用户名: 密码: 验证码:
冠状动脉病变无创性检查技术的应用价值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分64层螺旋CT对冠状动脉病变的诊断价值
     目的:以冠状动脉造影检查(CAG)为标准,探讨64层螺旋CT(64-MDCT)冠状动脉成像技术对冠状动脉狭窄病变、先天性冠状动脉畸形和变异病变的诊断价值。
     方法:2006年12月至2008年10月,收集140例拟诊为冠心病入院的患者行64-MDCT检查,64-MDCT检查后1月内再行CAG检查。排除禁忌症后,所有患者检查前一小时给予口服美托洛尔(metoprolol)25mg,尽量控制心率在65次/分左右。配合回顾性ECG门控技术进行多角度观察(LAO,RAO,LAO Cranial/Caudal,RAO Cranial/Caudal)和横断面(cross—section)观察,并采用薄层最大密度投影(MIP)、多平面重建(MPR)和三维容积重建(VR)等后处理方法评价管腔≧1.5mm的冠脉,以管腔直径减少≧50%定义为有意义的狭窄病变,并根据狭窄率的不同分为Ⅰ级狭窄:50%≦DS<70%;Ⅱ级狭窄:70%≦DS<90%;Ⅲ级狭窄:90%≦DS≦99%;Ⅳ级:完全闭塞。64-MDCT结果以QCA结果为参照。心肌桥的诊断根据冠脉的横断面图像和MPR重建图像显示冠脉节段贴紧于心肌或明显可见被不同厚度的心肌或纤维脂肪组织覆盖,且该处的管腔于收缩期显示细小或模糊,但于舒张期可完全或部分恢复。以CAG结果为标准,分析64-MDCT对先天性冠状动脉畸形和变异病变诊断的准确性。
     结果:与QCA相比,64-MDCT可评价冠脉节段1863段(92.6%),64-MDCT对有意义冠状动脉狭窄病例的敏感性为95.6%(65/68),特异性为93%(67/72),阳性预测值为92.9%(65/70),阴性预测值为95.7%(67/70)。64-MDCT诊断Ⅰ、Ⅱ、Ⅲ、Ⅳ级冠脉狭窄病变的敏感度分别为97.2%、93.1%、96.3%和100%(P=0.69),特异性分别为99.0%、99.5%、99.8%和99.9%(P=0.87),各组间差异无统计学意义。64-MDCT对不同冠脉节段有意义狭窄的诊断敏感性各不相同,LMA可达100%,其次是LAD 98.7%、RCA 94.5%和LCX 92.3%。其中LCX和RCA的远段敏感性较低,分别为(75%和85.7%),对不同节段冠脉有意义狭窄的敏感性、特异性、阳性预测值、阴性预测值的差异无统计学意义。以CAG为金标准,64-MDCT准确诊断心肌桥23例,21段单处心肌桥,位于LAD中段,2段为非单处(双段)心肌桥,分别位于LAD中段及远段。其中3例心肌桥伴有近段的冠脉狭窄病变,冠脉狭窄达Ⅰ级。64-MDCT检出心肌桥的敏感性为92%,特异性为98.2%,阳性预测值为92%,阴性预测值为98.2%。全部12例先天性冠状动脉畸形和变异病变均被64-MDCT准确诊断。
     结论:64-MDCT可较好地显示冠状动脉及其分支,可作为冠心病常规筛查的无创性检查方法。但对于严重钙化斑块所致的冠脉狭窄,往往高估了狭窄病变的程度而直接影响其对冠脉狭窄判断的准确性,这仍是多层螺旋CT冠脉显像技术的难点。在诊断先天性冠状动脉畸形和变异方面,64-MDCT提供了可靠的无创伤性检查方法。在以后的研究中可进一步增加病例数,以更准确地评价64-MDCT的诊断价值。随着多层螺旋CT的不断发展,时间和空间分辨率的进一步提高,无创性多层螺旋CT在冠状动脉病变的诊断方面,将有更好的临床应用价值。
     第二部分急性冠状动脉综合征不稳定斑块病变的64-MDCT特征和相关的血清学研究
     目的:以血管内超声(IVUS)检查作为金标准,探讨64层螺旋CT(64-MDCT)冠状动脉成像技术对冠状动脉斑块性质定性和定量分析的准确性、比较急性冠状动脉综合征(ACS)和稳定性心绞痛(SAP)相关斑块病变的CT特征,探讨64-MDCT对诊断ACS的价值。从血清学角度探讨基质金属蛋白酶-9(MMP-9)、金属蛋白酶组织抑制剂-1(TIMP-1)、白介素6(IL-6)、白介素18(IL-18)及C-反应蛋白(CRP)与急性冠状动脉综合征(ACS)的关系。
     方法:2007年12月至2008年11月,收集70例冠心病患者,分为ACS组(35例)和稳定性心绞痛组(35例),64-MDCT检查后1月内接受CAG和IVUS检查。另外收集35例非冠心病患者作为血清学检查的对照组。在IVUS检查中,根据冠脉斑块的回声不同,把斑块分为软斑块、纤维性斑块、钙化性斑块和混合性斑块。在64-MDCT检查中,根据冠脉斑块的不同CT值(HU),将斑块分为软斑块:CT值为≤50HU:纤维斑块:CT值为50~119HU;钙化斑块:CT值≥120HU,检查的结果与IVUS对比。同时测量近端参照血管面积、远端参照血管面积、参照血管平均面积、斑块面积、斑块负荷和血管重构指数(remodeling index,RI),RI>1.05为正性重构;RI<0.95为负性重构。以IVUS作为金标准,分析64-MDCT对斑块定性和定量的可靠性。采用双抗体夹心(ABC-ELISA)法对35例ACS组,35例SAP组,35例非冠心病患者(对照组)外周血清MMP-9、TIMP-1、IL-6、IL-18、CRP水平进行测定。
     结果:103段64-MDCT和QCA均诊断为有意义的冠脉狭窄病变(DS≥50%)中,有15段因冠脉完全闭塞无法行IVUS检查而被排除。在IVUS检出的88段病变冠脉中,64-MDCT发现81段(92%)并纳入对照研究,其中ACS组占39段,不稳定性心绞痛组占42段,分别位于左前降支56段,左回转支5段,右冠状动脉18段,左主干2段。IVUS发现软斑块31个(斑块破裂2个)、纤维斑块18个、钙化斑块19个、混合性斑块13个;64-MDCT发现软斑块30个、CT值19±42HU(—22~45HU),纤维斑块19个、CT值81±23HU(61~112HU),钙化斑块20个、CT值302±91HU(175~567HU),混合斑块12个、CT值118±48HU(138~392),四种斑块的CT值差异有统计学意义(P<0.01)。64-MDCT对不同斑块的诊断敏感性分别为软斑块(90.3%),纤维斑块(88.9%),钙化斑块(100%)和混合性斑块(92.3%),P=0.03,四者差异有统计学意义;以IVUS为金标准,ACS组患者斑块病变以软斑块为主(61.5%vs 14.3%(SAP组),P<0.001)。其中2段(2/24)可见斑块破裂。ACS组以偏心斑块为主(71.4%vs 52.5%(SAP组),P>0.05),但两组差别无统计学意义,对两组患者64-MDCT的测量数据进行比较,ACS组患者的近端参照血管EEM CSA(15.9±1.8 vs 14.8±2.0mm~2,P=0.039)、远段参照血管EEM CSA(13.1±2.3 vs 12.6±2.0mm~2,P=0.026)、参照血管平均EEM CSA(14.1±1.7 vs 13.7±1.6mm~2,P=0.018),病变处EEM CSA(14.8±2.2 vs 13.9±2.1mm~2,P=0.029),斑块面积(11.1±2.0 vs 9.8±1.8mm~2,P=0.012)和斑块负荷(72.8±8.2%vs67.4±8.1%,P=0.001)明显大于SAP组;而管腔CSA(3.7±1.4 vs 4.3±1.3,P=0.035)较SAP组小。ACS组患者的病变重构指数大于SAP组(1.05±0.09 vs 0.99±0.06,P=0.032),差别有统计学意义。ACS组斑块病变多表现为正性重构(61.6%vs 33.3%,P<0.05),差别有统计学意义。两种技术测量近端参照血管EEM CSA、远段参照血管EEM CSA和参照血管平均EEM CSA有较好的相关性,r分别为0.785、0.732和、0.745,P<0.001;病变处EEM CSA、管腔CSA、斑块面积、斑块负荷和重构指数的相关性相对较弱,r分别为0.521、0.667、0.711、0.701和0.672,P<0.05。ACS组血清MMP-9、TIMP-1、IL-6、IL-18、CRP水平明显高于SAP组,差异具有统计学意义(P<0.01或P<0.05),SAP组血清MMP—9、IL-18和IL-6的水平高于对照组差异具有统计学意义(P<0.01或P<0.05);TIMP-1和CRP水平与对照组无差异(P>0.05)。ACS组血清MMP-9水平与TIMP-1无相关性(r=-0.169,P=0.33),与IL—18呈正相关(r=0.398,P<0.05)。在SAP组血清MMP-9与TIMP-1呈正相关(r=0.381,P<0.05)。
     结论:64-MDCT对于冠脉斑块的检出率高(92%),ACS的斑块病变以软斑块为主,64-MDCT图像上显示为低密度斑块影(CT值≤50HU)。64-MDCT可作为预测不稳定性斑块的无创检查方法。在斑块定量分析方面,64-MDCT与IVUS有较好的相关性,ACS组斑块病变多表现为正性重构,但对于钙化严重的节段,可直接影响CT测量的准确性。血清MMP—9、TIMP-1、IL-6、IL-18和CRP可作为检测ACS的血清学指标,其中MMP—9、IL-18的高水平以及MMP-9和TIMP-1的动态失衡在ACS的发生和病情演变中起着关键的因素,同时配合64-MDCT冠脉检查的结果,可为临床提供更可靠的诊断依据。血清学检查具有简单、经济、方便、无创性和重复性高的优点,适合临床开展,但还需要更大量的样本作前瞻性研究,以证实相关指标的临床价值。
     第三部分64-MDCT对冠脉支架术后随访的应用价值
     目的:以定量冠状动脉造影检查(QCA)检查作为标准,探讨64-MDCT在评价支架置入术后患者支架内再狭窄(in-stent restonsis,ISR)的诊断价值。
     方法:2008年4月至2008年11月共收集35例拟行冠脉造影复查的支架置入术后患者。所有患者均为窦性心律,无肾功能不全(Cr<120mmol/L),心功能不全<3级,无碘造影剂过敏史,无冠状动脉搭桥术史。全部患者先行64-MDCT冠脉成像检查,1月内再行CAG检查。64-MDCT根据MPR、MIP、VR的重建图像,结合重组后的横断面图像,根据支架内管腔造影剂显示的增强(Contrastenhancement)或衰减(Contrast attenuation),进一步评价是否存在ISR,通过自动冠状动脉血管分析软件(Cardiac Automatic Vessel analysis,CVA)对冠状动脉血管行定性定量分析,利用线径测量通过电子测径器对支架的管腔进行测量,若直径狭窄率≧50%,则诊断为ISR。64-MDCT诊断的结果与QCA的诊断结果进行比较分析。
     结果:32例患者共43根支架纳入研究,QCA共诊断14根支架存在支架内再狭窄,64-MDCT准确评价13根,准确排除25根。64-MDCT漏诊1根,误诊4根支架内再狭窄。64-MDCT诊断支架内再狭窄的敏感性和特异性分别为92.8%(13/14)和86.2%(25/29),阳性预测值为76.4%(13/17),阴性预测值为96.1%(25/26)。
     结论:64-MDCT可作为诊断支架内再狭窄首选的无创性检查方法,特别是对临床上考虑支架内再狭窄可能性较低的患者。但对于支架内径较小(<2.5mm),冠脉远段及严重钙化斑块病变处的支架,64-MDCT仍未能提供理想的评价。在观察支架图像时,必需同时结合和比较支架的MIP及横断面图像,以更好的判断支架内管腔的情况,提高诊断的准确性。
PartⅠThe value of 64-multidetector Computed Tomography in the diagnosis of coronary artery disease
     Objectives:To evaluate 64-multidetector computed tomography(64-MDCT) in the diagnosis of coronary artery stenosis and congenital anomalies.
     Methods:From 2006/12 to 2008/10,140 patients suspected of coronary artery disease were undergoing 64-MDCT imaging and within one month, coronary angiography(CAG) was performed.All patients were took a dose of 25 mg metoprolol orally one hour before 64-MDCT imaging.Together with the retrospectively ECG-gated reconstruction,some observation methods (including LAO,RAO,LAO Cranial/Caudal,RAO Cranial/Caudal and cross—section) and reconstruction methods(including Maximum Intensity Projection(MIP)、Multi-planar Reconstruction(MPR) and Volume Rendering (VR)) were used to image the coronary artery segments,of which the diameter was no little than 1.5mm.The presence of diameter reduction(DS)≥50%in 64-MDCT imaging was considered as significant coronary stenosis, the degree of which was classified as:GradeⅠ,50%≦DS<70%;GradeⅡ, 70%≦DS<90%;GradeⅢ,90%≦DS≦99%;GradeⅣ,complete obstruction. Myocardial bridging was diagnosed in 64-MDCT imaging when an intramuscular segment of a coronary artery was visualized on axial and MPR images,covered by myocardial muscle or fibrous-fatty tissue partial or entirely.They were compressed during systole phage and recovery on diasystole phage.All results were compared with CAG.
     Results:2009 segments can be evaluated by QCA,of which 1863 segments (92.6%) can be evaluable by 64-MDCT.The sensitivity and the specificity to diagnose significant coronary stenosis(DS≧50%) cases was 95.6%(65/68) and 93%(67/72) respectively,the positive and negative predictive value was 92.9%(65/70) and 95.7%(67/70) respectively.The sensitivity and the specificity to diagnose significant coronary stenosis(DS≧50%) segments was 96.6%(141/146) and 98.3%(1688/1717) respectively,the positive and negative predictive value was 82.9%(141/170) and 99.7%(1688/1693) respectively.In addition,the detection sensitivity of GradeⅠ,Ⅱ,ⅢandⅣstenosis were 97.2%,93.1%,96.3%and 100%respectively(P=0.69), the specificity were 99.0%,99.5%,99.8%and 99.9%respectively(P=0.87). The detection sensitivities of significant coronary stenosis differed in different coronary segments(P>0.05):the highest was seen in LMA(100%), then in LAD(98.7%),RCA(94.5%) and LCX(92.3%).The lowest was in distal LCX(75%) and distal RCA(85.7%).There were 141 segments of GradeⅠ~Ⅲstenosis evaluated by 64-MDCT:77 segments in LAD,24 segments in LCX,35 segments in RCA and 5 segments in LMA.Compared with CAG,23 myocardial bridging cases were found through 64-MDCT,including 21 cases of single myocardial bridging in LAD and 2 cases of dual myocardial bridgings.The sensitivity,specificity,positive and negative predictive value to diagnose myocardial bridging were 92%,98.2%,92%and 98.2%respectively.64-MDCT detected all 12 cases of congenital coronary artery anomalies and malformations correctly.
     Conclusions:As a non-invasive technology,64-MDCT can image coronary arteries and branches excellently.It can evaluate stenosis,congenital anomalies and malformations correctly.But severe calcification can affect imaging and tend to overestimate the degree of stenosis.
     PartⅡThe 64-MDCT characteristics of unstable plaques in acute coronary syndrome patients and the related serum marks study.
     Objectives:To evaluate 64-MDCT in the diagnosis of different coronary plaque and plaque characteristics of acute coronary syndrome(ACS) patients.The value of serum MMP-9,TIMP-1,IL-6,IL-18 and CRP in the diagnosis of ACS also was evaluated.
     Methods:From 2007/12 to 2008/11,70 patients of coronary artery disease were enrolled.According to clinical symptoms,they were divided into ACS (n=35) group and SAP(n=35) group.These patients were undergoing 64-MDCT imaging and within one month,CAG and IVUS were performed.In 64-MDCT imaging,the density CT measurement(Hounsfield units,HU) was used to determine different types of plaques:soft plaque(≦50HU),fibrous plaque (50-119HU) and calcified plaque(≧12onu).The results were compared with IVUS.IVUS and 64-MDCT analysis included quantitative measurements of cross-sectional area of external elastic membrane(EEM CSA) of the lesion site and at the proximal and distal reference sites.The plaque burden and remodeling index(RI) were also analyzed.Positive remodeling was defined as RI>1.05 and negative remodeling as RI<0.95.Serum MMP-9, TIMP-1,IL-6,IL-18 and CRP were evaluated using ABC-ELISA,compared with 35 control subjects(without coronary heart disease).
     Results:88 segments were evaluated by IVUS,of which 81 segments(92%) can be evaluated by 64-MDCT:56 segments in LAD,5 segments in LCX,18 segments in RCA and 2 segments in LMA.We found 31 soft plaques、18 fibrous plaques、20 calcified plaques and 12 mixed plaque by IVUS.64-MDCT found 30 soft plaques(19±42HU(—22~45HU)),19 fibrous plaques(81±23HU (61~112HU)),20 calcified plaques 302±91HU(175~567HU) and 12 mixed plaques(118±48HU(138~392HU)),P<0.01.The detection sensitivity of soft plaques、fibrous plaques、calcified plaques and mixed plaques were 90.3%,88.9%,100%and 92.3%respectively(P=0.03).Soft plaque was observed more frequently in ACS group than in SAP group(61.5%vs 14.3%, P<0.001),including 2 plaque rupture;whereas calcified plaque was more common in SAP group(38.1%vs 7.7%)(P=0.001).Eccentric plaque was observed more frequently in ACS group than in SAP group(71.4%vs 52.5%, P>0.05).Compared with SAP group,the EEM CSA at the proximal reference sites(15.9±1.8 mm~2 vs 14.8±2.0 mm~2,P=0.039) and distal reference sites (13.1±2.3 mm~2 vs 12.6±2.0 mm~2,P=0.026) were larger in ACS group in 64-MDCT imaging.The mean EEM CSA of reference sites((14.1±1.7 mm~2 vs 13.7±1.6 mm~2,P=0.018),lesion EEM CSA(14.8±2.2 mm~2 vs 13.9±2.1mm~2, P=0.029),the plaque EEM CSA(11.1±2.0 mm~2 vs 9.8±1.8mm~2,P=0.012) and the plaque burden(72.8±8.2 mm~2 vs 67.4±8.1mm~2,P=0.001) were significantly greater in ACS group rather than SAP group,while the lumen EEM CSA(3.7±1.4mm~2 vs 4.3±1.3mm~2,P=0.035) was smaller in ACS group. RI was significantly higher(1.05±0.09 vs 0.99±0.06,P=0.032) and positive remodeling was more frequent in ACS group(61.6%vs 33.3%, P<0.05).Compared 64-MDCT and IVUS,the correlation coefficients for the EEM CSA at the proximal and distal reference sites,the mean EEM CSA of reference sites were 0.785,0.732 and 0.745 respectively,P<0.001.The correlation coefficients for the lesion EEM CSA,the lumen CSA,the plaque CSA,the plaque burden and RI were 0.521,0.667,0.711,0.701 and 0.672 respectively,P<0.05.The serum MMP-9,TIMP-1,IL-6,IL-8 and CRP were significant higher in ACS group than SAP group,P<0.05.The serum MMP-9, IL-6 and IL-18 were significant higher in SAP group than control group, P<0.05,but serum TIMP-1 and CRP were similar,P>0.05.In ACS group,There was no correlation between serum MMP-9 and TIMP-1(r=-0.169,P=0.33),and there was positive correlation between serum MMP-9 and IL-18(r=0.389, P<0.05).In SAP group,there was positive correlation between serum MMP-9 and TIMP-1(r=0.381,P<0.05).
     Conclusions:64-MDCT can identify different coronary plaques based on CT measurement,but may he difficult to differ soft plaques from fibrous plaques.Soft plaque and positive remodeling were observed more frequently in ACS patients.The imbalance of serum MMP-9 and TIMP-1 may be the key point to involve the course of ACS.
     PartⅢThe value of 64-MDCT in the follow-up of percutaneous coronary intervention(PCI) stenting patients
     Objectives:To evaluate the application of 64-MDCT in the follow-up of percutaneous coronary intervention(PCI) stenting patients with the attention to in- stent restenosis(ISR).
     Methods:From 2008/4 to 2008/11,35 patients with prior percutaneous coronary intervention and coronary stent implantation referred for repeated QCA underwent 64-MDCT imaging.And no more than one month later, they received QCA.All the patients didn't have arrhythmia,renal failure (Cr<120mmol/L) or heart failure(Grade<3).Together with the retrospectively ECG-gated reconstruction,Maximum Intensity Projection (MIP)、Multi-planar Reconstruction(MPR) and Volume Rendering(VR) were used to reconstruct every segment of the coronary artery.Based on contrast enhancement and attenuation in the lumen of stented segments, the presence of diameter reduction≧50%was considered as ISR after PCI stenting.All the results were compared with that of QCA.
     Results:43 stents from 32 cases were included,14 ISR after PCI stenting were found by QCA,of which 64-MDCT could detect 13 ISR and rule out 25 non-ISR correctly.The sensitivity,specificity,the positive and negative predictive value of 64-MDCT were 92.8%(13/14),86.2%(25/29), 76.4%(13/17) and 96.1%(25/26) respectively.
     Conclusions:64-MDCT may be a non-invasive follow-up method to evaluate if there exists ISR after PCI stenting,especially in the patients no ISR existing clinically.
引文
1.Bashore TM,Bates RT,Berger PB,et al.American College of Cardiology/Society for Cardiac Angiography and Interventions Clinical Expert Consensus Document on cardiac catheterization laboratory standards;a report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents[J]. J Am Coll Cardiol, 2001; 37 (26) : 2170-2214.
    
    2. Pundziute G, Schuijf JD, Jukema JW, et al. Evaluation of plaque characteristics in acute coronary syndromes: non-invasive assessment with multi-slice computed tomography and invasive evaluation with intravascular ultrasound radiofrequency data analysis [J]. Eur Heart J, 2008; 29(19): 2373-2781.
    
    3. Mowyama S , Kondo T, Anno H , et al . Atherosclerotic plaque characterization by 0.5-mm-slice multi-slice computed tomographic imaging[J]. Cite J, 2007, 71(3): 363-366.
    
    4. Petranovic M, Soni A, Bezzera H, et al. Assessment of nonstenotic coronary lesions by 64-slice multidetector computed tomography in comparison to intravascular ultrasound: evaluation of nonculprit coronary lesions. J Cardiovasc Comput Tomogr. 2009; 3(1):24—31.
    
    5. Chang SA, Choi SI, Choi EK, et al. Usefulness of 64-slice multidetector computed tomography as an initial diagnostic approach in patients with acute chest pain. Am Heart J. 2008; 156(2):375-83.
    
    6. Schuijf JD, Pundziute G, Jukema JW, et al. Diagnostic accuracy of 64-slice multislice computed tomography in the noninvasive evaluation of significant coronary artery disease[J]. Am J Cardiol. 2006 15: 98 (2): 145-8.
    
    7. Muhlenbruch G, Seyfarth T, Soo CS, et al. Diagnostic value of 64-slice multi-detector row cardiac CTA in symptomatic patients [J]. Eur Radiol, 2007; 17(3): 603-609.
    
    8. Cademartiri F, La Grutta L, Malago R, et al. Prevalence of anatomical variants and coronary anomalies in 543 consecutive patients studied with 64-slice CT coronary angiography. Eur Radiol. 2008; 18 (4):781—91.
    
    9. Dodd JD, Ferencik M, Liberthson RR, et al. Evaluation of efficacy of 64-slice multidetector computed tomography in patients with congenital coronary fistulas. J Comput Assist Tomogr. 2008; 32(2): 265-70
    
    10. WANG Ming-hui, SUN Ai-jun, QIAN Ju-ying, et al. Myocardial bridging detection by non-invasive multislice spiral computed tomography: comparison with intravascular ultrasound [J]. Chinese Medical Journal, 2008; 121 (1) : 17-21.
    
    11. Kawawa Y, Ishikawa Y, Gomi T, et al. Detection of myocardial bridge and evaluation of its anatomical properties by coronary multislice spiral computed tomography[J]. Eur J Radiol. 2007; 61(1): 130-138.
    
    12. Herzog C, Arning-Erb M, Zangos S, et al. Multi -Detector Row CT Coronary Angiography: Influence of Reconstruction Technique and Heart Rate on Image Quality. Radiology, 2006; 238(1): 75-86.
    
    13. Manghat NE, Roobottom CA, Marshall AJ, et al. Intramyocardial bridging of the left anterior descending artery: appearance of arterial compression on ECG gated multidetector row CT[J]. Heart, 2006; 92(2): 262.
    
    14. Amoroso G, Battollab L, Gemignani C, et al. Myocardial bridging on left anterior descending coronary artery evaluated by multidetector computed tomography[J]. Int J Cardiol, 2004; 95(2-3): 335-337.
    
    15. GoiteinO, Lacomis JM. Myocardial bridging: noninvasive diagnosis with multidetector CT[J]. J Comput Assist Tomogr. 2005; 29(2): 238-240.
    
    16. Chiou KR, Wu MT, Hsiao SH, et al. Safety and accuracy of multidetector row computed tomography for early assessment of residual stenosis of the infarct-related artery and the number of diseased vessels after acute myocardial infarction. Am Heart J. 2005 ;149(4):701-8.
    
    17. Heuschmid M, Kuettner A, Schroeder S, et al. ECG-gated 16-MDCT of the coronary arteries: assessment of image quality and accuracy in detecting stenoses. AJR Am J Roentgenol. 2005; 184(5):1413-9.
    
    18. Leber A, Knez A, White CW, et al. Composition of coronary atherosclerotic plaques in patients with acute myocardial infarction and stable angina pectoris determined by contrast-enhanced multislice computed tomography. Am J Cardiol 2003; 91: 714-718.
    
    19. Kuettner A, Kopp AF, Schroeder S, et al. Diagnostic accuracy of multidetector computed tomography coronary angiography in patients with angiographically proven coronary artery disease[J]. J Am Coll Cardiol. 2004; 43(5): 831-839.
    
    20. Shim SS, Kim Y, Lim SM. Improvement of Image Quality with β-Blocker Premedication on ECG-Gated 16-MDCT Coronary Angiography [J]. AJR 2005; 184(4): 649-654.
    21. Hoffmann MHK, Shi H, Manzke R, et al. Noninvasive Coronary Angiography with 16-Detector Row CT: Effect of Heart Rate[J]. Radiology 2005; 234:86-97.
    
    22. Pannu HK, Alvarez W Jr, Fishman EK. Beta-blockers for cardiac CT: a primer for the radiologist[J]. AJR 2006; 186(6 Suppl 2): S341- S345.
    
    23. Leschka S, Wildermuth S, Boehm T, et al. Noninvasive Coronary Angiography with 64-Section CT: Effect of Average Heart Rate and Heart Rate Variability on Image Quality[J]. Radiology 2006; 241: 378-385.
    
    24. Pannu HK, Jacobs JE, Lai S, et al. Coronary CT Angiography with 64-MDCT: Assessment of Vessel Visibility[J]. AJR 2006; 187:119-126.
    
    25. Schroeder S, Kopp AF, Kuettner A, et al. Influence of heart rate on vessel visibility in noninvasive coronary angiography using new multislice computed tomography. Experience in 94 patients[J]. Clin Imaging 2002; 26(1): 106-111.
    
    26. Achenbach S, Ropers D, Holle J, et al. In-plane coronary arterial motion velocity: measurement with electron-beam CT. Radiology, 2000; 216(2): 457-463.
    
    27. Lu B, Mao SS, Zhuang N, et al. Coronary artery motion during the cardiac cycle and optimal ECG triggering for coronary artery imaging[J]. Invest Radiol 2001; 36(2): 250-256.
    
    28. Meijboom WB, Mollet NR, Van Mieghem CA, et al. 64-Slice CT coronary angiography in patients with non-ST elevation acute coronary syndrome[J]. Heart, 2007; 93(11): 1386-1392.
    
    29. Mowatt G, Cook JA, Hillis GS, et al. 64-Slice computed tomography angiography in the diagnosis and assessment of coronary artery disease: systematic review and meta-analysis[J]. Heart, 2008;94(11): 1386-1193.
    
    30. Lau GT, Ridley LJ, SchiebMC, et al. Coronary artery stenoses:detection with calcium scoring, CT angiography and both methods combined[J]. Radiology 2005; 235(3): 415-422.
    
    31. Nieman K, Cademartiri F, Lemos PA, et al. Reliable noninvasive coronary angiography with fast submillimeter multislice spiral computed tomography[J]. Circulation 2002; 106(13); 2051-2054.
    
    32. Achenbach S, Ropers D, Hoffmann U, et al. Assessment of coronary remodeling in stenotic and nonstenotic coronary atherosclerotic lesions by multidetector spiral computed tomography[J]. J Am Coll Cardiol.2004; 43(5): 842-847.
    
    33. Hong C, Becker CR, Huber A, et al. ECG-gated reconstructed multi-detector row CT coronary angiography: effect of varying trigger delay on image quality[J]. Radiology, 2001; 220 (3):712-717.
    
    34. Musto C, Simon P, Nicol E, et al. 64-multislice computed tomography in consecutive patients with suspected or proven coronary artery disease: initial single center experience[J]. Int J Cardiol. 2007; 114(1): 90-7.
    
    35. Roberts WT, Bax JJ and Davies LC. Cardiac CT and CT coronary angiography: technology and application[J]. Heart, 2008; 94(6): 781-792.
    
    36. Leschka S, Alkadhi H, Plass A, et al. Accuracy of MSCT coronary angiography with 64-slice technology: first experience [J]. Eur Heart J, 2005; 26(8): 1482-1487.
    
    37. Schmitt R, Froehner S, Brunn J, et al. Congenital anomalies of the coronary arteries: imaging with contrast-enhanced, multidetector computed tomography [J]. Eur Radiol, 2005; 15(7): 1110-1121.
    
    38. Montaudon M, Latrabe V, Iriart X, et al. Congenital coronary arteries anomalies: review of the literature and multidetector computed tomography (MDCT)-appearance[J]. Surg Radiol Anat , 2007; 29(5): 343-355.
    
    39. Rainer S, Steffen F, Juergen B, et al. Congenital Anomalies of the Coronary Arteries: Imaging with Contrast enhanced Multi-detector Computed Tomography[J]. Eur Radiol, 2005, 15(6): 1110-1221.
    
    40. Heshui S, Andrik JA. Hans—Juergen B, et al. Multislice CT Imaging of Anomalous Coronary Arteries [J]. Eur Radiol, 2004, 14(12): 2172—2181.
    
    41. Yamanaka O, Hobbs RE. Coronary Artery Anomalies inl26, 594 Patients Undergoing Coronary Angiography [J]. Cathet Cardio Vasc Diagn, 1990; 21(1): 28-40.
    
    42. Rigatelli G, Gemelli M, Zamboni A, et al. Validation of a clinical significance based classification of coronary artery anomalies [J] . Angiology, 2005, 56(1): 25~34.
    
    43. Kosinski A and Grzybiak M. Myocardial bridges in the human heart: morphological aspects[J]. Folia Morphol (Warsz), 2001; 60(1): 65-68
    
    44. Venkateshu KV, Mysorekar VR and Sanikop MB. Myocardial bridges[J]. J Indian MedAssoc 2000; 98: 691-693.
    
    45. Cutler D, Wallace JM. Myocardial bridging in a young patient with sudden death. Clin Cardiol 1997; 20: 581-583.
    
    46. Cheng TO. Myocardial bridging in a young patient with sudden death. Clin Cardiol 1997; 20: 743.
    
    47. Noble J, Bourassa MG, Petitclerc R,et al. Myocardial bridging and milking effect of the left anterior descending artery: normal variant or obstruction [J]? Am J Cardiol 1976; 37(8): 993-999.
    
    48.张国辉,钱菊英,樊冰,等.心肌桥对冠状动脉血流储备的影响[J].中华心血管病杂志.2002,30(5):279—281.
    
    49. Erbel R, Rupprecht HJ, Ge J, et al. Coronary artery shape and flow changes induced by myocardial bridging. Assessment by intravascular ultrasound[J]. Echocardiography. 1993; 10(1): 71-77.
    
    50. Soran O, Pamir G, Erol C, et al. The incidence and significance of myocardial bridge in a prospectively defined population of patients undergoing coronary angiography for chest pain[J]. Tokai J Exp Clin Med, 2000; 25(1): 57-60.
    
    51. Mohlenkamp S, Hort W, Ge J, Erbel R. Update on myocardial bridging. Circulation 2002;106:2616 - 2622.
    
    52. Polacek P, Kralove H. Relation of myocardial bridges and loops on the coronary arteries to coronary occlusions. Am Heart J 1961;61:44 - 52.
    
    53. Ropers D, Baum U, Pohle K, et al. Detection of coronary artery stenosis with thin-slice multi-detector row spiral computed tomography and multiplanar reconstruction[J]. Circulation, 2003; 107(5): 664-6.
    
    54. Ko SM, Choi JS, Nam CW, Hur SH. Incidence and clinical significance of myocardial bridging with ECG-gated 16~row MDCT coronary angiography. Int J Cardiovasc Imaging 2008; 24: 445-452.
    
    55. Jodocy D, Aglan I, Friedrich G, Mallouhi A, Pachinger O, Jaschke W, et al. Left anterior descending coronary artery myocardial bridging by multislice computed tomography: correlation with clinical findings. Eur J Radiol 2008; Epub abead of print.
    
    56. Ferreira AG Jr, Trotter SE, Konig B Jr, et al. Myocardial bridges: morphological and functional aspects[5].Br Heart J,1991;66(2):364-367.
    57.张国辉,葛均波,王克强,等。心肌桥对冠状动脉内皮细胞形态和粥样硬化的作用[J].中华心血管杂志,2003,31(4):293-295。
    58.Ge J,Erbel R,G(o|¨)rge G,et al.High wall shear stress proximal to myocardial bridging and atherosclerosis:intracoronary ultrasound and pressure measurements[J].Br Heart J,1995;73(5):462-465.
    59.Hou KY,Jeng CM,Liu Y-P,et al.Diagnosis of Anomalous Coronary Arteries in 64-MSCT[5].Chin J Radiol,2007;32(1):111-119.
    1.Rigatelli G.Normal angiogramin patients with acute coronary syndrome:searching for unusual substrates of myocardial ischemia.Int J Cardiol,2005;99:25-27.
    2.Yamagishi M,Terashima M,Awano K,et al.Morphology of vulnerable coronary plaque:insights from follow-up of patients examined by intravascular ultrasound before an acute coronary syndrome.J Am Coll Cardiol,2000;35:106-111.
    3.Stone PH.Triggering myocardial infarction.N Engl J Med,2004;351:1716-1718.
    4.Germing A,Lindstaedt M,Ulrich S,et al.Normal angiogram in acute coronary syndrome-preangiographic risk stratification,angiographic findings and follow-up.Int J Cardiol,2005;99:19-23.
    5.Carrascosa PM,Capunay CM,Garcia-Merletti P,et al.Characterization of coronary atherosclerotic plaques by multidetector computed tomography.Am J Cardiol.2006;97(5):598-602.
    6. CaussinC, Larchez C, GhostineS, et al. Comparison of coronary minimal lumen area quantification by sixty-four-slice computed tomography versus intravascular ultrasound for intermediate stenosis. Am J Cardiol. 2006; 98(7):871-6.
    
    7. Choi BJ, Kang DK, Tahk SJ, et al . Comparison of 64-slice multidetector computed tomography with spectral analysis of intravascular ultrasound backscatter signals for characterizations of noncalcified coronary arterial plaques. Am J Cardiol. 2008 Oct 15; 102(8):988~93.
    
    8. Burke AP, Farb A, Maicom GT, et al. Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N Engl J Med, 1997; 336: 1276-1282.
    
    9. Kolodgie FD, Virmani R, Burke AP, Pathologic assessment of the vulnerable human coronary plaque. Heart, 2004; 90(12): 1385-1391.
    
    10. Kai H, Ikeda H, Yasukawa H, et al. Peripheral blood levels of matrix metalloproteases-2 and -9 are elevated in patients with acute coronary syndromes. J Am Coll Cardiol, 1998; 32(3): 368-372.
    
    11. Zeng B, Prasan A, Fung KC, et al. Elevated circulating levels of matrix metalloproteinase-9 and -2 in patients with symptomatic coronary artery disease. Intern Med J, 2005; 35(2): 331-335.
    
    12. Squire IB, Evans J, Ng LL, et al. Plasma MMP-9 and MMP-2 following acute myocardial infarction in man: correlation with echocardiographic and neurohumoral parameters of left ventricular dysfunction. J Card Fail 2004; 10(2): 328-33.
    
    13. Tanaka A, Imanishi T, Kitabata H, et al. Morphology of exertion-triggered plaque rupture in patients with acute coronary syndrome: an optical coherence tomography study. Circulation. 2008;118(23):2368-73.
    
    14. Inokubo Y, Hanada H, Ishizaka H, et al. Plasma levels of matrix metal loproteinase-9 and tissue inhibitor of metalloproteinase-1 are increased in the coronary circulation in patients with acute coronary syndrome. Am Heart J. 2001;141(2):211-7.
    
    15. Insull W Jr. The pathology of atherosclerosis: plaque development and plaque responses to medical treatment. Am J Med. 2009;122(1 Suppl):S3-S14.
    16. Mintz GS, Nissen SE, Anderson WD, et al. American College of Cardiology clinical expert consensus document on standards for acquisition, measurement and reporting of intravascular ultrasound studies (IVUS): a report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents. J Am Coll Cardiol, 2001; 37: 1478-1492.
    
    17. Di Mario C, Gorge G. Peters R, et al. Clinical application and image interpretation in intracoronary ultrasound: Study Group on Intracoronary Imaging of the Working Group of Echocarography of the European Society of Cardiology. Eur Heart J, 1998; 19: 207-229.
    
    18. Inoue F, Sato Y, Matsumoto N, et al. Evaluation of Plaque Texture by Means of Multislice Computed Tomography in Patient With Acute Coronary Syndrome and Stable Angina. Circ J, 2004; 68: 840-844.
    
    19. Hammer-Hansen S, Kofoed KF, Kelbaek H, et al. Volumetric evaluation of coronary plaque in patients presenting with acute myocardial infarction or stable angina pectoris-a multislice computerized tomography study. Am Heart J, 2009; 157(3): 481-487.
    
    20. Schroeder S, Kopp AF, Baumbach A , et al. Noninvasive detection and evaluation of atherosclerotic coronary plaques with multislice computed tomography. J Am Coll Cardiol, 2001; 37(5): 1430-1435.
    
    21. Otsuka M, Bruining N, Van Pelt NC, et al. Quantification of coronary plaque by 64-slice computed tomography: a comparison with quantitative intracoronary ultrasound. Invest Radiol. 2008 ;43(5):314-21.
    
    22. Agatston AS, Janowitz WR, Hildner FJ, et al. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol, 1990; 15(4): 827-32.
    
    23. Budoff MJ, McClelland RL, Chung H, et al . Reproducibility of coronary artery calcified plaque with cardiac 64-MDCT: the Multi-Ethnic Study of Atherosclerosis. AJR Am J Roentgenol. 2009 ;192(3):613-7.
    
    24. Henneman MM, Schuijf JD, Pundziute G, et al. Noninvasive evaluation with multislice computed tomography in suspected acute coronary syndrome: plaque morphology on multislice computed tomography versus coronary calcium score. J Am Coll Cardiol, 2008; 52(3): 216-222.
    
    25. Motoyama S , Kondo T,Anno H , et al . Atherosclerotic plaque characterization by 0.5-mm-slice multi-slice computed tomographic imaging. Cite J, 2007; 71(3): 363-366.
    
    26. Venkatesh V, Ellins ML, Yang S, et al. Incremental detection of coronary artery disease by assessment of non-calcified plaque on coronary CT angiography. Clin Radiol. 2009 ; 64(3):250~5.
    
    27. Van Mieghem CA, Cademartiri F, Mollet NR, et al. Multislice spiral computed tomography for the evaluation of stent patency after left main coronary artery stenting: a comparison with conventional coronary angiography and intravascular ultrasound. Circulation, 2006; 114(7): 645-653.
    
    28. Cademartiri F, Schuijf JD, Pugliese F, et al. Usefulness of 64-slice multislice computed tomography coronary angiography to assess in-stent restenosis. J Am Coll Cardiol, 2007; 49(22): 2204-2210.
    
    29. YamagishiM, TerashimaM, Awano K, et al. Morphology of vulnerable coronary plaque: insights from follow-up of patients examined by intravascular ultrasound before an acute coronary syndrome. J Am Coll Cardiol, 2000; 35: 106-111.
    
    30. Fukuda D, Kawarabayashi T, Tanaka A, et al. Lesion characteristics of acute myocardial infarction: an investigation with intravascular ultrasound. Heart, 2001; 85: 402-406.
    
    31. Rioufol G, Finet G, Ginon I, et al. Multiple atherosclerotic plaque rupture in acute coronary syndrome: a three-vessel intravascular ultrasound study Circulation, 2002; 106: 804-808.
    
    32. Rubinshtein R, Halon DA, Gaspar T, et al. Usefulness of 64-slice cardiac computed tomographic angiography for diagnosing acute coronary syndromes and predicting clinical outcome in emergency department patients with chest pain of uncertain origin. Circulation, 2007; 115: 1762-1768.
    
    33. Fujii K, Kobayashi Y, Mintz GS, et al. Intravascular ultrasound assessment of ulcerated ruptured plaques: a comparison of culprit and nonculprit lesions of patients with acute coronary syndromes and lesions in patients without acute coronary syndromes. Circulation, 2003; 108: 2473-2477.
    
    34. Varnava AM, Mills PG, Davies MJ. et al. Relationship between coronary artery remodeling and plaque vulnerability. Circulation, 2002; 105: 939-943.
    
    35. Rosamond W, Flegal K, Friday G, et al. Heart disease and stroke statistics—2007 update. A report from the American Heart Association Statistics Committee and StrokeK Statistics Subcommittee. Circulation, 2007; 115(1): e69-e171.
    
    36. Zipes DP, Camm AJ, Borggrefe M, et al. American College of Cardiology/American Heart Association Task Force; European Society of Cardiology Committee for Practice Guidelines; European Heart Rhythm Association; Heart Rhythm Society. ACC/AHA/ESC 2006 guidelines for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Circulation, 2006; 114(1): e385~e484.
    
    37. Shah PK. Mechanisms of plaque vulnerability and rupture. J Am Coll Cardiol, 2003; 41: 15S-22S.
    
    38. Corti R, Fuster V and Badimon JJ. Pathogenetic concepts of acute coronary syndromes. J Am Coll Cardiol, 2003; 41 (supplement 1) : 7S~14S.
    
    39. Naghavi M, Libby P, Falk E, et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: part II. Circulation, 2003; 108(5): 1772-1778.
    
    40. Fukuda D, Shimada K, Tanaka A, et al. Comparison of levels of serum matrix metalloproteinase-9 in patients with acute myocardial infarction versus unstable angina pectoris versus stable angina pectoris. Am J Cardiol. 2006 15; 97(2):175-80
    
    41. Fiotti N, Altamura N, Orlando C, et al. Metalloproteinases-2, -9 and TIMP-1 expression in stable and unstable coronary plaques undergoing PCI. Int J Cardiol. 2008 21;127(3):350-7
    
    42. Squire IB, Evans J, Ng LL, et al. Plasma MMP-9 and MMP-2 following acute myocardial infarction in man: correlation with echocardiographic and neurohumoral parameters of left ventricular dysfunction. J Card Fail, 2004; 10(2): 328-33.
    
    43. Tan J, Hua Q, Gao J, Fan ZX. Clinical implications of elevated serum interleukin-6, soluble CD40 ligand, metalloproteinase-9, and tissue inhibitor of metalloproteinase-1 in patients with acute ST-segment elevation myocardial infarction. Clin Cardiol, 2008; 31 (9): 413— 418.
    
    44. Blankenberg S , Tiret L .Bickel C , et al . Interleukin218 is a st rong predictor of cardiovascular deat h in stable and unstable angina. Circulation, 2006; 106 (1): 24—30.
    
    45. Pearson TA, Mensah GA, Alexander RW, et al. Markers of inflammation and cardiovascular disease, application to clinical and public health practice a statement for disease control and preventio and the American Heart Association. Circulation, 2003; 107 (4): 499 -511.
    1.Fischman DL,Leon MB,Baim D,et al.A randomized comparison coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease.N Engl J Med,1994;331(8):496-501.
    2.Dussaillant GR,Mintz GS,Pilchard AD,et al.Small stent size and intimal hyperplasia contribute to restenosis:a volumetric intravascular ultrasound analysis.J Am Coll Cardiol,1995;26(3):720-724.
    3.Hong YJ,Jeong MH,Hyun DW,et al.Impact of preinterventional arterial remodeling on in-stent neointimal hyperplasia and in-stent restenosis after coronary stent implantation.Circ J,2005;69(4):414-419.
    4.Hoffmann R,Mintz GS,Dussaillant GR,et al.Patterns and mechanisms of in-stent restenosis:a serial intravascular ultrasound study.Circulation,1996;94(6):1247-1254.
    5.Cademartiri F,Mollet N,Lemos PA,et al.Usefulness of multislice computed tomographic coronary angiography to assess in-stent restenosis.Am J Cardiol,2005;96(6)::799-802.
    6.Schuijf JD,Bax JJ,Jukema JW,et al.Feasibility of assessment of coronary stent patency using 16-slice computed tomography.Am J Cardiol,2004;94(4):427-430.
    7.Seifarth H,Ozg(u|¨)n M,Raupach R,et al.64- Versus 16-slice CT angiography for coronary artery stent assessment:in vitro experience.Invest Radiol.2006;41(1):22-7.
    8.Kitagawa T,Fujii T,Tomohiro Y,et al.Noninvasive assessment of coronary stents in patients by 16-slice computed tomography.Int J Cardiol, 2006; 109(2): 188-194.
    
    9. Hong C, Chrysant GS, Woodard PK, et al. Coronary artery stent patency assessed with in-stent contrast enhancement measured at multi - detector row CT angiography: initial experience. Radiology, 2004; 233(1): 286 - 291.
    
    10. Sheth T, Dodd JD, Hoffmann U, et al. Coronary stent assessability by 64 slice multi-detector computed tomography. Catheter Cardiovasc Interv. 2007 1;69 (7):933-8.
    
    11. Nakamura K, Funabashi N, Uehara M, et al. Impairment factors for evaluating the patency of drug-eluting stents and bare metal stents in coronary arteries by 64-slice computed tomography versus conventional coronary angiography. Int J Cardiol, 2008; 130(3): 349-356.
    
    12. Chabbert V, Carrie D, Bennaceur M, et al. Evaluation of in-stent restenosis in proximal coronary arteries with multidetector computed tomography (MDCT). Eur Radiol. 2007 ;17(6):1452-63.
    
    13. Vanhoenacker PK, Decramer I, Bladt O, et al. Multidetector computed tomography angiography for assessment of in-stent restenosis: meta-analysis of diagnostic performance. BMC Med Imaging. 2008;31;8:14.
    
    14. Seifarth H, Ozgun M, Raupach R, et al. 64- Versus 16-slice CT angiography for coronary artery stent assessment: in vitro experience. Invest Radiol. 2006 ;41(1):22-7.
    
    15 Gaspar T, Halon DA, Lewis BS, et al. Diagnosis of coronary in-stent restenosis with multidetector row spiral computed tomography. J Am Coll Cardiol, 2005; 46(8): 1573-1579.
    
    16. Maintz D, Seifarth H. Flohr T, et al. Improved coronary artery stent visualization and in-stent stenosis detection using 16-slice computed-tomography and dedicated image reconstruction technique. Invest Radiol, 2003; 38(12): 790-795.
    
    17. Giesler T, Baum U and Ropers D. Noninvasive visualization of coronary arteries using contrast-enhanced multidetector CT: influence of heart rate on image quality and stenosis detection[J]. AJR, 2002; 179(4): 911-916.
    
    18. Cademartiri F, Schuijf JD, Pugliese F, et al. Usefulness of 64-slice multislice computed tomography coronary angiography to assess in-stent restenosis[J]. J Am Coll Cardiol, 2007; 49(22): 2204-2210.
    19. Carter AJ. Kopia G, Lianos G, et al. Stent based sirolimus delivery reduces neointimal proliferation in a porcine coronary model of restenosis. J Am Coll Cardiol, 2000; 35(Suppl): 13.
    
    20. Sousa JE, Costa MA, Abizaid AC, et al. Sustained suppression of neointimal proliferation by sirolimus-eluting stents: one-year angiographic and intravascular ultrasound follow-up. Circulation, 2001; 104(17): 2007-2001.
    
    21. Suzuki T, Kopia G, Hayashi S, et al. Stent-based delivery of sirolimus reduces neointimal formation in porcine coronary model. Circulation, 2001; 104(10): 1188-1193
    1.Roberts WT,Bax JJ and Davies LC.Cardiac CT and CT coronary angiography:technology and application[J].Heart,2008;94(6):781-792.
    2.Chalikias GK,Tziakas DN,Kaski JC,et al.Interleukin—18:interleukin —10 ratio and in-hospital adverse events in patients with acute coronary syndrome[J].Atherosclerosis,2005,182(1):135-143.
    3.Koenig W,Khuyinova N,Baumert J,et al.Increased concentrations of C-reactive protein and IL-6 but not IL—18 are independently associated with incident coronary event in middle-aged men and women:results from the MONICA/KORA Augsburg case—cohort study,1984-2002[J].Arterioscler Thromb Vase Biol, 2006, 26(12): 2745—2751.
    
    4. Gaffs ZS and Khatri JJ. Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly[J]. Circ Res, 2002, 90(3): 251-262.
    
    5. Jones CB, Sane DC and Herrington DM. Matrix metalloproteinases: a review of their structure and role in acute coronary syndrome[J]. Cardiovasc Res, 2003, 59(4): 812-823.
    
    6.韩泽.CT扫描分册[M].武汉:湖北科学技术出版社,2005:24.
    
    7. Musto C, Simon P, Nicol E, et al. 64-multislice computed tomography in consecutive patients with suspected or proven coronary artery disease: initial single center experience. Int J Cardiol. 2007 Jan 2;114(1):90—7.
    
    8. Leschka S, Alkadhi H, Plass A, Desbiolles L, Grunenfelder J, Marincek B, Wildermuth S. Accuracy of MSCT coronary angiography with 64-slice technology: first experience. Eur Heart J. 2005; 26: 1482-1487.
    
    9. Schuijf JD, Pundziute G, Jukema JW, et al. Diagnostic accuracy of 64-slice multislice computed tomography in the noninvasive evaluation of significant coronary artery disease. Am J Cardiol. 2006 Jul 15: 98 (2): 145-8.
    
    10. Muhlenbruch G, Seyfarth T, Soo CS, et al. Diagnostic value of 64-slice multi-detector row cardiac CTA in symptomatic patients[J]. Eur Radiol,2007; 17(3): 603-609
    
    11. Meijboom WB, Mollet NR, Van Mieghem CA, et al. 64-Slice CT coronary angiography in patients with non-ST elevation acute coronary syndrome. Heart, 2007; 93(11): 1386-1392
    
    12. Ehara M, Surmely JF, Kawai M, et al. Diagnostic accuracy of 64-slice computed tomography for detecting angiographically significant coronary artery stenosis in an unselected consecutive patient population: comparison with conventional invasive angiography[J]. Circ J, 2006; 70(5): 564-571.
    
    13. Mowatt G, Cook JA, Hillis GS, et al. 64-Slice computed tomography angiography in the diagnosis and assessment of coronary artery disease: systematic review and meta-analysis[J]. Heart, 2008; 94(11): 1386-1193.
    
    14. Leber AW, Becker A, Knez A, et al. Accuracy of 64-slice computed tomography to classify and quantify plaque volumes in the proximal coronary system: a comparative study using intravaacular ultrasound [J]. J Am Coll Cardiol, 2006, 47(3): 672-677.
    
    15. Leber AW, Knez A, yon Ziegler F, et al. Quantification of obstructive and nonobstructive coronary lesions by 64-slice computed tomography: a comparative study with quantitative coronary angiography and intravascular ultrasound[J]. J Am Coll Cardiol, 2005, 46 (1): 147—154.
    
    16. MowyamaS, Kondo T, Anno H, et al. Atherosclerotic plaque characterization by 0. 5-mm-slice multi-slice computed tomographic imaging [J]. Cite J, 2007, 71 (3): 363-366.
    
    17. Schroeder S, Kuettner A, Leitritz M, et al. Reliability of differentiating human coronary plaque morphology using contrast-enhanced multislice spiral computed tomography: a comparison with histology[J]. J Comput Assist Tomogr, 2004, 28(4): 449-454.
    
    18. Chin BS, Ong TK, Seyfarth TM, et al. Vessel density ratio: A novel approach to identify "culprit" coronary lesion by spiral computed tomography[J]. J Comput Assist Tomogr, 2006; 30(4): 564-568.
    
    19. Pundziute G, Schuijf JD, Jukema JW, et al. Evaluation of plaque characteristics in acute coronary syndromes: non-invasive assessment with multi-slice computed tomography and invasive evaluation with intravascular ultrasound radiofrequency data analysis[J]. Eur Heart J, 2008; 29(19): 2373-2781.
    
    20. Henneman MM, Schuijf JD, Pundziute G, et al. Noninvasive evaluation with multislice computed tomography in suspected acute coronary syndrome: plaque morphology on multislice computed tomography versus coronary calcium score [J]. J Am Coll Cardiol, 2008; 52(3): 216-222.
    
    21. Schmitt R, Froehner S, Brunn J, et al. Congenital anomalies of the coronary arteries: imaging with contrast-enhanced, multidetector computed tomography[J]. Eur Radiol, 2005; 15: 1110-1121.
    
    22. Montaudon M, Latrabe V, Iriart X, et al. Congenital coronary arteries anomalies: review of the literature and multidetector computed tomography (MDCT)-appearance[J]. Surg Radiol Anat, 2007; 29(5): 343-355.
    
    23. WANG Ming-hui, SUN Ai-jun, QIAN Ju-ying, et al. Myocardial bridging detection by non-invasive multislice spiral computed tomography: comparison with intravascular ultrasound [J]. Chinese Medical Journal, 2008, 121 (1 ) : 17-21
    
    24. Kawawa Y, Ishikawa Y, Gomi T, et al. Detection of myocardial bridge and evaluation of its anatomical properties by coronary multislice spiral computed tomography[J]. Eur J Radiol. 2007; 61(1): 130-138.
    
    25. Kuei-Yuan Hou, Chin-Ming Jeng, Yap-Ping Liul, et al. Diagnosis of Anomalous Coronary Arteries in 64-MSCT[J]. Chin J Radiol, 2007; 32 (1) : 111-119.
    
    26. Joanne D. Feasibility of Assessment of Coronary stent patency using 16-slice computed Tomography[J]. Am J Cardiol,2004, 94; 427-430.
    
    27. Gilard M, Cornily JC, Pennec PY, et al. Assessment of coronary artery stents by 16-slice computed tomography. Heart 2006;92:58 - 61.
    
    28. Nakamura K, Funabashi N, Uehara M, et al. Impairment factors for evaluating the patency of drug-eluting stents and bare metal stents in coronary arteries by 64-slice computed tomography versus conventional coronary angiography [J]. Int J Cardiol,2008; 130(3): 349-356.
    
    29. Van Mieghem CA, Cademartiri F, Mollet NR, et al. Multislice spiral computed tomography for the evaluation of stent patency after left main coronary artery stenting: a comparison with conventional coronary angiography and intravascular ultrasound[J]. Circulation. 2006; 114(7): 645-653
    
    30. Cademartiri F, Schuijf JD, PuglieseF, et al. Usefulness of 64-slice multislice computed tomography coronary angiography to assess in~stent restenosis[J]. J Am Coll Cardiol, 2007; 49(22): 2204-2210.
    
    31. Rosamond W, Flegal K, Friday G, et al. Heart disease and stroke statistics—2007 update. A report from the American Heart Association Statistics Committee and StrokeK Statistics Subcommittee[J]. Circulation 2007; 115(1): e69-el71.
    
    32. Zipes DP, CammAJ, Borggref e M, et al. American College of Cardiology/American Heart Association Task Force; European Society of Cardiology Committee for Practice Guidelines; European Heart Rhythm Association; Heart Rhythm Society. ACC/AHA/ESC 2006 guidelines for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death[J]. Circulation 2006; 114(1): e385-e484.
    
    33. Derosa G, D'Angelo A, Scalise F, et al. Comparison between metalloproteinases-2 and -9 in healthy subjects, diabetics, and subjects with acute coronary syndrome. Heart Vessels. 2007 ; 22(6):361-70
    
    34. Aikawa M, Rabkin E, Sugiyama S, et al. An HMG-CoA reductase inhibitor, cerivastatin, suppresses growth of macrophages expressing matrix metal loproteinases and tissue factor in vivo and in vitro. Circulation. 2001; 16;103 (2):276-83
    
    35. Naghavi M, LibbyP, Falk E, et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: part II[J]. Circulation 2003; 108(5): 1772-1778.
    
    36. Loftus IM, Naylor AR, Bell PR, et al. Matrix metal loproteinases and atherosclerotic plaque instability. Br J Surg 2002; 89(5): 680-694.
    
    37. Heinrich PC, Castell JV and Andus T. Interleukin-6 and the acute phase response. Biochem J 1990; 265: 621-36.
    
    38. Kai H, Ikeda H, Yasukawa H, et al. Peripheral blood levels of matrix metalloproteases-2 and -9 are elevated in patients with acute coronary syndromes[J]. J Am Coll Cardiol 1998; 32(3): 368-72.
    
    39. Konstantino Y, Nguyen TT, Wolk R, et al. Potential implications of matrix metalloproteinase-9 in assessment and treatment of coronary artery disease. Biomarkers. 2009 ; 14(2):118-29.
    40. Manginas A, Bei E, Chaidaroglou A, et al. Peripheral levels of matrix metalloproteinase-9, interleukin-6, and Oreactive protein are elevated in patients with acute coronary syndromes: correlations with serum troponin I. Clin Cardiol. 2005 ; 28(4):182-6.
    
    41. Pearson TA, Mensah GA, Alexander RW, et al. Markers of inflammation and cardiovascular disease, application to clinical and public health practice a statement for disease control and preventio and the American Heart Association[J]. Circulation, 2003; 107 (4): 499 -511.
    
    42. Gurbel PA, Kreutz RP, Bliden KP, et al. Biomarker analysis by fluorokine multianalyte profiling distinguishes patients requiring intervention from patients with long-term quiescent coronary artery disease: a potential approach to identify atherosclerotic disease progression[J]. Am Heart J, 2008; 155(1): 56-61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700