用户名: 密码: 验证码:
DNA凝聚态与细胞图案化在基因转染中的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着基因治疗和组织工程的发展,高效的基因转染引起了人们越来越广泛的关注。基因转染主要包括以下两个主要环节:基因转染复合物的制备和基因在哺乳动物细胞中的表达。其中,基因转染复合物的制备涉及到DNA和基因载体的相互作用,这一过程,伴随着DNA形态结构的复杂变化,即DNA凝聚态;基因在哺乳动物细胞中的表达效率受到细胞状态的影响,研究图案化细胞的基因转染情况对于基因治疗有着重要的意义。因此,本博士论文围绕基因转染这一研究核心,分别研究探讨了DNA凝聚态与细胞图案化对于基因转染效率的影响。具体如下:
     首先,研究了DNA凝聚态对基因转染效率的影响。其一,研究了DNA自身结构的改变对于DNA凝聚态和基因转染效率的影响。分别在高温、碱的环境条件下对DNA进行处理,制备了热变性DNA、碱变性DNA,然后分别对其DNA凝聚态与其基因转染效率间的关系进行了研究探讨,研究结果表明:经热、碱处理后的DNA,由于DNA结构发生了重大的改变,导致其DNA凝聚效率得到了显著提高;进一步研究发现,经热变性的DNA具有比天然DNA更高的基因转染效率,碱变性的DNA在较低PEI存在的情况下仍然具有较好的基因转染效率。其二,研究了基因载体的结构对于基因转染效率的影响。通过构建超分子钌的环糊精配合物、CB[6]包络的准聚轮烷、结构类似长度不同的准聚轮烷、低电荷密度的poly(PEGMA)-4N基因转染载体,分别研究探讨了它们诱导DNA凝聚态的能力及其对基因转染效率的影响,并且对DNA凝聚态的机理进行了阐述。研究结果表明:电荷、载体中金属元素对DNA的切割作用、细胞毒性等因素能够在很大程度上影响基因转染效率;CB[6]的包络和准聚轮烷的长度控制能够有效调节准聚轮烷与DNA的相互作用;阐明了电场下准聚轮烷诱导的DNA凝聚态的机制,指出电场对DNA凝聚态的破坏作用与诱导物和DNA之间的结合稳定性有关;阐明了阳离子高聚物诱导DNA凝聚态的机制,指出该凝聚过程是静电吸引和空乏效应协同作用的结果,特别是对于低电荷密度的阳离子高聚物而言,空乏效应占了主要地位。
     其次,研究探讨了表/界面基底材料上的细胞图案化、以及图案化细胞基因转染的效果。分别研究了在亲水性云母表面和疏水性PDMS表面细胞图案化的方法,并且对这些图案化细胞的基因转染效率进行了研究。研究结果表明:通过微接触印刷法在云母表面图案化胶原,能够有效地控制细胞在亲水性云母表面的图案化贴附和生长,进一步研究表明,该图案化的细胞具有很好的基因转染效率;疏水蛋白HFBI能够通过自组装将疏水的PDMS表面转变为亲水表面,从而有利于进一步的蛋白固定和细胞贴附,基于该疏水蛋白的两亲特性,建立了在PDMS表面控制细胞图案化生长的方法,进一步研究表明,该图案化的细胞同样具有很好的基因转染效率。
     本论文从DNA凝聚态和细胞图案化两个角度出发,围绕基因转染这一核心进行了研究,其研究结果不仅提出了增加基因转染效率的新方法、细胞图案化的新方法和调控DNA凝聚态的新方法,而且进一步对DNA凝聚态的机理进行了阐述。本研究成果将对基因治疗和组织工程领域具有一定的重要意义。
With the development of gene therapy and tissue engineering, effective gene transfection has become a hot topic. There are mainly two steps in gene transfection: preparing the complexes of DNA/gene delivery vectors and gene expression in mammalian cells. Preparation of the complexes of DNA/gene delivery vectors referes to the interaction between DNA and gene delivery vectors, which will cause great changes into the structure of DNA and is referred to as DNA condensation. Gene expression in mammalian cells will be influenced by the cell status. Consequently, gene transfection studies on patterned cells are of great meaning for their gene therapeutic applications. In this study, we investigated the influence of DNA condensation and cell patterning on gene transfection for the purpose of improving gene transfection efficiency, as follows:
     Fisrt, we investigated the influence of DNA condensation on gene transfection efficiency. In the first part, we investigated how the structure of DNA influenced the gene transfection efficiency. We treated the plasmid DNA with high temperature or alkali and investigated their DNA condensation efficiency as well as their gene transfection efficiency. We found that the heat or alkali treatment greatly changed the structure of DNA. The change significantly increased their DNA condensation efficiency. Further research showed that heat denatured DNA had higher gene transfection efficiency than the native DNA. Besides, the alkali treated DNA were shown to be more sensitive to PEI and could perform gene transfection experiment in the presence of less PEI. In the second part, we investigated the influence of gene delivery vectors on gene transfection efficiency. We synthesized a supermolecular chemicals containing Ru, PPRs with CB[6], PPRs of similar structures but different lengths and a few-positively-charged polymer poly(PEGMA)-4N. We investigated their DNA condensation efficiency and gene transfection efficiency. We also explained the mechanism about DNA condensation. We found that the positive charges, the damage to DNA and the cell toxicity had an influence on the gene transfection efficiency. We found that CB[6] and the length of PPR could effectively control the interaction between DNA and PPR. We detailed the mechanism of DNA condensation in electric field, pointing out that the destruction of DNA/PPRs complexes in electric field was related to the stability between DNA and PPR. We detailed the mechanism of DNA condensation induced by cationic polymers, pointing out that the DNA condensation was caused by both static attraction and depletion effect, the latter of which played a more important part in polymers with few positive charges.
     Second, we investigated the gene transfection on the patterned cells. We developed new methods to pattern cells on both hydrophilic mica surface and hydrophobic PDMS surface and investigated the gene transfection efficiency on the patterned cells. Data showed that by micropatterning collagen, cell patterns could be obtained on hydrophilic mica surface. The patterned cells were of good gene transfection efficiency. Data also showed that self-assembly of hydrophobin HFBI could effectively convert the hydrophobic PDMS surface into a hydrophilic one, which should facilitate protein immobilization and cell adhesion. Due to the amphiphilic property of HFBI, cell patterns could be obtained on PDMS surface. Data also showed that these cells were of good gene treasfection efficiency.
     This research investigated the influence of DNA condensation and cell pattern on gene transfection efficiency. The data not only contained new methods for improving transfection efficiency, new methods to pattern cells and new methods for controlling DNA condensation, but also explained the mechanism about DNA condensation. Our research will contribute to gene therapy and tissue engineering fields.
引文
[1] Liu M A. DNA vaccines: a review. J. Intern. Med., 2003,4: 402-410
    
    [2] Verma I M and Somia N. Gene therapy-promises, problems and prospects. Nature, 1997, 389:239-242
    [3] Azzam T and Domb A J. Current developments in gene trails-fection agents. Curr. Drug Deliv.,2004,1: 165-193
    [4] Hou S, Yang K, Yao Y, et al. DNA condensation induced by a cationic polymet studied by atomic force microscopy and electrophoresis assay. Colloids Surf. B: Biointerfaces, 2008, 62:151-156
    [5] Castellana E T and Cremer P S. Solid supported lipid bilayers: From biophysical studies to sensor design. Surface Sci. Rep., 2006, 61: 429-444
    [6] Brisson M, Tseng W C and Almonte C. Subcellular trafficking of the cytoplasmic expression system. Hum. Gene Then, 1999, 10: 2601-2603
    
    [7] Bloomfield V A. DNA condensation. Curr. Opin. Struct. Biol., 1996, 6: 334-341
    [8] Feng X Z, Bash R, Balagurumoorthy P, et al. Conformational transition in DNA on a cold surface. Nucleic Acid Research, 2000, 28: 593-595
    [9] Wang L K, Feng X Z, Hou S, et al. Microcontact printing of multiproteins on the modified mica substrate and study of immunoassays. Surf. Interface. Anal., 2006, 38: 44-50
    [10] Park J H, Park K D and Bae Y H. PDMS-based polyurethanes with MPEG grafts: synthesis, characterization and platelet adhesion study. Biomaterials, 1999, 20: 943-953
    
    [11] Chovan T and Guttman A. Microfabricated devices in biotechnology and chemical processing. Trends in Biotechnology, 2002, 20: 116-122
    
    [12] Hou S, Feng X Z, Wang L K, et al. Microcontact printing of multiproteins on the GA modified glass substrate and its applications in the research of immunoassays. Solid State Phenomena, 2007, 121-123: 721-724
    
    [13] Whitesides G M. The origins and the future of microfluidics. Nature, 2006, 442: 368-373
    [14] Kukowska-Latallo J F, Chen C, Eichman J, et al. Enhancement of dendrimer-mediated transfection using synthetic lung surfactant exosurf neonatal in Vitro. Biochem Biophys Res Commun, 1999, 264: 253-261
    [15] Manunta M, Tan P H, Sagoo P, et al. Gene delivery by dendrimers operates via a cholesterol dependent pathway. Nucleic Acids Res., 2004, 32: 2730-2739
    [16] Sainlos M, Hauchecorne M, Oudrhiri N, et al. Kanamycin A-derived cationic lipids as vectors for gene transfection. Chembiochem, 2005, 6: 1023-1033
    [17] Kirby A J, Camilleri P, Engberts J B F N, et al. Gemini surfactants: new synthetic vectors for gene transfection. Angew. Chem., Int. Ed., 2003, 42: 1448-1457
    [18] Guillot M, Eisler S, Weller K, et al. Effects of structural modification on gene transfection and self-assembling properties of amphiphilic dendrimers. Org. Biomol. Chem., 2006, 4: 766-769
    [19] Cherng J Y, Wetering P V, Talsma H, et al. Effect of size and serum proteins on transfection efficiency of poly((2-dimethylamino) ethyl methacrylate)-plasmid nanoparticles. Pharm Res,1996, 13: 1038-1042
    [20] Thierry A R, Rabinovich P, Peng B, et al. Characterization of liposome-mediated gene delivery: expression, stability and pharmacokinetics of plasmid DNA. Gene Ther, 1997, 4:226-237
    [21] Remy J S, Abdallah B, Zanta M A, et al. Gene transfer with lipospermines and polyethylenimines. Adv. Drug. Deliv. Rev., 1998, 30: 85-95
    [22] Ke C F, Hou S, Zhang H Y, et al. Controllable DNA condensation through cucurbit[6]uril in 2D pseudopolyrotaxanes. Chem Comm, 2007, 32: 3374-3376
    [23] Godbey W T, Wu K K and Mikos A G. Poly(ethylenimine) and its role in gene delivery. J.Control. Release, 1999, 60: 149-160
    [24] vande-Wetering P, Schuurmans-Nieuwenbroek N M E, van-Streenbergen M J, et al.Copolymers of 2-(dimethylamino) ethyl methacrylate with ethoxytriethylene glycol methacrylate or N-vinylpyrrolidone as gene transfer agents. J Control Release, 2000, 64:193-203
    [25] Wolfert M A, Dash P R, Nazarova O, et al. Polyelectrolyte vectors for gene delivery: influence of cationic polymer on biophysical properties of complexes formed with DNA.Bioconjug. Chem., 1999, 10: 993-1004
    [26] vande-Wetering P, Moret E E, Schuurmans-Nieuwenbroek N M E, et al. Structure-activity relationships of water-soluble cationic methacrylate/methacrylamide polymers for nonviral gene delivery. Bioconjug Chem, 1999, 10: 589-597
    [27] Pouwels P H, Knijnenburg C M, Rotternam J V, et al. Strucutre of the replicative form of bacteriophage ΦX174 VI. Studies on alkali-denatured double-stranded ΦX174 DNA. J. Mol.Biol. , 1968,32: 169-182
    [28] Cherng J-Y, Schuurmans-Nieuwenbroek N M E, Jiskoot W, et al. Effect of DNA topology on the transfection efficiency of poly((2-dimethylamino)ethyl methacrylate)-plasmid complexes.J Control Release, 1999, 60: 343-353
    [29] Yan L and Iwasaki H. Thermal denaturation of plasmid DNA observed by atomic force microscopy. Jpn J Appl Phys, 2002, 41: 7556-7759
    [30] Bloomfield V A. DNA condensation by multivalent cations. Biopolymers/Nucleic Acid Sci,1998,44:269-282
    [31] Erie D A, Yang G, Schultz H C, et al. DNA bending by Cro protein in specific and nonspecific complexes: implications for protein site recognition and specificity. Science, 1994,266: 1562-1566
    [32] Ma C and Bloomfield V A. Condensation of supercoiled DNA induced by MnCl_2. Biophys J,1994,67: 1678-1681
    [33] Bloomfield V A. Condensation of DNA by multivalent cations: Considerations on mechanism. Biopolymers, 1991, 31: 1471-1481
    
    [34] Han W, Lindsay S M, Dlakic M, et al. Kinked DNA. Nature, 1997, 386: 563-563
    [35] Sikorav J L, Pelta J and Livolant F. A liquid crystalline phase in spermidinecondensed DNA.BiophysJ, 1994,67: 1387-1392
    [36] Lin Z, Wang C, Feng X Z, et al. The observation of the local ordering characteristics of spermidine-condensed DNA: atomic force microscopy and polarizing microscopy studies.Nucleic Acids Res, 1998, 26: 3228-3234
    [37] Steven A, Su K T and Dryden D T F. Alleviation of restriction by DNA condensation and non-specific DNA binding ligands. Nucleic Acids Res, 2004, 32: 5841-5850
    [38] Yang J P and Huang L. Direct gene transfer to mouse melanoma by intratumor injection of free DNA. Gene Then, 1996, 3: 542-548
    [39] Davis S S. Biomedical applications of nanotechnology-implications for drug targeting and gene therapy. Trends Biotechnol., 1997, 15: 217-224
    [40] Zelphati O and Szoka F C. Mechanism of oligonucleotide release from cationic liposomes.Proc. Natl. Acad. Sci. USA, 1996, 93: 11493-11498
    [41] Tang M X and Szoka F C. The influence of polymer structure on the interactions of cationic polymers with DNA and morphology of the resulting complexes. Gene Then, 1997, 4:823-832
    [42] Godbey W T, Wu K K and Mikos A G. Size matters: Molecular weight affects the efficiency of poly(ethylenimine) as a gene delivery vehicle J. Biomed. Mater. Res., 1999,45: 268-275
    [43] Erbacher P, Roche A C, Monsigny M, et al. The reduction of the positive charges of polylysine by partial gluconoylation increases the transfection efficiency of polylysine/DNA complexes. Biochim. Biophys. Acta, 1997, 1324: 27-36
    [44] Banaszczyk M G, Lollo C P, Kwoh D Y, et al. Poly-L-lysine-graft-PEG-combtype polycation copolymers for gene delivery. J. Macromol. Sci. Pure Appl. Chem., 1999, 36: 1061-1084
    [45] Schaffer D V, Fidelman N A, Dan N, et al. Vector unpacking as a potential barrier for receptor-mediated polyplex gene delivery. Biotechnol. Bioeng., 2000, 67: 598-606
    [46] Hou S, Yang K, Liu Z, et al. A method to increase the bioactivity of plasmid DNA by heat treatment. J. Biochem. Biophys. Methods, 2008, 70: 1066-1072
    [47] Jansz H S and Pouwels P H. Strucutre of the replicative form of bacteriophage ΦX174.Biochem. Biophys. Res. Comm., 1965, 18: 589-594
    [48] Pouwels P H, Rotternam J V and Cohen J A. Strucutre of the replicative form of bacteriophage OX174 VII. Renatureation of nenatured double-stranded OX174 DNA. J. Mol.Biol., 1968,40:379-390
    [49] Duguid J G and Bloomfield V A. Aggregation of melted DNA by divalent metal ion-mediated cross-linking. Biophys. J., 1995, 69: 2642-2648
    [50] Mikhailenko S V, Sergeyev V G, Zinchenko A A, et al. Interplay between folding/unfolding and helix/coil transitions in giant DNA. Biomacromolecules, 2000, 1: 597-603
    [51] Saminathan M, Antony T, Shirahata A, et al. Ionic and structural specificity effects of natural and synthetic polyamines on the aggregation and resolubilization of single-, double-, and triple-stranded DNA. Biochemistry, 1999, 38: 3821-3830
    [52] Godbey W T, Wu K K, Hirasaki G J, et al. Improved packing of poly(ethylenimine)/DNA complexes increases transfection efficiency. Gene Ther., 1999, 6: 1380-1388
    [53] Steiner T. The hydrogen bond in the solid state. Angew. Chem., Int. Ed., 2002, 41: 48-76
    [54] Demadis K D, Hartshorn C M and Meyer T J. The localized-to-delocalized transition in mixed-valence chemistry. Chem. Rev., 2001, 101: 2655-2685
    [55] Dam-Rauer N H, Cerullo G, Yeh A, et al. Femtosecond dynamics of excited-state evolution in [Ru(bpy)_3]~(2+). Science, 1997, 275: 54-57
    [56] Campagna S, Pietro P D, Loiseau F, et al. Recent advances in luminescent polymetallic dendrimers containing the 2,3-bis(2'-pyridyl)pyrazine bridging ligand. Coord. Chem. Rev.,2002, 229: 67-74
    [57] Brunschwig B S, Creutz C and Sutin N. Optical transitions of symmetrical mixed-valence systems in the class II-III transition regime. Chem. Soc. Rev., 2002, 31: 168-184
    [58] Beyeler A and Belser P. Synthesis of a novel rigid molecule family for the investigation of electron and energy transfer. Coord. Chem. Rev., 2002, 230: 28-38
    [59] Bargiletti F and Flamigni L. Photoactive molecular wires based on metal complexes. Chem.Soc. Rev., 2000, 29: 1-12
    [60] Balzani V, Ceroni P, Juris A, et al. Dendrimers based on photoactive metal complexes. Recent Advances. Coord. Chem. Rev., 2001, 219: 545-572
    [61] Balzani V, Juris A, Venturi M, et al. Luminescent and redox-active polynuclear transition metal complexes. Chem. Rev., 1996, 96: 759-833
    [62] Erkkila K E, Odom D T and Barton J K. Recognition and reaction of metallointercalators with DNA. Chem. Rev., 1999, 99: 2777-2796
    [63] Sharma S, Chandra M and Pandey D S. New multifunctional complexes[Ru(k~3-L)(EPh_3)_2Cl]+[E = P, As; L = 2,4,6-tris(2-pyridyl)-l,3,5-triazine] containing both group V and polypyridyl ligands. Eur. J. Inorg. Chem., 2004, 3555-3563
    [64] Connors K A. The stability of cyclodextrin complexes in solution. Chem. Rev., 1997, 97:1325-1357
    [65] Kumar C V and Asuncion E H. Sequence dependent energy transfer from DNA to a simple aromatic chromophore. Chem. Commun., 1992, 470-472
    [66] Kumar C V and Asuncion E H. DNA binding studies and site selective fluorescence sensitization of an anthryl probe. J. Am. Chem. Soc, 1993, 115: 8547-8553
    [67] Ikeda T, Yoshida K and Schneider H J. Anthryl(alkylamino)cyclodextrin complexes as chemically switched DNA intercalators. J. Am. Chem. Soc, 1995, 117: 1453-1454
    [68] Ambroise A and Maiya B G Ruthenium(II) complexes of redox-related, modified dipyridophenazine ligands: synthesis, characterization, and DNA interaction. Inorg. Chem.Commun., 2000, 39: 4256-4263
    [69] Mulligan R C. The basic science of gene therapy. Science, 1993, 260: 926-932
    [70] Pack D W, Hoffman A S, Pun S, et al. Design and development of polymers for gene delivery.Nat. Rev. Drug Discovery, 2005,4: 581-593
    [71] Chen D J, Majors B S, Zelikin A, et al. Structure-function relationships of gene delivery vectors in a limited polycation library. J. Controlled Release, 2005, 103: 273-283
    [72] Pun S H, Bellocq N C, Liu A, et al. Cyclodextrin-modified polyethylenimine polymers for gene delivery. Bioconjugate Chem., 2004, 15: 831-840
    [73] Cheng J, Zeidan R, S.Mishra, et al. Structure-function correlation of chloroquine and analogues as transgene expression enhancers in nonviral gene delivery. J. Med. Chem., 2006,49: 6522-6531
    [74] Bellocq N C, Kang D W, Wang X, et al. Synthetic biocompatible cyclodextrin-based constructs for local gene delivery to improve cutaneous wound healing. Bioconjugate Chem.,2004, 15:1201-1211
    [75] Bellocq N C, Pun S H, Jensen G S, et al. Transferrin-containing, cyclodextrin polymer-based particles for tumor-targeted gene delivery. Bioconjugate Chem., 2003,14: 1122-1132
    [76] Popielarski S R, Mishra S and Davis M E. Structural effects of carbohydrate-containing polycations on gene delivery. 3. cyclodextrin type and functionalization. Bioconjugate Chem.,2003, 14: 672-678
    [77] Shuai X, Merdan T, Unger F, et al. Novel biodegradable ternary copolymers hy-PEI-g-PCL-b-PEG: synthesis, characterization, and potential as efficient nonviral gene delivery vectors. Bioconjugate Chem., 2005, 16: 322-329
    [78] Yamashita A, Choi H S, Ooya T, et al. Improved cell viability of linear polyethylenimine through γ-cyclodextrin inclusion for effective gene delivery ChemBioChem, 2006, 7: 297-302
    [79] Li J, Yang C, Li H, et al. Cationic supramolecules composed of multiple oligoethylenimine-grafted beta-cyclodextrins threaded on a polymer chain for efficient gene delivery. Adv. Mater., 2006, 18: 2969-2974
    [80] Isobe H, Sato S, Lee J W, et al. Supramolecular modulation of action of polyamine on enzyme/DNA interactions. Chem. Commun., 2005, 1549-1551
    [81] Kihara F, Arima H, Tsutsumi T, et al. In vitro and in vivo gene transfer by an optimized a-cyclodextrin conjugate with polyamidoamine dendrimer. Bioconjugate Chem., 2002, 12:1211-1219
    [82] Braun C S, Vetro J A, Tomalia D A, et al. Structure/function relationships of polyamidoamine/DNA dendrimers as gene delivery vehicles. J. Pharm. Sci., 2005, 94:423-436
    [83] Geall A J, Eaton M A W, Baker T, et al. The regiochemical distribution of positive charges along cholesterol polyamine carbamates plays signifcant roles in modulating DNA binding affinity and lipofection. FEBS Lett., 1999, 459: 337-342
    [84] Cain B F, Baguley B C and Denny W A. Potential antitumor agents. 28. Deoxyribonucleic acid polyintercalating agents. J. Med. Chem., 1978, 21: 658-668
    [85] Trentin D, Hubbell J and Hall H. Non-viral gene delivery for local and controlled DNA release. J. Control Release, 2005, 102: 263-275
    [86] von-Groll A, Levin Y, Barbosa M C, et al. Linear DNA low efficiency transfection by liposome can be improved by the use of cationic lipid as charge neutralizer. Biotechnol. Prog.,2006,22: 1220-1224
    [87] Liu Y, Ke C F, Zhang H Y, et al. Reversible 2D pseudopolyrotaxanes based on cyclodextrins and cucurbit [6] uril. J. Org. Chem., 2007, 72: 280-283
    [88] Wolfert M A, Schacht E H, Toncheva V, et al. Characterisation of vectors for gene therapy formed by self assembly of DNA with synthetic block co-polymers. Hum. Gene. Then, 1996,7: 2123-2133
    [89] Kwoh D Y, Coffin C C, Lollo C P, et al. Stablization of poly-L-lysine /DNA polyplexes for in vivo gene delivery to the liver. Biochim, Biophys. Acta, 1999, 1444: 171-190
    [90] Tang M X, Redemann C T and Szoka F C. In vitro gene delivery by degraded polyamidoamine dendrimers. Bioconjug. Chem., 1996, 7: 703-714
    [91] Shah D S, Sakthivel T, Toth I, et al. DNA transfection and transfected cell viability using amphipathic asymmetric dendrimers. Int. J. Pharm., 2000, 208: 41-48
    [92] Jordan C F, Lerman L S and Venable J. Structure and circular dichroism of DNA in concentrated polymer solutions. Nature New Biol., 1972, 236: 67-70
    [93] Livolant F and Leforestier A. Condensed phases of DNA: Structures and phase transitions.Prog. Polym. Sci., 1996,21: 1115-1164
    [94] Gross G W, Rhoades B K, Azzazy H M E, et al. The use of neuronal networks on multielectrode arrays as biosensors. Biosensors Bioelectron., 1995, 10: 553-567
    [95] Langer R and Vacanti J P. Tissue engineering. Science, 1993, 260: 920-926
    [96] Fromherz P, Offenhauser A, Wetter T, et al. A neuron-silicon juncion: a retizus cell of the leech on an insulated gate field effect transistor. Science, 1991, 252: 1290-1293
    [97] Zeck G and Fromherz P. Noninvasive neuroelectronic interfacing with synaptically connected snail neurons immobilized on a semiconductor chip. Proc. Natl. Acad. Sci. USA,2001,98: 10457-10462
    [98] Chen C S, Mrksich M, Huang S, et al. Geometric control of cell life and death. Science, 1997,276: 1425-1428
    [99] Kane R S, Takayama S, Ostuni E, et al. Patterning proteins and cells using soft lithography. Biomaterials, 1999, 20: 2363-2376
    [100] Ma H, Hyun J, Zhang Z, et al. Fabrication of biofunctionalized quasi-three-dimensional microstructures of a nonfouling comb polymer using soft lithography. Adv. Funct. Mater.,2005, 15: 529-540
    [101] Reyes D R, Perruccio E M, Becerra S P, et al. Micropatterning neuronal cells on polyelectrolyte multilayers. Langmuir, 2004, 20: 8805-8811
    [102] Lahann J, Balcells M, Rodon T, et al. Reactive polymer coatings: a platform for patterning proteins and mammalian cells onto a broad range of materials. Langmuir, 2002, 18:3632-3638
    [103] Ghosh P, Amirpour M L, Lackowski W M, et al. A simple lithographic approach for preparing patterned, micron-scale corrals for controlling cell growth. Angew. Chem. Int. Ed.,1999, 38: 1592-1595
    [104] Chiu D T, Jeon N L, Huang S, et al. Patterned deposition of cells and proteins onto surfaces by using three-dimensional microfluidic systems. Proc. Natl. Acad. Sci. USA, 2000, 97:2408-2413
    [105] de-Silva M N, Desai R and Odde D J. Micro-patterning of animal cells on PDMS substrates in the presence of serum without use of adhesion inhibitors. Biomedical Microdevices, 2004,6: 219-222
    
    [106] Ito Y. Surface micropatterning to regulate cell functions. Biomaterials, 1999, 20: 2333-2342
    [107] Lee K B, Kim Y and Choi I S. Pattern generation of cells on a polymeric surface using surface functionalization and microcontact printing. Bull. Korean Chem. Soc, 2003, 24:161-162
    [108] Sarno D M, Murphy A V, DiVirgilio E S, et al. Direct observation of antifreeze glycoprotein-fraction 8 on hydrophobic and hydrophilic interfaces using atomic force microscopy. Langmuir, 2003, 19: 4740-4744
    [109] Themistocleous G S, Katopodis H, Sourla A, et al. Three-dimensional type I collagen cell culture systems for the study of bone pathophysiology. In Vivo, 2004, 18: 687-696
    [110] Wang R, Yang Y L, Qin M, et al. Biocompatible hydrophilic modifications of poly(dimethylsiloxane) using self-assembled hydrophobins. Chem. Mater., 2007, 19:3227-3231
    [111] Li Y, Yuan B, Hang J, et al. A method for patterning multiple types of cells by using electrochemical desorption of self-assembled monolayers within microfluidic channels.Angew. Chem. Int. Ed. Engl., 2007, 46: 1094-1096
    [112] Ertel S I, Ratner B D, Kaul A, et al. In vitro study of the intrinsic toxicity of synthetic surfaces to cells. J. Biomed. Mater. Res., 1994, 28: 667-675
    [113] Dahrouch M, Schmidt A, Leemans L, et al. Synthesis and properties of poly(butylene terephthalate)-poly(ethylene oxide)-poly(dimethylsiloxane) block copolymers. Macromol.Symp., 2003, 199: 147-162
    [114] Genzer J and Efimenko K. Creating long-lived superhydrophobic polymer surfaces through mechanically assembled monolayers. Science, 2000, 290: 2130-2132
    [115] Xia Y and Whitesides G M. Soft lithography. Angew. Chem. Int. Ed. Engl., 1998, 37:550-575
    [116] Khorasani M T, Mirzadeh H and Sammes P G. Laser surface modification of polymers to improve biocompatibility : HEMA grafted PDMS, in vitro assay-Ill. Radiat. Phy. Chem.,1999, 55: 685-689
    [117] Okaniwa M and Ohta Y J. Novel emulsion graft copolymerization onto the silylmethyl group of poly (dimethylsiloxane). Polym. Sci., Part A: Polym Chem., 1997, 35: 2607-2617
    [118] Kim J, Chaudhury M K and Owen M J. Hydrophobic recovery of polydimethylsiloxane elastomer exposed to partial electrical discharge. J. Colloid Interface Sci., 2006, 293: 364-375
    [119] Diaz-Quijada G A and Wayner D D M. A simple approach to micropatterning and surface modification of poly (dimethylsiloxane). Langmuir, 2004, 20: 9607-9611
    [120] Qin M, Wang L K, Feng X Z, et al. Bioactive surface modification of mica and poly(dimethylsiloxane) with hydrophobins for protein immobilization. Langmuir, 2007, 23:4465-4471
    [121] Kong X, Grabitz R G, van-Oeveren W, et al. Effect of biologically active coating on biocompatibility of Nitinol devices designed for the closure of intra-atrial communications.Biomaterials, 2002, 23: 1775-1783
    [122] Jung D R, Kapur R, Adams T, et al. Topographical and physicochemical modification of material surface to enable patterning of living cells. Crit. Rev. Biotechnol., 2001, 21: 111-154
    [123] Janssen M I, van-Leeuwen M B, van-Kooten T G, et al. Promotion of fibroblast activity by coating with hydrophobins in the P-sheet end state. Biomaterials, 2004, 25: 2731-2739
    [124] Collen A, Persson J, Linder M, et al. A novel two-step extraction method with detergent/polymer systems for primary recovery of the fusion protein endoglucanase I-hydrophobin I. Biochim. Biophys. Acta, 2002, 1569: 139-150

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700