稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文采用微乳液,水溶液直接沉淀,双注小区反应和醇/水混合溶剂沉淀四种湿化学方法研究了碱土金属氟化物BaF_2,CaF_2和SrF_2纳米粉体的制备科学和技术,目的在于获得粒径可控的碱土金属氟化物纳米粉体,并研究其晶粒尺寸热稳定性,为碱土金属氟化物纳米粉体和块材的性能和应用研究打好基础。
     首先,采用CTAB/丁醇/庚烷/水四组分体系微乳液制备BaF_2纳米粉体,研究了体系组分的含量和配比对微乳液稳定性和对BaF_2粒径形貌的影响。结果表明,采用丁醇和CTAB质量比1:1有利于形成稳定的微乳液,BaF_2粒径大小和分布随微乳液体系中CTAB和水质量比升高而增大,获得了粒径为10nm的BaF_2纳米粉体。
     微乳液法虽然容易控制粒径,但产量低,成本高,本文研究了具有高产量和低成本优势的水溶液直接沉淀法制备BaF_2纳米粉体。根据过饱和度对沉淀粒径和分布影响的理论,用不同反应物浓度和混合方式制备BaF_2沉淀,还研究了临界过饱和附近的沉淀情况。结果表明,缓慢滴加混合,过饱和度低,非均相形核比重大,利于沉淀颗粒长大,反应物浓度对粒径的影响大,获得了亚微米级沉淀;快速混合沉淀,有利于形成高过饱和,利于均相形核,利于生成粒径小的沉淀,反应物浓度对粒径影响小,获得了80nm沉淀。在临界过饱和度值1.2附近获得粒径为10nm的BaF_2沉淀。
     为了进一步提高反应的过饱和度和均匀性,研究了极高过饱和度对沉淀粒径和分布的影响,设计了双注小区反应装置,同时还研究NH_4F溶液浓度和表面活性剂的影响。结果表明,双注小区反应形成极高的过饱和度,沉淀初期形成大量极小的粒子,但极不稳定,小粒子长大后,粒径和分布没有较大改观。长大后的沉淀似乎没有受到反应高过饱和度和初期沉淀小粒子的影响,推测这是水溶液中的一种本征的稳定状态。改变NH_4F溶液浓度和使用表面活性剂对沉淀粒径和分布也没有发生明显影响。可以认为,当过饱和度高于一定值后,继续提高过饱和度和过饱和度均匀性对沉淀粒径和分布减小没有明显效果。
     为了研究溶解度对沉淀物粒径的影响,使用低介电常数的醇/水混合溶剂沉淀制备了BaF_2纳米粉体。用纯水溶剂,水和乙醇体积比分别为3:1,1:1,3:5和1:4的不同混合溶剂沉淀得到了粒径分别为70nm,61nm,52nm,43nm和33nm的BaF_2纳米粉体。粒径随混合溶剂乙醇含量升高而减小,分散性和形貌规则性随之改善。乙醇/水混合溶剂制备的BaF_2沉淀粒径的倒数和溶剂介电常数倒数呈线性关系。通过混合溶剂成功控制了沉淀粒径。
The wet chemical methods of microemulsion, aqueous precipitation, double jet and water/ethanol mixed solvents were applied to synthesize nanocrystalline of alkaline fluorides including BaF_2, CaF_2 and SrF_2. The object of this dissertation is to obtain nanocrystalline of alkaline fluorides with controllable particle size, study the thermo-stability, and provide fundamental data for the research of properties and application of nanocrystalline alkaline fluorides powders and bulk materials.Firstly, Cetyltrimethylammonium bromide(CTAB)/butanol/heptane/water microemulsion system was applied to synthesize BaF_2 nanoparticles. The influences of the mass ratio of butanol to CTAB, the content of heptane and water, and the species of solute in water phase on the stability of microemulsion system and resultant BaF_2 particle size and size distribution were investigated. It was found that, the mass ratio 1 : 1 of butanol to CTAB favor to form stable microemulsion, and about 10nm BaF_2 particles with well monodispersed and ball-shaped were synthesized by reaction of stable Ba(NO_3)_2 microemulsion and NH_4F microemulsion, the BaF_2 particle size and distribution decreases with the mass ratio of CTAB to water increasing.Although it is easy to control the particle size of fluorides while synthesized with the method of microemulsion, the productivity of the method is quite low and cost is relatively high. A high productive and low cost method — aqueous precipitation was applied to syntheses nanocrystalline BaF_2. Based on the dependence of precipitate particle size and size distribution on the supersaturation, different reactant concentration and mixed manner were utilized to change supersaturation, and the precipitation in the vicinity of the critical supersaturation was also investigated. The results indicated that particles were easy to grow into submicro-crystalline, as the supersaturation was quite low while the reactants were added in droplet mode. In rapidly mixing mode, the particle size of resultants was much smaller as the supersaturation was relatively high. The nano-BaF_2 powders with the size of about 10nm were produced when the reactions happened in the vicinity of the critical supersaturation.A device for double jet reaction was designed and the influence of ultrahigh supersaturation on the particle size and size distribution was study so as to increase the supersaturation and uniformity of precipitation. The influences of surfactants and the concentration of NH4F solution were also studied. The results indicated that the method of double jet could provide very high supersaturation and large numbers of ultrafine particles
    formed at the beginning of precipitation. But the ultrafine particles were quite unstable and tend to grow into large particles, seem that they had not been affect by early supersaturation. It can be deduced to be an intrinsic stable state of aqueous precipitation. The concentration variety of NH4F solution and the application surfactants had little influence on the particle size and distribution. It can be deduced that further increase of supersaturation is not a effective method to obtain smaller particles and narrower distribution.A low dielectric constant system of water/ethanol mixed solvents was applied to synthesize nano-BaF2 powders so as to investigate the dependence of the particle size of the precipitates on the solubility. The average particle size 70nm, 61nm, 52nm, 43nm and 33nm of nano-BaF2 powders were obtained separately in pure water solvent and mixed solvents with the volume ratio of water to ethanol 3 I 1,1 I 1,3 I 5 and 1 : 4. The results indicated that the particle size of nano-BaF2 powders decreases with increasing the volume ratio of ethanol to water of the mixed solvents, and the dispersion and the morphology are better together. The relationship between the reciprocal of BaF2 particle size and the reciprocal of dielectric constant of mixed solvents is linear. This work showed the particle size can be successfully controlled by the mixed solvents.Ethanol/Water mixed solvents were also used to prepare nano-CaF2 powders with different particle size. CaF2 powders well dispersed , narrow size distribution, with the particle size 242nm, 78.7nm, 51nm, 31nm, 22.7nm and 14nm were obtained by combining the aqueous solvents with low reactant supersaturation and mixed solvents. The results showed that relatively bigger particles can be synthesized in the condition of low reactant supersaturation, small particles can be produced in mixed solvents. Precipitates with average size from micrometer to several nanometer region can be controllably synthesized by combining the low supersaturation manner and mixed solvent manner.Nano-SrF2 powders were synthesized by precipitation in the ethanol/water mixed solvents. Well dispersed Nano-SrF2 powders with the average size 32nm, 18.6nm, 23.2nm, 16nm, and 14.9nm were obtained in pure water solvent and mixed solvents with the volume ratio of water to ethanol 3 : 1, 1 : 1, 3 .' 5 and 1 ! 4, respectively.Finally, the thermal stability of Nano-BaF2 powders with different particle size was investigated by Differential scanning calorimetry (DSC). By Kissinger equation, the activation energy of BaF2 nanopowder with particle size 70nm, 52nm, 43nm and 33nm is 187.8KJ/mol or 1.947eV, 137.1KJ/mol or 1.422eV, 132.2KJ/mol or 1.371eV, 111.167KJ/mol or 1.153eV, respectively. An interesting result was showed that the activation energy
    decreased linearly to the particle size of nanocrystalline BaF2 powders decreasing, which can be explained in terms of the larger grains grow at the expense of the smaller ones in the grain growth.
引文
[1] H. Gleiter, Nanocrystalline Materials, Progress in Materials Science, 1989, 33, 223-315
    [2] A. H. Chokshi, A. Rosen, J. Karch, Gleiter, On the Validity of the Hall-Petch Relationship in Nanocrystalline Materials, Scripta Metall., 1989, 23, 1679-1684
    [3] Jakob Schietz, Francesco D. Di Tolla, Karsten W. Jacobsen, Softening of Nanocrystalline Metals at very Small Grain Sizes, Nature, 1998, 391, 561-563
    [4] J. Lian, B. Baudelet, A. A. Nararov, Model for the Prediction of the Mechanical Behaviour of Nanocrystalline Materials, Materials Science and Engineering A, 1993, 172, 23-29
    [5] J. E. Carsley, J. Ning, W. W. Milligan, S. A. Hackney, E. C. Aifantis, A Simple, Mixtures-Model for the Grain Size Dependence of Strength in Nanophase Metals, NanoSturctured Materials, 1995, 5, 441-448
    [6] X. Y. Qin, X. J. Wu, L. D. Zhang, Microhardness of Nanocrystalline Silver, Nanostructured Matrials, 1995, 5, 101-110
    [7] Hyoung Seop Kim, A Composite Model for Mechanical Properties of Nanocrystalline Materials, Scipta Materials, 1998, 39, 1057-1061
    [8] D. A. Konstanytiauidis, E. C. Aifaatis, On the"Anomalous" Handness of Nanocrystalline Materials, NanoStructured Materials, 1998, 10, 1111-1118
    [9] H. W. Song, S. R. Guo, Z. Q. Hu, A Coherent Polycrystal Model for the Inverse Hall-Petch Relation in Nanocrystalline Materials, NanoSturctured Materials, 1999, 11, 203-210
    [10] 卢柯,刘学东,胡壮麒,纳米晶体材料的Hall—Petch关系,材料研究学报,1994,8,385-391
    [11] 周宇松,吴希俊,纳米金属的力学性能,力学进展,2001,31,62-69
    [12] Q. P. Kong, B. Cai, M. L. Xiao, High Temperature Creep of Two Nanocrystalline alloys, Materials Science and Engineering A, 1997, 243-236, 91-93
    [13] B. Cai, Q. P. Kong, L. Lu, K. Lu, Low temperature creep of nanocrystalline pure copper, Materiasl Science and Engineering A, 2000, 286, 188-192
    [14] J. Schiótz, T. Vegge, F. D. Di Tolla, K. W. Jacobsen, Atomic-scale simulations of the mechanical deformation of nanocrystalline metals, Physical Review B, 1999, 60, 11971-11983
    [15] S. Li, L. Sun, Z. Wang, A model of hall-petch relationship in nanocrystalline materials, NanoStructured Materials, 1993, 2, 653-661
    [16] Ning Wang, Zhirui Wang, K. T. Aust, U. Erb, Effect of grain size on mechanical properties of nanocrystalline materials, Acta Metall. Mater., 1995, 2, 519-528
    [17] Laura L. Beecroft, Christopher K. Ober, Nanocomposite Materials for Optical Applications, Chem. Mater. 1997, 9, 1302-1317
    [18] Robert N. Grass, Wendelin J. Stark, Flame synthesis of calcium-, strontium-, barium fluoride nanoparticles and sodium chloride, Chem. Commun., 2005, 1767-1769
    [19] Fang Su, Xi Jun Wu, XiaoYing Qin, Bin Xie, Ionic conduction of nanophase Ca_(1-x)La_xF_(2+x), Chinese Science Bulletin, 1993, 38, 1518-1522
    [20] Xi Jun Wu, Fang Su, XiaoYing Qin, Synthesis and ionic conductivity of nanophase Ca_(1-x)La_xF_(2+x), Mater. Res. Soc. Syrup. Proc., 1993, 286, 27-32
    [21] W. Puin, P. Heitjans, Frequency Dependent Ionic Conductivity in Nanocrystalline CaF_2 Studied by Impedance Spectroscopy, Nanostructured Materials, 1995, 6, 885-888
    [22] W. Puin, S. Rodewald, R. Ramlau, P. Heitjans, J. Maier, Local and overall ionic conductivity in nanocrystalline CaF_2, Solid State Ionics, 2000, 131, 159-164
    [23] R. Kubo, Electronic Properties of Metallic Fine Particles, J. Phys. Soc. Japan, 1962, 17, 975-986
    [24] R.Uyeda,金属烟粒子结晶学,金寿日,赵新洛(译),西南师范大学出版社,1993
    [25] G. Palumbo, S. J. Thorpe, K. T. Aust, On the Contribution of Triple Junctions to the Structure and Properties of Nanocrystalline Materials, Scripta Metallurgica et Materialia, 1990, 24, 1347-1350
    [26] G. alumbo K. T. Aust, U. Erb, Triple Line Defects in Nanostructured Materials, Materials Science Forum, 1996, 225-227, 281-286
    [27] B. Peng, M. Cai, G. Li, X. J. Wu, Molecular Dynamics Study of the Microstructure and Properties of Nanocrystalline Copper, NanoSturctured Materials, 1994, 4, 475-48
    [28] L. Y. Xiong, W. Deng, J. Zhu, A. Dupasquier, X. J. Wu, X. L. Ji, Positron Lifetime in Nanophase Ceramic TiO_2 with Different Sintering Temperature, Materials Science Forum, 1995, 175-178, 577-580
    [29] D. X. Li, D. H. Ping, H. Q. Ye, X. Y. Qin, X. J. Wu, Hrem Study of the Microstructure in Nanocrystalline Materials, Materials Letters, 1993, 18, 29-34
    [30] 平德海,李斗星,叶恒强,吴希俊,几种纳米固体材料德显微结构特征,金属学报,1995,31,A79-84
    [31] S. GZaichenko A. M. Glezer, Disclination Mechanism of Plastic Deformation of Nanocrystalline Materials, Interface Science, 1999, 7, 57-67
    [32] P. Keblinski, D. Wolf, S. R. Phillpot, H. Gleiter, Sturcture of Grain Boundaries in Nanocrystalline Pallandium by Molecular Dynamics Simulation, Scripta Materials
    [33] H. Van Swygenhoven, A. Caro, D. Farkas, Grain Boundary Structure and its Influence on Plastic Deformation of Polycrystalline FCC Metals at the Nanoscale: A Molecular Dynamics Study, Scripta Mater., 2001, 44, 1513-1516
    [34] H. Van Swygenhoven, A. Carod. Farkas, A Molecular Dynamics Study of Polycrystalline FCC Metals at the Nanoscale: Grain Boundary Structure and its Influence on Plastic Deformation, Materials Science and Engineering A, 2001, 309-310, 440-444
    [35] 张皓月,卢柯,胡壮麒,纳米晶体Se的微观结构特征,金属学报,1995,31,B123-128
    [36] 卢柯,刘学东,张皓月,胡壮麒,纯镍纳米晶体的晶格膨胀,金属学报,1995,31,A74-78
    [37] Tansel Karabacak, James S. DeLuca, Pei-I Wang, Gregory A. Ten Eyck, Dexian Ye, Gwo-Ching Wang, Toh-Ming Lu, Low temperature melting of copper nanorod arrays, Journal of Applied Physics, 2006, 99, 064304
    [38] Kerwyn Casey Huang, Tairan Wang, John D. Joannopoulos, Nanoscale properties of melting at the surface of semiconductors,Physics Review B, 2005, 72, 195314
    [39] H. W. Sheng, Z. Q. Hu, K. Lu, Metaling and Freezing Behaviors of Pb Nanoparticles Embedded in an Almatrix, Nanostmctured Materials, 1997, 9, 661-664
    [40] Q. Jiang, C. C. Yang, J. C. Li, Melting enthalpy depression of nanocrystals, Materials Letters, 2002, 56, 1019-1021
    [41] Z. L. Cui, L. F. Dong, C. C. Hao, Microstructure and magnetic property of nano-Fe particles prepared by hydrogen arc plasma, Materials Science and Engineering: A, 2000, 286, 205-207
    [42] Mladen Barbica, Axel Scherer, Magnetic nanostructures as amplifiers of transverse fields in magnetic resonance, Solid State Nuclear Magnetic Resonance, 2005, 28, 91-105
    [43] C. P. Chen, T. H. Chang, T. F. Wang, Synthesis of magnetic nano-composite particles, Ceramics International, 2001, 27, 925-930
    [44] Tetsuji Saito, Magnetic properties of Nd-Fe-Ti-C-B nanocomposite magnets produced by spark plasma sintering method, J. Appl. Phys., 2006, 99, 068522
    [45] R. reisheld, Nanosized semiconductor particles in glasses prepared by the sol-gel method: their optical properties and potential uses, Journal of Alloys and Compounds, 2002, 341, 56-61
    [46] Wenting Dong, Congshan Zhu, Optical properties of surface-modified Bi_2O_3 nanoparticles, Journal of Physics and Chemistry of Solids, 2003, 64, 265-271
    [47] Kebin Zhou, Xun Wang, Xiaoming Sun, Qing Peng, Yadong Li, Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes, Journal of Catalysis, 2005, 229, 206-212
    [48] R. T. K. Baker, K. Laubernds, A. Wootsch, Z. Paal, Pt/Graphite Nanofiber Catalyst in n-Hexane Test Reaction, Journal of Catalysis, Volume: 2000, 1, 165-167
    [49] A. K. Chatterjee, Maheshwar Sharon, Rangan Banerjee, Alkaline fuel cell: carbon nanobeads coated with metal catalyst over porous ceramic for hydrogen electrode, Journal of Power Sources, 2003, 117, 39-44
    [50] Zhang Mei, Xiddong Wang, Fuming Wang, Wenchao Li, Oxygen sensitivity of nano-CeO_2 coating TiO_2 materials, Sensors and Actuators B: Chemical, 2003, 92, 167-170
    [51] S. V. Tambwekar,. D. Venugopal,. M. Subrahmanyam, H2 production of(CdS-ZnS)-TiO_2 supported photocatalytic system, International Journal of Hydrogen Energy, 1999, 24, 957-963
    [52] Matthias Weil, Erich Zobetz, Franz Werner, Frank Kubel, New alkaline earth aluminium fluorides with the formula(M, M')AlF5(M, M'=Ca, Sr, Ba), Solid State Sciences, 2001, 3, 441-453
    [53] Z. J. Kang, Y. X. Wang, F. T. You, J. H. Lin, Hydrothermal Syntheses and Crystal Structure of NH_4Ln_3F_(10)(Ln=Dy, Ho, Y, Er, Tm), Journal of Solid State Chemistry, 2001, 158, 358-362
    [54] Philip M. Almond, Laura Deakin, Arthur Mar, Thomas E. Albrecht-Schmitt, Hydrothermal Syntheses, Structures, and Magnetic Properties of the U(Ⅳ) Fluorides(C_5H_(14)N_2)_2U_2F_(12)·5H_2O and(NH_4)_7U_6F_(31), Journal of Solid State Chemistry, 2001, 158, 87-93
    [55] Fangtian You, Yingxia Wang, Jianhua Lin, Ye Tao, H ydrothermal synthesis and luminescence properties of NaGdF :Eu, Journal of Alloys and Compounds, 2002, 343, 151-155
    [56] X. Xun, S. Feng, R. Xu, Hydrothermal Synthesis of Complex Fluorides LiHoF_4 and LiErF_4 with Scheelite Structures under Mild Conditions, Materials Research Bulletin, 1998, 33, 369-375
    [57] Fangtian You, Shihua Huang, Shuman Liu, Ye Tao, Synthesis, structure and VUV luminescent properties of rubidium rare-earth fluorides, Journal of Solid State Chemistry, 2004, 177, 2777-2782
    [58] Francesca Porta, Laura Prati, Michele Rossi, Giorgio Scafi, Synthesis of Au(0) nanoparticles from W/O microemulsions, Colloids and Surfaces A: Physicochem. Eng. Aspects, 2002, 211, 43-48
    [59] Sunqing Qiu, Junxiu Dong, Guoxu Chen, Preparation of Cu Nanoparticles from Water-in-Oil Microemulsions, Journal of Colloid and Interface Science, 1999, 216, 230-234
    [60] Fang Li, Cumaraswamy Vipulanandan, Kishore K. Mohanty, Microemulsion and solution approaches to nanoparticle iron production for degradation of trichloroethylene, Colloids and Surfaces A: Physicochem. Eng. Aspects, 2003, 223, 103-112
    [61] M. Ojeda, S. Rojas, M. Boutonnet, F. J. Perez-Alonso, F. J. Garcia-Garcia, J. L. G. Fierro, Synthesis of Rh nano-particles by the microemulsion technology-Particle size effect on the CO+H_2 reaction, Applied Catalysis A-General, 2004, 274, 33-41
    [62] H. H. Ingelsten, R. Bagwe, A. Palmqvist, M. Skoglundh, C. Svanberg, K. Holmberg, D. O. Shah, Kinetics of the formation of nano-sized platinum particles in water-in-oil microemulsions, Journal of Colloid and Interface Science, 2003, 241, 104-111
    [63] 陈龙武,甘礼华,岳天仪,姜继森,杨燮龙,微乳液反应法制备α-Fe_2O_3超细粒子的研究,物理化学学报,1994,10,750-754
    [64] Yongjun He, Bolun Yang, Guangxu Cheng, Controlled synthesis of CeO_2 nanoparticles from the coupling route of homogenous precipitation with microemulsion, Materials Letters, 2003, 57, 1880-1884
    [65] D. S. Ai, S. H. Kang, Synthesis of 3Y-ZrO_2 nano-powders via a W/O emulsion, Ceramics International, 2004, 30, 619-623
    [66] Ruinian Hua, Chunyu Zang, Chen Shao, Demin Xie, Chunshan Shi, Synthesis of barium fluoride nanoparticles from microemulsion, Nanotechnology, 2003, 14, 588-591
    [67] 华瑞年,雷炳富,谢德民,石春山,微乳液法制备CaF_2纳米颗粒,高等学校化学学报,2003,24,1756-1757
    [68] Hongzhou Lian, Jie Liu, Zeren Ye, Chunshan Shi, Synthesis and photoluminescence properties of erbium-doped BaF_2 nanoparticles, Chemical Physics Letters, 2004, 386, 291-294
    [69] Sunqing Qiu, Junxiu Dong, Guoxu Chen, Synthesis of CeF_3 nanoparticles from water-in-oil microemulsions, Powder Technology, 2000, 113, 9-13
    [70] A. Mersmann, Fundamentals of crystallization, In(Ed.), Crystallization technology handbook. New York: Marcel Dekker, 2001
    [71] Ingo H. Leubner, Particle nucleation and growth models, Current Opinion in Colloid & Interface Science, 2000, 5, 151-159
    [72] Bernd Judat, Matthias Kind, Morphology and internal structure of barium sulfate—derivation of a new growth mechanism, Journal of Colloid and Interface Science, 2004, 269, 341-353
    [73] H. Ebendorff-Heidepriem, D. Ehrt, Formation and UV absorption of cerium, europium and terbium ions in different valencies in glasses, Optical Materials, 2000, 15, 7-25
    [74] Jacques Lucas, Frederic Smektala, Jean Luc Adam, Fluorine in Optics, Joumal of Fluorine Chemistry, 2002, 114, 113-118
    [75] M. Kwasny, Z. Mierczyk, R. Stepiefi, K. Jedrzejewski, Nd~(3+), Er~(3+) and Pr~(3+) doped fluoride glasses for laser applications, Journal of Alloys and Compounds, 2000, 300-301, 341-347
    [76] Doris Ehrt, Fluoroaluminate glasses for lasers and amplifiers, Current Opinion in Solid State and Materials Science, 2003, 7, 135-141
    [77] Marcel Poulain, Crystallization in Fluoride Glasses, Thermochimica Acta, 1996, 280-281, 343-351
    [78] G. H. Frischat, B. Hueber, B. Ramdohr, Chemical Stability of ZrF_(4-) and AlF_(3-) based Heavy Metal Fluoride Glasses in Water, Journal of Non-Crystalline Solids, 2001, 284, 105-109
    [79] J. Qiu, K. Maeda, A. Konishi, R. Terai, K. Kadono, Influence of Various Divalent Metal Fluorides on the Properties of Glasses in the ZrF_4-AlF_3 System, Journal of Non-Crystalline Solids, 1995, 184, 109-113
    [80] Guoyin Zhang, Marcel Poulain, Animesh Jha, New Cadmium Fluorochloride Glasses, Journal of Non-Crystalline Solids, 1995, 184, 72-78
    [81] Ahmed Boutarfaia, Marcel Poulain, Fluoride glasses in the InF_3-GaF_3-YF_3-PbF_2-CaF_2-ZnF_2 system, Journal of Physics and Chemistry of Solids, 2002, 63, 2129-2133
    [82] A. Boutarfaia, M. A. Poulain, M. J. Poulain, S. E. Bouaoud, Fluoroindate Glasses Based on the InF_3-BaF_2-YF_3 System, Journal of Non-Crystalline Solids, 1997, 213-214, 36-39
    [83] Dakui Dong, Zhonglin Bo, Jiqian Zhu, Fuding Ma, Study of Properties of InF_(3-) based Glasses Containing Different Valent Fluorides, Journal of Non-Crystalline Solids, 1996, 204, 260-264
    [84] Setsuhisa Tanabe, Rare-earth-doped glasses for fiber amplifiers in broadband telecommunication, C. R. Chimie, 2002, 5, 815-824
    [85] Jia Jiang, Guoyin Zhang, Marcel Poulain, Cerium-containing glasses for fast scintillators,Journal of Alloys and Compounds, 1998, 275-277, 733-737
    [86] Pieter Dorenbos, Light output and energy resolution of Ce~(3+)-doped scintillators, Nuclear Instruments and Methods in Physics Research A, 2002, 486, 208-213
    [87] P. Schotanus, C. W. E. Van Eijk, R. W. Hollander, Development study of a new gamma camera, IEEE. TranB. Nucl. Sci., 1987, 34, 272—276
    [88] Andrzej J. Wojtowicz, Rare-earth-activated wide bandgap materials for scintillators, Nuclear Instruments and Methods in Physics Research A 2002, 486, 201-207
    [89] V. Wagner, A. Kugler, M. Paehr, M. Sumbera, A. Taranenko, S. Hlavác, R. Lorencz, R. Wohlgemuth, R. S. Simon, Detection of Relativistic Neutrons by BaF_2 Seiotillators, Nuel. lnstr. and Meth., 1997, A 394: 332-340
    [90] W. Klamra, A. Kerek, M. Moszynski, L. O. Norlin, D. Novák, G. Possnert, Response of BaF_2 and YAP: Ce to heavy ions, Nucl. Instr. and Meth. A., 2000, 444, 626-630
    [91] K. Itoh, H Yanagita, H. Tawarayama, K. Yamanaka, E. Ishikawa, K. Okada, H. Aoki, Y. Matsumoto, A. Shirakawa, Y. Matsuoka, H. Toratani, Pr~(3+) doped InF_3/GaF_3 based fluoride glass fibers and Ga-Na-S glass fibers for light amplification around 1.3um, Journal of Non-Crystalline Solids, 1999 256 & 257, 1-5
    [92] Nishida Yoshiki, Kanamori Terutoshi, Sakamoto Tadashi, Ohishi Yasutake, Sudo Shoichi, Development of PbF_2-GaF_3-InF_3-ZnF_2-YF_3-LaF_3 glass for use as a 1.3 μm pr~(3+)-doped fiber amplifier host, Journal of Non-Crystalline Solids, 1997, 221, 238-244
    [93] Akira Sekiya, Hengdao Quan, Masanori Tamura, Renxiao Gao, Junji Murata, Fluorination of Chlorofluoroether Using Catalyst Supported by Porous Aluminum Fluoride, Journal of Fluorine Chemistry, 2001, 112, 145-148
    [94] Honggon Kim, Hoon S. Kim, Byung G. Lee, Hyunjoo Lee, Sehoon Kim, Effect of magnesium fluoride in chromium-magnesium catalysts on the fluorination reaction of 1, 1, 1-trifluoro-2-chloroethane, Chemical Communications, 1995, 2383-2384
    [95] J. Krishna Murthy, Udo Gross, Stephan Rtidiger, Ercantinveren, Wolfgang Unger, Erhard Kemnitz, Synthesis and characterization of chromium(Ⅲ)-doped magnesium fluoride catalysts, Applied Catalysis A: General, 2005, 282, 85-91
    [96] Mafia Wojciechowska, Michai Zielinski , Mariusz Pietrowski, MgF_2 as a Non-Conventional catalyst Support, Journal of Fluoride Chemistry, 2003, 120, 1-11
    [97] Heng-Dao Quan, Masanori Tamura, Ren-Xiao Gao, Akira Sekiya, Preparation and application of porous calcium fluoride—a novel fluorinating reagent and support of catalyst, Journal of Fluorine Chemistry, 2002, 116, 65-69
    [98] 张益群,碱金属氟化物/La_2O_3催化剂上的甲烷氧化偶联,催化学报,1995,16,459-463
    [99] 龙瑞强,陈明树,卢维奇,万惠霖,碱土金属氟化物促进Eu_2O_3催化剂的甲烷氧化偶联剂,中国稀土学报,1997,15,197-201
    [100] Ruiqiang Long, Yaping Huang, Weizheng Weng, Huilin Wan, Khirui Tsai, The Performance and Structure of Rare Earth Oxide Modified by Strontium Fluoride for Methane Oxidative Coupling, Catalyst Today, 1996, 30, 59-65
    [101] P. Berastegui, S. Hull, Structure and conductivity of some fluoride ion conductors, Solid State Ionics, 2002, 154-155, 605-608
    [102] N. I. Sorokin, M. W. Breiter, Anionic Conductivity and Thermal Stability of Single Crystal of Solid Solutions Based on Barium Fluoride, Solid State Ionics, 1997, 99, 241-250
    [103] V. Trnovcová, P. P. Fedorov, A. A. Bystrova, T. Srámková, B. P. Sobolev, Electric and Dielectric Properties of Monoclinic BaR_2F_3(R=Rare Earth Elements) Single Crystals, Solid State Ionics, 1998, 106, 301-307
    [104] N. I. Sorokin, M. W. Breiter, Anionic conductivity and thermal stability of single crystals of solid solutions based on calcium fluoride, Solid State Ionics, 1999, 116, 157-165
    [105] N. I. Sorokin, M. W. Breiter, Anionic Conductibity and Thermal Stability of Single Crystal of Solid Solutions Based on Strontium Fluoride, Solid State Ionic, 1997, 104, 325-333
    [106] G. Róg, A. Kielski, A. Kozlowska-Róg, M. M. Buéko, Comostie(CaF_(2+α-)Al_2O_3) Solid Electrolytes: Preparation, Properties and Application to the Solid Oxide Galvanic, Ceramics Intenational, 1998, 24, 91-98
    [107] G. Róg, M. M. Buéko, A. Kielski, A. Kozlowska-Róg, Conductivity of Composite Calcium Fluoride-Silica Solid Eledtrlytes, Ceramic International, 1999, 25, 623-630
    [108] B. G. Ravi, N. Baskaran, S. Ramasamy, M. Sekar, K. Govinda Rajan, Preparation and a. c. Conductivity Studies of CaF_2-LiF Composites, Materials Science and Engineering, 1996, B41, 241-246
    [109] 哈根穆勒,固体电解质:一般原理、特征、材料和应用,科学出版社,1982
    [110] 喻萍,薛锦,CeF3对自保护药芯焊丝溶敷金属中夹杂物和任性的影响,机械工程学报,2005,41,221-225
    [111] 氟化物对自保护药芯焊丝焊接工艺性能的影响及熔敷金属中P、Si的控制,焊接学报,2004,25,69-72
    [112] Zefu Zhang;Laigui Yu, Weimin Liu, Qunji Xue, The effect of LaF_3 nanocluster modified with succinimide on the lubricating performance of liquid paraffin for steel-on-steel system, Tribology International, 2001, 34, 83-88
    [113] Christopher M. Bender, James M. Burlitch, Synthesis and Fluorescence of Neodymium-Doped Barium Fluoride Nanoparticles, Chem. Mater., 2000, 12, 1969-1976
    [114] 苏昉,谢斌,赵明文,吴希俊,纳米CaF_2离子电导率和介电常数的静水压效应,物理学报,1995,44,755-762
    [115] 苏昉,吴希俊,秦晓英,谢斌,纪小丽,纳米CaF_2和纳米Ca_(0.75)La_(0.25)F_(2.25)的结构对离子电导率的影响,物理学报,1993,42,969-977
    [116] 刘金芳,吴希俊,许国良,王评初,纳米PbF_2的制备,物相组成和离子导电性,无机材料学报,2000,15(3),447-450
    [117] 刘金芳,纳米PbF2的介电性能,材料科学与工程,2002,375-377
    [118] 刘金芳,吴希俊,许国良,周宇松,李冰寒 固结压强对纳米PbF2的相变和离子电导率的影响,高压物理学报,2000,14(1),16-21
    [119] N Sata, K Eberman, K Eberl, J Maier, Mesoscopic fast ion conduction in nanometre-scale planar heterostructures, Nature, 2000, 408, 946-949
    [120] N. Sata, N. Y. Jin-Phillipp, K. Eberl, J. Maier, Enhanced ionic conductivity and mesoscopic size effects in heterostructures of BaF_2 and CaF_2 Solid State Ionics, 2002, 154-155, 497-502
    [121] X. X. Guo, N. Sata, J. Maier, Effects of orientation and substrate on ion transport in fluoride heterostructures grown by molecular beam epitaxy, Electrochimica Acta., 2004, 49, 1091-1096
    [122] Igor Kosacki Vladimir Petrovsky, and Harlan U. Anderson, Band gap energy in nanocrystalline ZrO_2: 16% Y thin films, Applied Physics Letters, 1999, 74(3), 341-344
    [123] Y Yoshikawa, G. H. Nancollas, The Kinetics of Crystal Growth of Magnesium Fluoride, J. Crystal Growth, 1983, 64, 222-228
    [124] G. H. Nancollas, R. A. Bochner, E. Liolios, L. J. Shyu, Y. Yoshikawa, J. P. Barone, Crystal Growth of Calcium Fluoride from Aqueous Solution, AIChE Symp. Ser., 1982, 215, 26-36
    [125] R. A. Bochner, Abbas Abdul Rahman, G. H. Nancollas, Crystal Growth of Strontium Fluoride fromAqueous Solution, J. Chem. Soc. Faraday Trans. I., 1984, 80, 217-224
    [126] J. P. Barone, D. Svrjcek, G. H. Nancollas, The Crystal Growth of Barium Fluoride in Aqueous Solution, J. Crystal Growth, 1983, 62, 27-33
    [127] Y. Yoshikawa, G. H. Nancollas, The Kinetics of Crystallization of Group Ⅱ Fluoride Salts in Aqueous Solution, J. Crystal Growth, 1984, 69, 357-361
    [128] Z. Kolar, J. J. M. Binsma, B. Subotic, Precipitation of Barium Fluoride Microcrystals from Electrolytic Solutions: the Influence of the Composition of the Precipitation Solution, J. Crystal Growth, 1984, 66, 179-188
    [129] Z. Kolar, J. J. M. Binsma, B. Subotic, The Influence of Temperature and the Concentration of the Properties of β-
    [130] Z. Kolar, J. J. M. Binsma, B. Subotic, The Formation of Orthorhombic BaF2 By Precipitation from Aqueous Solutions and its Transformation into Cubic BaF2, Journal of Crystal Growth, 1986, 76, 408-412
    [133] Xiaoming Sun, Yadong Li, Size-controllable luminescent single crystal CaF_2 nanocubes, Chem. Commun., 2003, 1768-1769
    [134] 梁起,张治军,薛群基,刘维民,LaF3纳米微粒的摩擦学行为研究,稀土,1999,20,32-35
    [135] 韩元山,田彦文,王常珍,吴玉锋,安守勇,翟玉春,微波法制备LaF3超细粉,中国有色金属学报,2004,14,1426-1430
    [136] 吴志军,陶小军,周静芳,党鸿辛,CeF3纳米微粒的合成、结构及摩擦学行为研究,稀土,2001,22,1-4
    [137] Xun Wang, Jing Zhuang, Qing Peng, Yadong Li, A General Strategy for Nanocrystal Synthesis, Nature, 2005, 437, 121-124
    [138] A. Munitz, Z. Lime, J. C. Rawers, J. S. Adams, R. J. Fields, Effect of nitrogen on the mechanical properties and microstructure of hot isostatically pressed nanograined Fe, Nanostructured Mater.,, 1999, 11, 159-177
    [139] 姚连增,叶长辉,牟季美,李远红,纳米Pd粉的热稳定性研究,化学物理学报,2000,13,84-87
    [140] 李继刚,吴希俊,谭洪波,刘金芳,纳米碳化钨粉的制备及其热稳定性研究,稀有金属材料与工程,2004,33,736-739
    [141] 吴大雄,吴希俊,吕燕飞,王晖,纳米LaF_3块体的制备及热稳定性研究,稀有金属材料与工程,(已录用)
    [142] L. C. Chen, ESpaepen, Analysis of Calorimetric Measurements of Grain Growth, J. Appl. Phy., 1991, 69, 679-688
    [143] K. Lu, W. D. Wei, J. T. Wang, Grain growth kinetics and interfacial energies in nanocrystalline Ni-P alloys, J. Appt. Phys., 1991, 69, 7345-7347
    [144] L. Lu, N. R. Tao, L. B. Wang, B. Z. Ding, K. Lu, Grain growth and strain release in nanocrystalline copper, Joumal of Applied Physics, 2001, 89, 8408-8414
    [145] A. P. Zhilyaev, G. V. Nurislamova, S. Surinach, M. D. Baró, T. G. Langdon, Dalorimetric Calorimetric Measurements of Grain Growth in Ultrafine-Grained Nickel, Mater. Phys. Mech., 2002, 5, 23-30
    [146] R. Würschum, S. Gru, B. Gissibl, H. Natter, R. Hempelmann, H. E. Schaefer, Free Volume and Theermal Stability of Electro-Deposited Nanocrystalline Pd, Nanosturtured Materials, 1997, 9, 615-618
    [147] B. Huang, R. J. Perez, E. J. Lavemia, Grain growth of nanocrystalline Fe-Al alloys produced by cryomilling in liquid argon and nitrogen, Materials Science and Engineering A, 1998, 255, 124-132
    [148] Z. F. Dong, K. Lu, I. Bakony, Influence of Pre-annealing on the Thermal Stability of a Nanocrystalline Hf-Ni Alloy, Nanostructured Materials, 1999, 11, 187-194
    [149] 刘河洲,胡文彬,顾明元,吴人洁,纳米TiO2晶粒生长动力学研究,无机材料学报,2002,17,429-436
    [150] W. Klamra, A. Kerek, M. Moszynski, L. O. Norlin, D. Novák, G. Possnert, Response of BaF_2 and YAP: Ce to heavy ions, Nucl. Instr. and Meth. A., 2000, 444, 626-630
    [151] W. Bollmann, P. Gorlich, W. Hauk, H. Mothes, Ionic conduction of pure and doped CaF_2 and BaF_2 crystals, Phys. Stat. Sol.,(a) 1970, 2, 157-170
    [152] Minhua Cao, Changwen Hu, Enbo Wang, The First Fluoride One-Dimensional Nanostructures: Microemulsion-Mediated Hydrothermal Synthesis of BaF_2 Whiskers, J. AM. CHEM. SOC., 2003, 125, 11196-11197
    [153] 莫春生,邬实华,十六烷基三甲基溴化铵/正丁醇/正庚烷/水四组份体系的相行为及微乳结构研究,江西师范大学学报(自然科学版),2001,25,144-149
    [154] H.A.莱蒂南(Herbert A.Laitinen),W.E.哈里斯(Walter E.Harris),南京大学,复旦大学,吉林大学,北京大学,四川大学,兰州大学译,人民教育出版社,第二版,1982,171
    [155] A. Mersmann, Crystallization and precipitation, Chemical Engineering and Processing, 1999, 38, 345-353
    [156] Matthias Kind, Colloidal aspects of precipitation processes, Chemical Engineering Science, 2002, 57, 4287-4293
    [157] M. Kojima, E. J. Hinch, A. Acrivos, The formation and expansion of toroidal drop moving in a viscous Luid, Physics of Fluids, 1984, 27, 19-32
    [158] U. SchaLinger, G. Machu, Interfacial phenomena in Suspensions, Chemical Engineering Technology, 1997, 22(7), 617-619
    [159] Matthias Kind, Colloidal aspects of precipitation processes, Chemical Engineering Science, 2002, 57, 4287-4293
    [160] 吴大雄,纳米氟化镧的制备及热稳定性、导电性能的研究,(博士毕业论文)
    [161] Chia-Szu Fang, Yu-Wen Chen, Preparation of titania particles by thermal hydrolysis, of TICl_4 in n-propanol solution, Materials Chemistry and Physics, 2003, 78, 739-745
    [162] Hong Kyu Park, Young Tae Moon, Do Kyung Kim, Chong Hee Kim, Formation of Monodisperse Spherical TiO2 Powders by Thermal Hydrolysis of Ti(SO_4)_2, Journal of American Ceramic Society, 1996, 79, 2727-2732
    [163] Hong Kyu Park, Young Tae Moon, Do Kyung Kim, Chong Hee Kim, Effect of Solvent on Titania Particle Formation and Morphology in Thermal Hydrolysis of TiCl_4, Journal of American Ceramic Society, 1997, 80, 743-749
    [164] Michael Z. C. Hu, E. Andrew Payzant, Charles H. Byers, Sol-Gel and Ultrafine Particle Formation via Dielectric Tuning of Inorganic Salt-Alcohol-Water Solutions, Journal of Colloid and Interface Science, 2000, 222, 20-36
    [165] Young Tae Moon, Do Kyung Kim, Chong Hee Kim, Preparation of Monodisperse ZrO2 by the Microwave Heating of Zirconyl Chloride Solutions, Journal of American Ceramic Society, 1995, 78, 1103-1106
    [166] Young Tae Moon, Hong Kyu Park, Do Kyung Kim, Chong Hee Kim, Preparation of Monodisperse and Spherical Zirconia Powders by Heating of Alcohol-Aqueous Salt Solutions, Journal of American Ceramic Society, 1995, 78, 2690-2694
    [167] Huey-Ing Chen, Hung-Yi Chang, Homogeneous precipitation of cerium dioxide nanoparticles in alcohol/water mixed solvents, Colloids and Surfaces A: Physicochem. Eng. Aspects, 2004, 242, 61-69
    [168] 秦振平,郭红霞,李东升,付锋,混合溶剂沉淀法制备纳米NiO及其表征,功能材料,2003,34,98-99
    [169] 李亚栋,李成韦,郑化桂,李龙泉,段镶锋,钱逸泰,混合溶剂中纳米级NiO的制备及表征,高等学校化学学报,1997,18,1921-1923
    [170] D. Chen, R. Xu, Hydrothermal Synthesis and Characterization of Nanocrystalline Fe_3O_4 Powders, Materials Research Bulletin, 1998, 33, 1015-1021
    [171] Dairong Chen, Ruren Xu, Hydrothermal Synthesis and Characterization of Nanocrystalline a-Fe_2O_3 Particles, Journal of Solid State Chemistry, 1998, 137, 185-190
    [172] O. Thioune, H. Fessi, J. P. Devissaguet, F. Puisieux, Preparation of Pseudolatex by Nanoprecipitation: Influence of the Solvent Nature on Intrinsic Viscosity and Interaction Constant, International Journal of Pharmaceutics, 1997, 146, 233-238
    [173] Fréléric Ruch, Egon Matijevié, Preparation of Micrometer Size Budesonide Particles by Precipitation, Journal of Colloid and Interface Science, 2000, 229, 207-211
    [174] 陶小军,周静芳,张治军,党鸿辛,表面修饰LaF3纳米微粒的制备及表征,化学研究,2000,11,8-11
    [175] K. V. Ivanovskikh, V. A. Pustovarov, B. V. Shulgin, Low Temperature Time-Resolved VUV Luminescence, Spectroscopy of SrF_2: Er~(3+) Crystals, Phys. Solid State, 2005. 47, 1446-1449
    [176] N. Kristianpoller, D. Weiss, R. Chen, Optical and Dosimetric Properties of Variously Doped SrF_2 Crystals, Radiat. Meas., 2004, 38(4-6), 719-722
    [177] R. Hua, C. Shi, Preparation of Fluoride and Nano Composite Particle, Patent, CN1169709-C, 06, Oct 2004, 200615

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700