用户名: 密码: 验证码:
杂多酸和桥联有机硅片段共修饰的氧化锆有机—无机杂化催化剂的形貌控制合成及其性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新型、高效和环境友好型催化剂的研究与发展是绿色化学研究的一个重要方面。杂多酸(heteropoly acids,HPAs)因其具有超强的Br nsted酸性和多变的结构,使其在酸催化、光催化和氧化催化等方面受到广泛的关注。但是,HPAs比表面积小(<10m2g1)、热稳定性差、易溶于极性溶剂、分离回收及重复使用困难等缺点,导致HPAs在催化领域的应用受到了限制。本文致力于设计由Keggin型杂多酸H3PW12O40、桥联有机硅片段和ZrO2构成的一系列孔道结构有序度和几何形貌可控的有机–无机杂化催化剂,并通过乙酰丙酸的酯化和以廉价非食用油(芸芥油和文冠果油)为原料制备生物柴油的反应,考察了所制备杂化催化剂的催化性能。具体内容如下:
     1.以三嵌段共聚物F127为模板剂,通过溶胶–凝胶共缩合法并结合溶剂热技术,制备了一系列骨架中含有乙基桥联有机硅片段的三维交联介孔结构的H3PW12O40/ZrO2–Si(Et)Si有机–无机杂化催化剂。通过傅立叶红外光谱(FT-IR)、31P、13C和29Si固体核磁共振光谱(MAS NMR)、X射线粉末衍射、高分辨透射电镜(TEM)和氮气吸附孔隙率测定,对杂化催化剂的结构组成、孔形貌和表面物理化学性质进行了表征。选用以芸芥油为原料合成生物柴油的反应为模型,系统研究了功能组分的担载量和催化剂表面的疏水性对其催化活性的影响。此外,本文还详细分析了H3PW12O40/ZrO2–Si(Et)Si杂化催化剂高催化活性的原因。通过三次循环实验发现,杂化催化剂的催化活性和表面物理化学性质基本不变,且催化过程中未检测到H3PW12O40的溶脱,表明其催化稳定性好;
     2.以三嵌段共聚物P123为结构导向剂,改变桥联有机硅单元的结构和初始Si/Zr摩尔比等条件,通过溶胶–凝胶共缩合法并结合水热技术,一步制备了具有二维六方有序介孔结构的H3PW12O40/ZrO2–Si(Ph)Si和三维交联介孔结构的H3PW12O40/ZrO2–Si(Et)Si及H3PW12O40/ZrO2–Si(Ph)杂化催化剂。通过傅立叶红外光谱(FT-IR)、31P、13C和29Si固体核磁共振光谱(MAS NMR)、X射线粉末衍射、高分辨透射电镜(TEM)和氮气吸附测定对杂化催化剂的结构组成、孔形貌、表面物理化学性质和功能组分与载体的作用方式进行了表征;同时,采用吡啶吸附原位红外光谱技术对杂化催化剂的酸性点类型进行了表征,采用酸碱滴定法对杂化催化剂的Br nsted酸性点密度进行了测定。以上表征结果显示,活性组分H3PW12O40和有机硅片段分别以Zr–O–W和–Zr–O–Si–R–Si–O–或–Zr–O–Si–R(R=–CH2CH2–、–C6H4–或–C6H5)共价键与载体ZrO2相连接而存在于材料的孔道和孔壁中,这些新键的形成既增强了功能组分与载体间的相互作用,又促进了聚阴离子中负电荷的离域,因而,与H3PW12O40或ZrO2相比,杂化催化剂的Br nsted酸性显著提高。通过乙酰丙酸与低级醇(甲醇、乙醇和正丁醇)的酯化反应,考察了反应物摩尔比、催化剂孔结构有序度和几何形貌及醇的种类对杂化催化剂活性的影响,并提出了不同酸性位点催化乙酰丙酸酯化反应的作用机理。通过三次循环使用情况,评价了杂化催化剂的稳定性;
     3.在F127的结构导向及1,3,5-三甲基苯的共模板作用下,分别以1,2-双(三甲氧基)乙烷(BTMSE)和Zr(n-OBu)4作为桥联有机硅前驱体和锆源,经一步水解共缩合法,获得了一系列H3PW12O40和乙基桥联有机硅片段共修饰的ZrO2中空纳米球(H3PW12O40/ZrO2Et HNS)。改变BTMSE和Zr(n-OBu)4的摩尔比,可实现材料几何形貌由三维交联介孔结构向中空纳米球的转变。通过31P、13C和29Si固体核磁共振光谱(MAS NMR)、高分辨透射电镜(TEM)和氮气吸附测定以及酸碱滴定和吡啶吸附原位红外光谱技术,对有机无机杂化中空纳米球催化剂的物理化学性质和酸性质进行了表征。结果显示,乙基桥联有机硅基团修饰的H3PW12O40/ZrO2Et HNS中空纳米球具有内径约为612nm的中空腔和厚度约为2nm的壳层。分别以乙酰丙酸的酯化和文冠果油的酯交换反应,系统考察了H3PW12O40/ZrO2Et HNS的催化性能。研究发现,以上杂化中空纳米球催化剂的优异催化活性源于其强Br nsted酸性和Lewis酸性、独特的中空纳米球形貌和表面疏水性。最后,通过三次循环实验研究了杂化催化剂的可循环性。
Recently, the development of eco-friendly and high-efficiency catalysts is a vital topic ofgreen chemistry. Heteropolyacids (HPAs) have attracted extensive attention in the fields ofacid catalysis, photocatalysis and oxidation catalysis, due to their inherent propertiesincluding strong Br nsted acidity and discrete ionic structure. However, the disadvantages ofHPAs such as small BET surface area (<10m2g1), low thermal stability, high solubility inpolar media and hard to reuse limit their application in catalytic fields. In this dissertation, aseries of organic-inorganic hybrid materials with tunable pore structural ordering andmorphology functionalized by Keggin-type heteropoly acid, alkyl-bridged organosilicamoieties and ZrO2were prepared. The acid catalytic activities towards the esterification oflevulinic acid and biodiesel production from the low-cost non-edible oil (eruca sativa gars(ESG) oli and yellow horn oil) were investigated.
     1. A series of3D wormhole-like H3PW12O40/ZrO2–Si(Et)Si with different percentages ofethane-bridged organosilica goups were prepared through one-step sol-gelco-condensation–hydrothermal treatment in the presence of a triblock copolymer surfactantF127. The structural composition, pore morphology and porosity of the hybrid catalysts werecharacterized by FT-IR,31P MAS NMR,13C CP-MAS NMR and29Si MAS NMR,transmission electron microscopy (TEM) and nitrogen porosimetry measurement. The acidcatalytic performances of the hybrid catalysts were evaluated by the transesterification ofESG oil under the mild conditons, and the influences of the contents of functionalcomponents and hydrophobicity on the catalytic activity were investigated systematically.Additionally, the improved catalytic activity of H3PW12O40/ZrO2–Si(Et)Si hybrid catalystswas analyzed in detail. After three recyclings, acid catalytic activity and textural properties ofhybrid materials were unchanged, moreover, the leaching of H3PW12O40was not detectedduring the catalytic process.
     2. A series of mesostructured H3PW12O40/ZrO2–Si(R)Si and H3PW12O40/ZrO2–Si(R)(R=–CH2CH2–,–C6H4–or–C6H5) hybrid catalysts with controlled pore geometries andstructural orderings were produced through one-step sol-gel co-condensation–hydrothermaltreatment with a aid of P123.2D hexagonal (H3PW12O40/ZrO2–Si(Ph)Si) and3Dwormhole-like (H3PW12O40/ZrO2–Si(Et)Si and H3PW12O40/ZrO2–Si(Ph)) pore morphologywere obtained by adjusting the structure of the organosilica groups and initial Si/Zr molarratio. The structural composition, pore morphology, porosity and interaction of functionalcomponents and support were characterized by FT-IR,31P MAS NMR,13C CP-MAS NMRand29Si MAS NMR, TEM and nitrogen porosimetry measurement. Additionally, the acid capacity and the type of acid sites were determined by acid-base titration and pyridine-FTIR.The results suggest that H3PW12O40exists in the pore channel via Zr–O–W covalent linkedwith ZrO2, while the organosilica groups were introduced into the ZrO2farmework through–Zr–O–Si–R–Si–O–/–Zr–O–Si–R(R=–CH2CH2–,–C6H4–or–C6H5)linkages. The stronginteraction of the active component and support can facilitate the delocalization of negativecharge, ultimately leading to the enhanced Br nsted acidity. The effects of alcohol to acidmolar ratio, structural orderings and pore geometries as well as the type of alcohol werestudied through the esterification of levulinic acid with various alcohols (methanol, ethanoland n-butanol) under mild conditions. Based on the above results, the mechanism ofesterification of levulinic acid catalyzed by different types of acid sites was proposed. Theacid catalytic activity and stability of hybrid catalysts were evaluated through threeconsecutive cycles.
     3. Single-micelle-templated preparation of heteropoly acid and ZrO2bifunctionalizedorganosilica hollow nanospheres (H3PW12O40/ZrO2-Et-HNS) was developed by co-hydrolysisand-condensation of bissilylated organic precursor,1,2-bis(trimethoxysilyl)ethane (BTMSE),with zirconium source (Zr(n-OBu)4) in the presence of H3PW12O40, triblock copolymersurfactant F127and1,3,5-trimethylbenzene (TMB) followed by boiling ethanol washing.Through tuning the molar ratio of BTMSE/Zr(n-OBu)4in the initial gel mixture, themorphology transformation from3D interconnected mesostructure to the hollow sphericalnanostructure was realized. The inner diameter of the H3PW12O40/ZrO2-Et-HNS materials isin the range of612nm, and their shell thickness is ca.2nm. As the novel organic-inorganichybrid catalysts, the catalytic activity of H3PW12O40/ZrO2-Et-HNS was evaluated by themodel reactions of esterification of levulinic acid with methanol to methyl levulinate andtransesterification of yellow horn seed oil with methanol to biodiesel under refluxingtemperature (65oC) and atmospheric pressure. The obtained excellent heterogeneous acidcatalytic activity of H3PW12O40/ZrO2-Et-HNS is explained in terms of their strong Br nstedand Lewis acid acidity, unique hollow nanospherical morphology and hydrophobic surface.Finally, the recyclability of the hybrid catalysts was tested through three consecutive catalyticruns.
引文
[1]王恩波,李阳光,鹿影,等.多酸化学概论[M].长春:东北师范大学出版社,2009,1-5.
    [2]Fukaya K, Yamase T. Alkali‐Metal‐C ontrolled Self‐Assembly of Crown‐Shaped Ring Complexesof Lanthanide/[α‐AsW9O33]9:[K{Eu(H2O)2(α‐AsW9O33)}6]35and[Cs{Eu(H2O)2(α‐AsW9O33)}4]23[J]. Angewandte Chemie International Edition,2003,42(6):654-658.
    [3]Baskar V, Shanmugam M, Helliwell M, et al. Reverse-Keggin ions: polycondensation of antimonateligands give inorganic cryptand[J]. Journal of the American Chemical Society,2007,129(11):3042-3043.
    [4]Tan H Q, Li Y G, Zhang Z M, et al. Chiral polyoxometalate-induced enantiomerically3D architectures: anew route for synthesis of high-dimemsional chiral compounds[J]. Journal of the American ChemicalSociety,2007,129(33):10066-10067.
    [5]Okuhara T, Nishimura T, Misono M. Novel microporous solid “Superacids”: CsxH3-xPW12O40(2≤x≤3)[J]. Studies in Surface Science and Catalysis,1996,101:581-590.
    [6]Kozhevnikov I V. Catalysts for fine chemical synthesis[J]. Catalysis by Polyoxometalates,2002,2.
    [7]Pope M T, Jeannin Y, Fournier M. Heteropoly and isopoly oxometalates[M]. Berlin: Springer-Verlag,1983.
    [8]Kozhevnikov I V. Sustainable heterogeneous acid catalysis by heteropoly acids[J]. Journal of MolecularCatalysis A: Chemical,2007,262(1):86-92.
    [9]Tsigdinos G A. Heteropoly compounds of molybdenum and tungsten[M]. Topics in current chemistry.Springer Berlin Heidelberg,1978,1-64.
    [10]Pope M T, Müller A. Polyoxometalate chemistry: an old field with new dimensions in severaldisciplines[J]. Angewandte Chemie International Edition in English,1991,30(1):34-48.
    [11]Maksimov G M. Advances in the synthesis of polyoxometalates and in the study of heteropolyacids[J].Russian Chemical Reviews,1995,64(5):445.
    [12]Souchay M P. Polyanions et polycations[M]. Gauthier-Villars,1963.
    [13]Souchay P. Ions minéraux condensés[M]. Masson et Cie,1969.
    [14]Weakley T J R. Some aspects of the heteropolymolybdates and heteropolytungstates[M]. LargeMolecules. Springer Berlin Heidelberg,1974:131-176.
    [15]Kozhevnikov I V. Advances in catalysis by heteropolyacids[J]. Russian Vhemical Reviews,1987,56(9):811.
    [16]Misono M. Heterogeneous catalysis by heteropoly compounds of molybdenum and tungsten[J].Catalysis Reviews Science and Engineering,1987,29(2-3):269-321.
    [17]Lee K Y, Mizuno N, Okuhara T, et al. Catalysis by heteropoly compounds. XIII: An infrared study ofethanol and diethyl ether in the pseudoliquid phase of12-tungstophosphoric acid[J]. Bulletin of theChemical Society of Japan,1989,62(6):1731-1739.
    [18]Kazanskii L P, Fedotov M A, Spitsyn V I. NUCLEAR MAGNETIC-RESONANCE OF O-17INDIAMAGNETIC AND PARAMAGNETIC HETEROPOLYANIONS OF MOLYBDENUM ANDTUNGSTEN[J]. DOKLADY AKADEMII NAUK SSSR,1977,233(1):152-155.
    [19]Klemperer W G, Shum W. Isomerism and charge distribution in mixed-metal polyoxoanion clusters:oxygen-17nuclear magnetic resonance structure determinations of cis-V2W4O194-and cis-HV2W4O193-[J].Journal of the American Chemical Society,1978,100(15):4891-4893.
    [20]Brown G M, Noe-Spirlet M R, Busing W R, et al. Dodecatungstophosphoric acidhexahydrate,(H35O2+)3(PW12O-40). The true structure of Keggin'spentahydrate'from single-crystal X-ray andneutron diffraction data[J]. Acta Crystallographica Section B: Structural Crystallography and CrystalChemistry,1977,33(4):1038-1046.
    [21]Kozhevnikov I V, Sinnema A, Jansen R J J, et al.17O NMR Determination of Proton Sites in SolidHeteropolyacid H3PW12O40[J]. Mendeleev Communications,1994,4(3):92-93.
    [22]Kozhevnikov I V, Sinnema A, Jansen R J J, et al.17O NMR determination of proton sites in solidheteropoly acid H3PW12O40.31P,29Si and17O NMR, FT-IR and XRD study of H3PW12O40and H4SiW12O40supported on carbon[J]. Catalysis letters,1994,27(1-2):187-197.
    [23]Kozhevnikov I V, Sinnema A, Van Bekkum H. Proton sites in Keggin heteropoly acids from17ONMR[J]. Catalysis Letters,1995,34(1-2):213-221.
    [24]Kozhevnikov I V, Sinnema A, Van Bekkum H, et al.17O MAS NMR study of12-molybdophosphoricacid[J]. Catalysis Letters,1996,41(3-4):153-157.
    [25]Kozhevnikov I V. Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid-phasereactions[J]. Chemical Reviews,1998,98(1):171-198.
    [26]Mizuno N, Misono M. Heterogeneous catalysis[J]. Chemical Reviews,1998,98(1):199-218.
    [27]Katsoulis D E. A survey of applications of polyoxometalates[J]. Chemical reviews,1998,98(1):359-388.
    [28]Izumi Y, Matsuo K, Urabe K. Efficient homogeneous acid catalysis of heteropoly acid and itscharacterization through ether cleavage reactions[J]. Journal of Molecular Catalysis,1983,18(3):299-314.
    [29]Jürgensen A, Moffat J B. The stability of12-molybdosilicic,12-tungstosilicic,12-molybdophosphoricand12-tungstophosphoric acids in aqueous solution at various pH[J]. Catalysis Letters,1995,34(1-2):237-244.
    [30]Misono M, Mizuno N, Katamura K, et al. Catalysis by heteropoly compounds. III. The structure andproperties of12-heteropolyacids of molybdenum and tungsten (H3PMo12-xWxO40) and their salts pertinentto heterogeneous catalysis[J]. Bulletin of the Chemical Society of Japan,1982,55(2):400-406.
    [31]Furuta M, Sakata K, Misono M, et al. Structure and acidity of12-molybdophosphoric acid and its saltsin solid state as characterized by infrared spectroscopy[J]. Chemistry Letters,1979(1):31-34.
    [32]Misono M, Nojiri N. Recent progress in catalytic technology in Japan[J]. Applied Catalysis,1990,64:1-30.
    [33]青島淳,山松節男,山口辰男.高濃度ヘテロポリ酸水溶液中のイソブテン水和反応機構[J].日本化学会誌,1987,1987(6): p976-983.
    [34]Izumi Y, Urabe K, Onaka M. Zeolite, Clay, and Heteropoly Acid in Organic Reactions. Kodansha-VCH,Tokyo/Elsevier, New York,1992,99.
    [35]Kozhevnikov I V.1.3Heteropoly Acids as Catalysts for Organic Reactions[J]. Studies in surfacescience and catalysis,1994,90:21-34.
    [36]Schwegler M A, Van Bekkum H, De Munck N A. Heteropolyacids as catalysts for the production ofphthalate diesters[J]. Applied catalysis,1991,74(2):191-204.
    [37]Timofeeva M N, Maksimovskaya R I, Paukshtis E A, et al. Esterification of2,6-pyridinedicarboxylicacid with n-butanol catalyzed by heteropoly acid H3PW12O40or its Ce(III) salt[J]. Journal of molecularcatalysis A: chemical,1995,102(2):73-77.
    [38]Song I K, Lee J K, Lee W Y. Preparation and catalytic activity of H3PMo12O40-blended polymer filmfor ethanol conversion reaction[J]. Applied catalysis A: General,1994,119(1):107-119.
    [39]Morin P, Hamad B, Sapaly G, et al. Transesterification of rapeseed oil with ethanol: I. Catalysis withhomogeneous Keggin heteropolyacids[J]. Applied Catalysis A: General,2007,330:69-76.
    [40]Xu L, Yang X, Yu X, et al. Preparation of mesoporous polyoxometalate–tantalum pentoxide compositecatalyst for efficient esterification of fatty acid[J]. Catalysis Communications,2008,9(7):1607-1611.
    [41]Xu L, Wang Y, Yang X, et al. Preparation of mesoporous polyoxometalate-tantalum pentoxidecomposite catalyst and its application for biodiesel production by esterification and transesterification[J].Green Chemistry,2008,10(7):746-755.
    [42]Xu L, Li W, Hu J, et al. Biodiesel production from soybean oil catalyzed by multifunctionalizedTa2O5/SiO2-[H3PW12O40/R](R=Me or Ph) hybrid catalyst[J]. Applied catalysis. B, Environmental,2009,90(3-4):587-594.
    [43]Xu L, Li W, Hu J, et al. Transesterification of soybean oil to biodiesel catalyzed by mesostructuredTa2O5-based hybrid catalysts functionalized by both alkyl-bridged organosilica moieties and Keggin-typeheteropoly acid[J]. Journal of Materials Chemistry,2009,19(45):8571-8579.
    [44]Li K, Hu J, Li W, et al. Design of mesostructured H3PW12O40-silica materials with controllable orderedand disordered pore geometries and their application for the synthesis of diphenolic acid[J]. Journal ofMaterials Chemistry,2009,19(45):8628-8638.
    [45]Aoshima A, Tonomura S, Yamamatsu S. New synthetic route of polyoxytetramethyleneglycol by use ofheteropolyacids as catalyst[J]. Polymers for advanced Technologies,1990,1(2):127-132.
    [46]Yu X D, Guo Y H, Li K. X, et al. Catalytic synthesis of diphenolic acid from levulinic acid over cesiumpartly substitutedWells–Dawson type heteropolyacid[J]. Journal of Molecular Catalysis A: Chemical,2008,290(1-2):4453.
    [47]Noshadi I, Amin N A S, Parnas R S. Continuous production of biodiesel from waste cooking oil in areactive distillation column catalyzed by solid heteropolyacid: optimization using response surfacemethodology (RSM)[J]. Fuel,2012,94:156-164.
    [48]Narasimharao K, Brown D R, Lee A F, et al. Structure–activity relations in Cs-doped heteropolyacidcatalysts for biodiesel production[J]. Journal of catalysis,2007,248(2):226-234.
    [49]Lefebvre F.31P MAS NMR study of H3PW12O40supported on silica: formation of ([triple bond, lengthhalf m-dash] SiOH2+)(H2PW12O40–)[J]. Journal of the Chemical Society, Chemical Communications,1992(10):756-757.
    [50]Brahmkhatri V, Patel A.12-Tungstophosphoric acid anchored to SBA-15: An efficient, environmentallybenign reusable catalysts for biodiesel production by esterification of free fatty acids[J]. Applied CatalysisA: General,2011,403(1):161-172.
    [51]Alcaniz-Monge J, Trautwein G, Marco-Lozar J P. Biodiesel production by acid catalysis withheteropolyacids supported on activated carbon fibers[J]. Applied Catalysis A: General,2013,468:432-441.
    [52]Kulkarni M G, Gopinath R, Meher L C, et al. Solid acid catalyzed biodiesel production bysimultaneous esterification and transesterification[J]. Green chemistry,2006,8(12):1056-1062.
    [53]Van Der Voort P, Esquivel D, De Canck E, et al. Periodic Mesoporous Organosilicas: from simple tocomplex bridges; a comprehensive overview of functions, morphologies and applications[J]. ChemicalSociety Reviews,2013,42(9):3913-3955.
    [54]Hoffmann F, Cornelius M, Morell J, et al. Silica‐based mesoporous organic–inorganic hybridmaterials[J]. Angewandte Chemie International Edition,2006,45(20):3216-3251.
    [55]Monnier A, Schüth F, Huo Q, et al. Cooperative formation of inorganic-organic interfaces in thesynthesis of silicate mesostructures[J]. Science,1993,261(5126):1299-1303.
    [56]Huo Q, Margolese D I, Ciesla U, et al. Generalized synthesis of periodic surfactant/inorganiccomposite materials[J] Nature,1994,368:317–321.
    [57]Huo Q, Margolese D I, Ciesla U, et al. Organization of organic molecules with inorganic molecularspecies into nanocomposite biphase arrays[J]. Chemistry of Materials,1994,6(8):1176-1191.
    [58] Inagaki S, Guan S, Fukushima Y, et al. Novel mesoporous materials with a uniform distribution oforganic groups and inorganic oxide in their frameworks[J]. Journal of the American Chemical Society,1999,121(41):9611-9614.
    [59]Hamoudi S, Yang Y, Moudrakovski I L, et al. Synthesis of porous organosilicates in the presence ofalkytrimethylammonium chlorides: effect of the alkyl chain length[J]. The Journal of Physical Chemistry B,2001,105(38):9118-9123.
    [60]Bao X, Zhao X S, Li X, et al. Pore structure characterization of large-pore periodic mesoporousorganosilicas synthesized with varying SiO2template ratios[J]. Applied Surface Science,2004,237(1):380-386.
    [61]Guo W, Park J Y, Oh M O, et al. Triblock copolymer synthesis of highly ordered large-pore periodicmesoporous organosilicas with the aid of inorganic salts[J]. Chemistry of Naterials,2003,15(12):2295-2298.
    [62]Qiao S Z, Yu C Z, Hu Q H, et al. Control of ordered structure and morphology of large-pore periodicmesoporous organosilicas by inorganic salt[J]. Microporous and mesoporous materials,2006,91(1):59-69.
    [63]Zhai S R, Park S S, Park M, et al. Role of inorganic salts in the formation of ordered periodicmesoporous organosilicas (PMOs) without extra acids[J]. Microporous and Mesoporous Materials,2008,113(1):47-55.
    [64]Zhai S R, Kim I, Ha C S. Synthesis and characterization of periodic mesoporous organosilicas frombridged organosilanes in the presence of mixed salts[J]. Journal of Solid State Chemistry,2008,181(1):67-74.
    [65]Djojoputro H, Zhou X F, Qiao S Z, et al. Periodic mesoporous organosilica hollow spheres with tunablewall thickness[J]. Journal of the American Chemical Society,2006,128(19):6320-6321.
    [66]Lin C X C, Qiao S Z, Yu C Z, et al. Periodic mesoporous silica and organosilica with controlledmorphologies as carriers for drug release[J]. Microporous and Mesoporous Materials,2009,117(1):213-219.
    [67]Liu X, Li X, Guan Z, et al. Organosilica nanotubes: large-scale synthesis and encapsulation of metalnanoparticles[J]. Chemical Communication,2011,47(28):8073-8075.
    [68]Mandal M, Kruk M. Surfactant-templated synthesis of ordered silicas with closed cylindricalmesopores[J]. Chemistry of Materials,2011,24(1):149-154.
    [69]Inagaki S, Guan S, Ohsuna T, et al. An ordered mesoporous organosilica hybrid material with acrystal-like wall structure[J]. Nature,2002,416(6878):304-307.
    [70]Kruk M, Jaroniec M, Guan S, et al. Adsorption and thermogravimetric characterization of mesoporousmaterials with uniform organic-inorganic frameworks[J]. The Journal of Physical Chemistry B,2001,105(3):681-689.
    [71]Mandal M, Kruk M. Large-pore ethylene-bridged periodic mesoporous organosilicas withface-centered cubic structure[J]. The Journal of Physical Chemistry C,2010,114(47):20091-20099.
    [72]Kruk M, Hui C M. Thermally induced transition between open and closed spherical pores in orderedmesoporous silicas[J]. Journal of the American Chemical Society,2008,130(5):1528-1529.
    [73]Melde B J, Holland B T, Blanford C F, et al. Mesoporous sieves with unified hybrid inorganic/organicframeworks[J]. Chemistry of materials,1999,11(11):3302-3308.
    [74]Xia Y, Wang W, Mokaya R. Bifunctional hybrid mesoporous organoaluminosilicates with molecularlyordered ethylene groups[J]. Journal of the American Chemical Society,2005,127(2):790-798.
    [75]Li W, Jiang Z, Ma F, et al. Design of mesoporous SO42/ZrO2–SiO2(Et) hybrid material as an efficientand reusable heterogeneous acid catalyst for biodiesel production[J]. Green Chemistry,2010,12(12):2135-2138.
    [76]Li W, Ma F, Su F, et al. One-Step Preparation of Efficient and Reusable SO42/ZrO2-Based HybridSolid Catalysts Functionalized by Alkyl-Bridged Organosilica Moieties for Biodiesel Production[J].ChemSusChem,2011,4(6):744-756.
    [77]Li W, Ma F, Su F, et al. Pore Morphology Control of Mesostructured SO24/ZrO2-Based HybridCatalysts Functionalized by Alkyl-Bridged Organosilica Moieties for Biodiesel Production FromNon-Edible Oil[J]. ChemCatChem,2012,4(11):1798-1807.
    [78]Luque R, Lovett J C, Datta B, et al. Biodiesel as feasible petrol fuel replacement: a multidisciplinaryoverview[J]. Energy&Environmental Science,2010,3(11):1706-1721.
    [79]Wilson K, Lee A F. Rational design of heterogeneous catalysts for biodiesel synthesis[J]. CatalysisScience&Technology,2012,2(5):884-897.
    [80]Huang Y B, Fu Y. Hydrolysis of cellulose to glucose by solid acid catalysts[J]. Green Chemistry,2013,15(5):1095-1111.
    [81]Di Serio M, Cozzolino M, Giordano M, et al. From homogeneous to heterogeneous catalysts inbiodiesel production[J]. Industrial&Engineering Chemistry Research,2007,46(20):6379-6384.
    [82]Di Serio M, Tesser R, Pengmei L, et al. Heterogeneous catalysts for biodiesel production[J]. Energy&Fuels,2007,22(1):207-217.
    [83]Lam M K, Lee K T, Mohamed A R. Homogeneous, heterogeneous and enzymatic catalysis fortransesterification of high free fatty acid oil (waste cooking oil) to biodiesel: a review[J]. BiotechnologyAdvances,2010,28(4):500-518.
    [84]Sharma Y C, Singh B, Korstad J. Advancements in solid acid catalysts for ecofriendly andeconomically viable synthesis of biodiesel[J]. Biofuels, Bioproducts and Biorefining,2011,5(1):69-92.
    [85]Al‐Zuhair S. Production of biodiesel: possibilities and challenges[J]. Biofuels, Bioproducts andBiorefining,2007,1(1):57-66.
    [86]Walter B, Gruson J F, Monnier G. Diesel Engines and Fuels: a Wide Range of Evolutions toCome–General Context and Research Themes[J]. Oil&Gas Science and Technology-Revue de l'IFP,2008,63(4):379-393.
    [87]International Energy Agency I. Key world energy statistic,2006.
    [88]International Energy Agency I. Key world energy statistic,2008.
    [89]M. Mittelbach, C. Remschmidt and Boersedruck Ges.m.b.H, Biodiesel, the comprehensive handbook,2nd edn, Vienna, Graz, Austria,2004.
    [90]Demirbas A. Progress and recent trends in biodiesel fuels[J]. Energy conversion and management,2009,50(1):14-34.
    [91]Agarwal A K, Das L M. Biodiesel development and characterization for use as a fuel in compressionignition engines[J]. Journal of engineering for gas turbines and power,2001,123(2):440-447.
    [92]Lotero E, Liu Y, Lopez D E, et al. Synthesis of biodiesel via acid catalysis[J]. Industrial&engineeringchemistry research,2005,44(14):5353-5363.
    [93]Helwani Z, Othman M R, Aziz N, et al. Solid heterogeneous catalysts for transesterification oftriglycerides with methanol: a review[J]. Applied Catalysis A: General,2009,363(1):1-10.
    [94]Khusnutdinov R I, Baiguzina A R, Smirnov A A, et al. Furfuryl alcohol in synthesis of levulinic acidesters and difurylmethane with Fe and Rh complexes[J]. Russian Journal of Applied Chemistry,2007,80(10):1687-1690.
    [95]Hayes D J, Fitzpatrick S W, Hayes M H B, Ross J R H in Biorefineries-Industrial Processes andProduct (Eds.: Kamm B, Gruber P R, Kamm M)[M]. Wiley-VCH, Weinheim,2005,1:139-164.
    [96]Joshi H, Moser B R, Toler J, et al. Ethyl levulinate: A potential bio-based diluent for biodiesel whichimproves cold flow properties[J]. Biomass and bioenergy,2011,35(7):3262-3266.
    [97]Lee A, Chaibakhsh N, Rahman M B A, et al. Optimized enzymatic synthesis of levulinate ester insolvent-free system[J]. Industrial crops and products,2010,32(3):246-251.
    [98]Demirbas A. Competitive liquid biofuels from biomass[J]. Applied Energy,2011,88(1):17-28.
    [99]Hayes D J. An examination of biorefining processes, catalysts and challenges[J]. Catalysis Today,2009,145(1):138-151.
    [100] Olson E S, Kjelden M R, Schlag A J, Sharma R K, ACS Symp. Ser.2001,784,51-63.
    [101]Kiss A A, Dimian A C, Rothenberg G. Solid Acid Catalysts for Biodiesel Production--TowardsSustainable Energy[J]. Advanced Synthesis&Catalysis,2006,348(1-2):75-81.
    [102]Bournay L, Casanave D, Delfort B, et al. New heterogeneous process for biodiesel production: A wayto improve the quality and the value of the crude glycerin produced by biodiesel plants[J]. Catalysis Today,2005,106(1):190-192.
    [103]Kinney A J, Clemente T E. Modifying soybean oil for enhanced performance in biodiesel blends[J].Fuel Processing Technology,2005,86(10):1137-1147.
    [104]Granados M L, Zafra Poves M D, Alonso D M, et al. Biodiesel from sunflower oil by using activatedcalcium oxide[J]. Applied Catalysis B: Environmental,2007,73(3):317-326.
    [105]Felizardo P, Neiva Correia M J, Raposo I, et al. Production of biodiesel from waste frying oils[J].Waste Management,2006,26(5):487-494.
    [106]Kulkarni M G, Dalai A K. Waste cooking oil an economical source for biodiesel: a review[J].Industrial&Engineering Chemistry Research,2006,45(9):2901-2913.
    [107]Suppes G J, Dasari M A, Doskocil E J, et al. Transesterification of soybean oil with zeolite and metalcatalysts[J]. Applied Catalysis A: General,2004,257(2):213-223.
    [108]Fukuda H, Kondo A, Noda H. Biodiesel fuel production by transesterification of oils[J]. Journal ofBioscience and Bioengineering,2001,92(5):405-416.
    [109]Venkat Reddy C R, Oshel R, Verkade J G. Room-temperature conversion of soybean oil and poultryfat to biodiesel catalyzed by nanocrystalline calcium oxides[J]. Energy&Fuels,2006,20(3):1310-1314.
    [110]Xie W L, Huang X M. Synthesis of biodiesel from soybean oil using heterogeneous KF/ZnOcatalyst[J]. Catalysis Letters,2006,107(1-2):53-59.
    [111]Arzamendi G, Campo I, Arguinarena E, et al. Synthesis of biodiesel with heterogeneousNaOH/alumina catalysts: comparison with homogeneous NaOH[J]. Chemical Engineering Journal,2007,134(1):123-130.
    [112]Kim H J, Kang B S, Kim M J, et al. Transesterification of vegetable oil to biodiesel usingheterogeneous base catalyst[J]. Catalysis today,2004,93:315-320.
    [113]Ebiura T, Echizen T, Ishikawa A, et al. Selective transesterification of triolein with methanol tomethyl oleate and glycerol using alumina loaded with alkali metal salt as a solid-base catalyst[J]. AppliedCatalysis A: General,2005,283(1):111-116.
    [114]Leung D Y C, Wu X, Leung M K H. A review on biodiesel production using catalyzedtransesterification[J]. Applied Energy,2010,87(4):1083-1095.
    [115]Faungnawakij K, Yoosuk B, Namuangruk S, et al. Sr–Mg Mixed Oxides as Biodiesel ProductionCatalysts[J]. ChemCatChem,2012,4(2):209-216.
    [116]Hara M. Biomass conversion by a solid acid catalyst[J]. Energy&Environmental Science,2010,3(5):601-607.
    [117]Zheng S, Kates M, Dube M A, et al. Acid-catalyzed production of biodiesel from waste frying oil[J].Biomass and Bioenergy,2006,30(3):267-272.
    [118]Freedman B, Pryde E H, Mounts T L. Variables affecting the yields of fatty esters from transesterifiedvegetable oils[J]. Journal of the American Oil Chemists Society,1984,61(10):1638-1643.
    [119]Jacobson K, Gopinath R, Meher L C, et al. Solid acid catalyzed biodiesel production from wastecooking oil[J]. Applied Catalysis B: Environmental,2008,85(1):86-91.
    [120]Jin T, Yamaguchi T, Tanabe K. Mechanism of acidity generation on sulfur-promoted metal oxides[J].The Journal of Physical Chemistry,1986,90(20):4794-4796.
    [121]Melero J A, Iglesias J, Morales G. Heterogeneous acid catalysts for biodiesel production: currentstatus and future challenges[J]. Green Chemistry,2009,11(9):1285-1308.
    [122]Suwannakarn K, Lotero E, Goodwin Jr J G, et al. Stability of sulfated zirconia and the nature of thecatalytically active species in the transesterification of triglycerides[J]. Journal of Catalysis,2008,255(2):279-286.
    [123]Ni J, Meunier F C. Esterification of free fatty acids in sunflower oil over solid acid catalysts usingbatch and fixed bed-reactors[J]. Applied Catalysis A: General,2007,333(1):122-130.
    [124]Park Y M, Lee J Y, Chung S H, et al. Esterification of used vegetable oils using the heterogeneousWO3/ZrO2catalyst for production of biodiesel[J]. Bioresource technology,2010,101(1): S59-S61.
    [125]Jiménez-Morales I, Santamaría-González J, Maireles-Torres P, et al. Calcined zirconium sulfatesupported on MCM-41silica as acid catalyst for ethanolysis of sunflower oil[J]. Applied Catalysis B:Environmental,2011,103(1):91-98.
    [126]Peters T A, Benes N E, Holmen A, et al. Comparison of commercial solid acid catalysts for theesterification of acetic acid with butanol[J]. Applied Catalysis A: General,2006,297(2):182-188.
    [127]Park J Y, Wang Z M, Kim D K, et al. Effects of water on the esterification of free fatty acids by acidcatalysts[J]. Renewable Energy,2010,35(3):614-618.
    [128]Liu Y, Lotero E, Goodwin Jr J G. A comparison of the esterification of acetic acid with methanolusing heterogeneous versus homogeneous acid catalysis[J]. Journal of Catalysis,2006,242(2):278-286.
    [129]Liu Y, Lotero E, Goodwin Jr J G. Effect of carbon chain length on esterification of carboxylic acidswith methanol using acid catalysis[J]. Journal of Catalysis,2006,243(2):221-228.
    [130]Guerreiro L, Castanheiro J E, Fonseca I M, et al. Transesterification of soybean oil over sulfonic acidfunctionalised polymeric membranes[J]. Catalysis Today,2006,118(1-2):166-171.
    [131]Lopez D E, Goodwin Jr J G, Bruce D A, et al. Transesterification of triacetin with methanol on solidacid and base catalysts[J]. Applied Catalysis A: General,2005,295(2):97-105.
    [132]López D E, Goodwin Jr J G, Bruce D A.Transesterification of triacetin with methanol on Nafionacid resins[J]. Journal of Catalysis,2007,245(2):381-391.
    [133]Russbueldt B M E, Hoelderich W F. New sulfonic acid ion-exchange resins for the preesterification ofdifferent oils and fats with high content of free fatty acids[J]. Applied Catalysis A: General,2009,362(1):47-57.
    [134]Zuo D, Lane J, Culy D, et al. Sulfonic acid functionalized mesoporous SBA-15catalysts for biodieselproduction[J]. Applied Catalysis B: Environmental,2013,129(2):342-350.
    [135]Mbaraka I K, Shanks B H. Design of multifunctionalized mesoporous silicas for esterification of fattyacid[J]. Journal of Catalysis,2005,229(2):365-373.
    [136]Dhainaut J, Dacquin J P, Lee A F, et al. Hierarchical macroporous–mesoporous SBA-15sulfonic acidcatalysts for biodiesel synthesis[J]. Green Chemistry,2010,12(2):296-303.
    [137]Hara M, Yoshida T, Takagaki A, et al. A carbon material as a strong protonic acid[J]. AngewandteChemie International Edition,2004,43(22):2955-2958.
    [138]Zong M H, Duan Z Q, Lou W Y, et al. Preparation of a sugar catalyst and its use for highly efficientproduction of biodiesel[J]. Green Chemistry,2007,9(5):434-437.
    [139]Lou W Y, Zong M H, Duan Z Q. Efficient production of biodiesel from high free fattyacid-containing waste oils using various carbohydrate-derived solid acid catalysts[J]. BioresourceTechnology,2008,99(18):8752-8758.
    [140]Suganuma S, Nakajima K, Kitano M, et al. Hydrolysis of cellulose by amorphous carbon bearingSO3H, COOH, and OH groups[J]. Journal of the American Chemical Society,2008,130(38):12787-12793.
    [141]Siril P F, Cross H E, Brown D R. New polystyrene sulfonic acid resin catalysts with enhanced acidicand catalytic properties[J]. Journal of Molecular Catalysis A: Chemical,2008,279(1):63-68.
    [142]Kitano M, Yamaguchi D, Suganuma S, et al. Adsorption-enhanced hydrolysis of β-1,4-Glucan ongraphene-based amorphous carbon bearing SO3H, COOH, and OH groups[J]. Langmuir,2009,25(9):5068-5075.
    [143]Maciá‐Agulló J A, Sevilla M, Diez M A, et al. Synthesis of Carbon‐based Solid AcidMicrospheres and Their Application to the Production of Biodiesel[J]. ChemSusChem,2010,3(12):1352-1354.
    [144]Chang B, Fu J, Tian Y, et al. Multifunctionalized Ordered Mesoporous Carbon as an Efficient andStable Solid Acid Catalyst for Biodiesel Preparation[J]. The Journal of Physical Chemistry C,2013,117(12):6252-6258.
    [145]Shu Q, Gao J, Nawaz Z, et al. Synthesis of biodiesel from waste vegetable oil with large amounts offree fatty acids using a carbon-based solid acid catalyst[J]. Applied Energy,2010,87(8):2589-2596.
    [146]Shu Q, Nawaz Z, Gao J, et al. Synthesis of biodiesel from a model waste oil feedstock using acarbon-based solid acid catalyst: reaction and separation[J]. Bioresource Technology,2010,101(14):5374-5384.
    [147]Okuhara T. Water-tolerant solid acid catalysts[J]. Chemical Reviews,2002,102(10):3641-3666.
    [148]Grinenval E, Rozanska X, Baudouin A, et al. Controlled interactions between anhydrous keggin-typeheteropolyacids and silica support: preparation and characterization of well-defined silica-supportedpolyoxometalate species[J]. The Journal of Physical Chemistry C,2010,114(44):19024-19034.
    [149]Cao F H, Chen Y, Zhai F Y, et al. Biodiesel production from high acid value waste frying oilcatalyzed by superacid heteropolyacid[J]. Biotechnology and Bioengineering,2008,101(1):93-100.
    [150]Alsalme A, Kozhevnikova E F, Kozhevnikov I V. Heteropoly acids as catalysts for liquid-phaseesterification and transesterification[J]. Applied Catalysis A: General,2008,349(1-2):170-176.
    [151]Srilatha K, Issariyakul T, Lingaiah N, et al. Efficient Esterification and Transesterification of UsedCooking Oil Using12-Tungstophosphoric Acid (TPA)/Nb2O5Catalyst[J]. Energy&Fuels,2010,24(9):4748-4755.
    [152]Oliveira C F, Dezaneti L M, Garcia F A C, et al. Esterification of oleic acid with ethanol by12-tungstophosphoric acid supported on zirconia[J]. Applied Catalysis A: General,2010,372(2):153-161.
    [153]Greaves T L, Drummond C J. Protic ionic liquids: properties and applications[J]. Chemical reviews,2008,108(1):206-237.
    [154]Kamal A, Chouhan G. Investigations towards the chemoselective thioacetaliztion of carbonylcompounds by using ionic liquid [bmim] Br as a recyclable catalytic medium[J]. Advanced Synthesis&Catalysis,2004,346(5):579-582.
    [155]Liang X. Novel Efficient Procedure for Biodiesel Synthesis from Waste Oils Using Solid Acidic IonicLiquid Polymer As the Catalyst[J]. Industrial&Engineering Chemistry Research,2013,52(21):6894-6900.
    [156]Liu F, Wang L, Sun Q, et al. Transesterification catalyzed by ionic liquids on superhydrophobicmesoporous polymers: heterogeneous catalysts that are faster than homogeneous catalysts[J]. Journal of theAmerican Chemical Society,2012,134(41):16948-16950.
    [157]Karimi B, Vafaeezadeh M. SBA-15-functionalized sulfonic acid confined acidic ionic liquid: apowerful and water-tolerant catalyst for solvent-free esterifications[J]. Chemical Communications,2012,48(27):3327-3329.
    [158]Leng Y, Wang J, Zhu D, et al. Heteropolyanion‐Based Ionic Liquids: Reaction‐InducedSelf‐Separation Catalysts for Esterification[J]. Angewandte Chemie,2009,121(1):174-177.
    [159]Schmidt W. Solid catalysts on the nanoscale: design of complex morphologies and pore structures[J].ChemCatChem,2009,1(1):53-67.
    [160]Bart H J, Reidetschlager J, Schatka K, et al. Kinetics of esterification of levulinic acid with n-butanolby homogeneous catalysis[J]. Industrial&Engineering Chemistry Research,1994,33(1):21-25.
    [161]Garves K. Acid catalyzed degradation of cellulose in alcohols[J]. Journal of Wood Chemistry andTechnology,1988,8(1):121-134.
    [162]Olson E S, Kjelden M R, Schlag A J, et al. Levulinate esters from biomass wastes[M]. ACS Symp.Ser. Subtask4.1-conversion of lignocellulosic material to chemicals and fuels,2001,784,51-56.
    [163]Peng L, Lin L, Li H, et al. Conversion of carbohydrates biomass into levulinate esters usingheterogeneous catalysts[J]. Applied Energy,2011,88(12):4590-4596.
    [164]Hu X, Li C Z. Levulinic esters from the acid-catalysed reactions of sugars and alcohols as part of abio-refinery[J]. Green Chemistry,2011,13(7):1676-1679.
    [165]Tominaga K, Mori A, Fukushima Y, et al. Mixed-acid systems for the catalytic synthesis of methyllevulinate from cellulose[J]. Green Chemistry,2011,13(4):810-812.
    [166]Rataboul F, Essayem N. Cellulose reactivity in supercritical methanol in the presence of solid acidcatalysts: Direct synthesis of methyl-levulinate[J]. Industrial&Engineering Chemistry Research,2010,50(2):799-805.
    [167]Peng L, Lin L, Zhang J, et al. Solid acid catalyzed glucose conversion to ethyl levulinate[J]. AppliedCatalysis A: General,2011,397(1):259-265.
    [168]Saravanamurugan S, Riisager A. Solid acid catalysed formation of ethyl levulinate and ethylglucopyranoside from mono-and disaccharides[J]. Catalysis Communications,2012,17:71-75.
    [169]Pasquale G, Vázquez P, Romanelli G, et al. Catalytic upgrading of levulinic acid to ethyl levulinateusing reusable silica-included Wells-Dawson heteropolyacid as catalyst[J]. Catalysis Communications,2012,18:115-120.
    [170]Dharne S, Bokade V V. Esterification of levulinic acid to n-butyl levulinate over heteropolyacidsupported on acid-treated clay[J]. Journal of Natural Gas Chemistry,2011,20(1):18-24.
    [171]Mittelbach M, Remschmidt C, Ges.m.b.H Boersedruck. Biodiesel, the comprehensive handbook[B],2nd edn, Vienna, Graz, Austria,2004.
    [172]Gu H Q, Jiang Y J, Zhou L Y, et al. Reactive extraction and in situ self-catalyzed methanolysis ofgerminated oilseed for biodiesel production[J]. Energy Envirconmental Science,2011,4(4):1337-1344.
    [173]Berchmans H J, Hirata S. Biodiesel production from crude Jatropha curcas L. seed oil with a highcontent of free fatty acids[J]. Bioresource Technology,2008,99(6):1716-1721.
    [174]Kwon E E, Seo J, Yi H, Transforming animal fats into biodiesel using charcoal and CO2[J]. GreenChemistry,2012,14(6):1799-1804.
    [175]Knothe G. A technical evaluation of biodiesel from vegetable oils vs. algae. Will algae-derivedbiodiesel perform?[J]. Green Chemistry,2011,13(11):3048-3065.
    [176]Sharma Y C, Singh B, Korstad J. A critical review on recent methods used for economically viableand eco-friendly development of microalgae as a potential feedstock for synthesis of biodiesel[J]. GreenChemistry,2011,13(11):2993-3006.
    [177]Patil P D, Reddy H, Muppaneni T, et al. Power dissipation in microwave-enhanced in situtransesterification of algal biomass to biodiesel[J]. Green Chemistry,2012,14(3):809-818.
    [178]Melero J A, Iglesias J, Morales G. Heterogeneous acid catalysts for biodiesel production: currentstatus and future challenges[J]. Green Chemistry,2009,11(9):1285-1308.
    [179]Yadav G D, Murkute A D. Preparation of a novel catalyst UDCaT-5: enhancement in activity ofacid-treated zirconia-effect of treatment with chlorosulfonic acid vis-à-vis sulfuric acid[J]. Journal ofCatalysis,2004,224(1):218-223.
    [180]Grecea M L, Dimian A C, Tanase S, et al. Sulfated zirconia as a robust superacid catalyst formultiproduct fatty acid esterification[J]. Catalysis Science&Technology,2012,2(7):1500-1506.
    [181]Hara M. Environmentally Benign Production of Biodiesel Using Heterogeneous Catalysts[J].ChemSusChem,2009,2(2):129-135.
    [182]Hara M. Biomass conversion by a solid acid catalyst[J]. Energy&Environmental Science,2010,3(5):601-607.
    [183]Shibasaki-Kitakawa N, Honda H, Kuribayashi H, et al. Biodiesel production using anionicion-exchange resin as heterogeneous catalyst[J]. Bioresource Technology,2007,98(2):416-421.
    [184]Feng Y H, He B Q, Cao Y H, et al. Biodiesel production using cation-exchange resin asheterogeneous catalyst[J]. Bioresource Technology,2010,101(5):1518-1521.
    [185]Chai F, Cao F H, Zhai F Y, et al. Transesterification of Vegetable Oil to Biodiesel using aHeteropolyacid Solid Catalyst[J]. Advanced Synthesis&Catalysis,2007,349(7):1057-1065.
    [186]Karimi B, Mirzaei H M, Mobaraki A. Periodic mesoporous organosilica functionalized sulfonic acidsas highly efficient and recyclable catalysts in biodiesel production[J]. Catalysis Science&Technoloogy,2012,2(4):828-834.
    [187]Newman A D, Lee A F, Wilson K, et al. On the active site in H3PW12O40/SiO2catalysts for finechemical synthesis[J]. Catalysis Letters,2005,102(1-2):45-50.
    [188]Young C W, Servais P C, Currie C C, et al. Organosilicon Polymers. IV. Infrared Studies on CyclicDisubstituted Siloxanes[J]. Journal of the American Chemical Society,1948,70(11):3758-3764.
    [189]Li Y S, Wang Y and Ceesay S. Vibrational spectra of phenyltriethoxysilane, phenyltrimethoxysilaneand their sol-gels[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2009,71(5):1819-1824.
    [190]Zhao L, Zhu G S, Zhang D L, et al. Synthesis and Structural Identification of a Highly OrderedMesoporous Organosilica with Large Cagelike Pores[J]. The Journal of Physical Chemistry B,2005,109(2):764-768.
    [191]Kapoor M P, Yang Q H, Inagaki S. Organization of Phenylene-Bridged Hybrid MesoporousSilisesquioxane with a Crystal-like Pore Wall from a Precursor with Nonlinear Symmetry[J]. Chemistry ofMaterials,2004,16(7):1209-1213.
    [192]Morterra C, Cerrato G, Ardizzone S, et al. Surface features and catalytic activity of sulfated zirconiacatalysts from hydrothermal precursors[J]. Physical Chemistry Chemical Physics,2002,4(13):3136-3145.
    [193]Devassy B M, Halligudi S B. Zirconia-supported heteropoly acids: Characterization and catalyticbehavior in liquid-phase veratrole benzoylation[J]. Journal of Catalysis,2005,236(2):313-323.
    [194]Lopez-Salinas E, Hernandez-Cortez J G, Schifter I, et al. Thermal stability of12-tungstophosphoricacid supported on zirconia[J]. Applied Catalysis A: General,2000,193(1-2):215-225.
    [195]Zhang J, Wu S B, Li B, et al. Advances in the Catalytic Production of Valuable Levulinic AcidDerivatives[J]. ChemCatChem,2012,4(9):1230-1237.
    [196]Rackemann D W, Doherty W O S. The conversion of lignocellulosics to levulinic acid[J]. Biofuels,Bioproducts and Biorefining,2011,5(2):198-214.
    [197]Su F, Ma L, Guo Y H, et al. Preparation of ethane-bridged organosilica group and keggin typeheteropoly acid co-functionalized ZrO2hybrid catalyst for biodiesel synthesis from eruca sativa gars oil[J].Catalysis Science&Technology,2012,2(11):2367-2374.
    [198]Armatas G S, Bilis G, Louloudi M. Highly ordered mesoporous zirconia-polyoxometalatenanocomposite materials for catalytic oxidation of alkenes[J]. Journal of Materials Chemistry,2011,21(21):2997-3005.
    [199]Su F, Ma L, Song D Y, et al. Design of a highly ordered mesoporous H3PW12O40/ZrO2-Si(Ph)Sihybrid catalyst for methyl levulinate synthesis[J]. Green Chemistry,2013,15(4):885-890.
    [200]Pramanik M, Nandi M, Uyama H, et al. Organic-inorganic hybrid porous sulfonated zinc phosphonatematerial: efficient catalyst for biodiesel synthesis at room temperature[J]. Green Chemistry,2012,14(8):2273-2281.
    [201]Zhang Z H, Dong K, Zhao Z B. Efficient Conversion of Furfuryl Alcohol into Alkyl LevulinatesCatalyzed by an Organic-Inorganic Hybrid Solid Acid Catalyst[J]. ChemSusChem,2011,4(1):112-118.
    [202]Liu J, Bai S Y, Zhong H, et al. Tunable Assembly of Organosilica Hollow Nanospheres[J]. TheJournal of Physical Chemistry C,2010,114(2):953-961.
    [203]Alsalme A M, Wiper P V, Khimyak Y Z, et al. Solid acid catalysts based on H3PW12O40heteropolyacid: Acid and catalytic properties at a gas-solid interface[J]. Journal of Catalysis,2010,276(1):181-189.
    [204]Zhang Y, Wang J J, Ren J W, et al. Mesoporous niobium phosphate: an excellent solid acid for thedehydration of fructose to5-hydroxymethylfurfural in water[J]. Catalysis Science&Technology,2012,2(12):2485-2491.
    [205]Sarkar A, Ghosh S K, Pramanik P. Investigation of the catalytic efficiency of a new mesoporouscatalyst SnO2/WO3towards oleic acid esterification[J]. Journal of Molecular Catalysis A,2010,327(1-2):73-79.
    [206]Li C C, Dou J, Chen L W, et al. Antisolvent precipitation for the synthyesis of monodispersemesoporous niobium oxide spheres as highly effective solid acis catalysts[J]. ChemCatChem,2012,4(10):1675-1682.
    [207]Liu J, Fan F T, Feng Z C, et al. From hollow nanosphere to hollow microsphere: mild buffer provideseasy access to tunable silica structure[J]. The Journal of Physical Chemistry C,2008,112(42):16445-16451.
    [208]Liu J, Yang Q H, Zhang L, et al. Organic-inorganic hybrid hollow nanoshperes with microwindows onthe shell[J]. Chemistry of Materials,2008,20(13):4268-4275.
    [209]Qiao S Z, Lin C X, Jin Y G, et al. Surface-functionalized periodic mesoporous organosilica hollowsphere[J]. The Journal of Physical Chemistry C,2009,113(20):8673-8682.
    [210]Wang P, Bai S Y, Zhao J, et al. Bifunctionalized hollow nanospheres for the one-pot synthesis ofmethyl isobutyl ketone from acetone[J]. ChemSusChem,2012,5(12):2390-2396.
    [211]Li J, Zu Y G, Fu Y J, et al. Optimization of microwave-assisted extraction of triterpene saponins fromdefatted residue of yellow horn ( Xanthoceras sorbifolia Bunge.) kernel and evaluation of itsantioxidant activity[J]. Innovative Food Science&Emerging Technologies,2010,11(4):637-643.
    [212]Brinker C J. Hydrolysis and condensation of silicates: effects on structure[J]. Journal ofNon-Crystalline Solids,1988,100(1):31-50.
    [213]Hook R J. A29 Si NMR study of the sol-gel polymerisation rates of substitutedethoxysilanes[J]. Journal of non-crystalline solids,1996,195(1):1-15.
    [214]Bao X Y, Li X, Zhao X S. Synthesis of large-pore methylene-bridged periodic mesoporousorganosilicas and its implications[J]. The Journal of Physical Chemistry B,2006,110(6):2656-2661.
    [215]Mandal M, Kruk M. Family of Single-Micelle-Templated Organosilica Hollow Nanospheres andNanotubes Synthesized through Adjustment of Organosilica/Surfactant Ratio[J].2012,24(1):123-132.
    [216]Su F, Wu Q, Song D, et al. Pore morphology-controlled preparation of ZrO2-based hybrid catalystsfunctionalized by both organosilica moieties and Keggin-type heteropoly acid for the synthesis oflevulinate esters[J]. Journal of Materials Chemistry A,2013,1(42):13209-13221.
    [217]Du J, Lai X, Yang N, et al. Hierarchically ordered macro-mesoporous TiO2-graphene composite films:Improved mass transfer, reduced charge recombination, and their enhanced photocatalytic activities[J].ACS nano,2010,5(1):590-596.
    [218]Li X, Yang Y, Yang Q. Organo-functionalized silica hollow nanospheres: synthesis and catalyticapplication[J]. Journal of Materials Chemistry A,2013,1(5):1525-1535.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700