用户名: 密码: 验证码:
基于杂多酸修饰电极的电化学行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多金属氧酸盐是一类与众不同的无机金属-氧簇化合物,其尺寸、成分和功能多样化,这类化合物具有各种确定的结构和优异的物理化学性质,在分析化学、生物化学、物理化学和催化化学等领域都有着重要的理论研究和实际应用价值,在当前的科学研究领域也是一个比较热门的课题。要想实现以多金属氧酸盐为基础材料的功能性质,发展一些新型的方法将它们固定在一定的基底上是当前该领域的热点和难点。本论文将多金属氧酸盐的材料优势和多种固定化方法相结合,成功地研制了多种具有应用前景的杂多酸修饰电极,并研究了其电化学及电催化性质,主要内容如下:
     1. Keggin型[SiNi(H2O)W11O39]6-修饰电极的电化学及其电催化行为
     我们首先在金电极上吸附半胱氨,然后通过电位扫描的方法将Keggin-Type [SiNi(H2O)W11O39]6-修饰到半胱氨上,构建了硅镍钨杂多酸修饰的金电极。我们采用原子力显微镜(AFM)和电化学方法对该修饰电极进行表征。AFM结果表明,[SiNi(H2O)W11O39]6-分子均匀沉积在金电极表面,形成多孔结构。循环伏安实验表明采用本方法可以实现杂多酸在电极表面的有效固定,并且该电极在pH (0–7.6)范围内能稳定存在。该修饰电极对不同的无机离子如BrO3?、NO2?及抗坏血酸(AA)具有优越的电催化能力。
     2.磷钼杂多酸和聚二茂铁硅烷多层组装膜修饰电极及其电化学行为
     采用层层组装法在金电极上组装多金属氧酸盐阴离子(POM)和聚阳离子聚二茂铁硅烷(PFS),交替沉积多层膜,构建了杂多酸-PFS多层膜修饰的金电极。我们采用原子力显微镜和电化学方法表征了该修饰电极的形貌特征和电化学行为,研究结果表明该修饰电极兼具杂多酸和PFS的双重功能。我们制备的多金属氧酸盐-PFS多层修饰电极对不同的无机离子如BrO3-、IO3-、NO2-、Fe3+和SO32-以及抗坏血酸等多种物质表现出优越的电催化能力,并且具有安培响应快、检测限低、选择性好以及线性范围宽等优点,该修饰对这些物质良好的催化能力主要归因于多金属氧酸盐-PFS杂化膜的多孔结构。
     3.杂多酸与胶原蛋白修饰电极的制备及其电催化性质研究
     采用层层组装法在金电极上组装I型胶原蛋白和杂多酸POMs交替沉积多层膜,构建了I型胶原蛋白-POMs多层膜修饰的金电极。我们采用原子力显微镜和电化学方法表征了该修饰电极的形貌特征和电化学行为,AFM结果表明PW12O403-优先沉积在胶原蛋白网络上形成了杂多酸的网络结构;电化学实验结果表明用该方法可以在电极表面有效地固定胶原蛋白和杂多酸分子,并表现出良好的电化学行为。我们所构造的修饰电极对亚硝酸盐有很好的电催化响应,并且具有安培响应快、检测限低、选择性好以及线性范围宽等优点。
     4.在中性溶液中构造多金属氧酸盐修饰电极及其电化学行为研究
     通过在金电极上逐步组装酞箐钴、聚二茂铁硅烷及Keggin型[SiNi(H2O)W11O39]6-构造了新型多金属氧酸盐修饰电极。我们采用原子力显微镜和电化学方法表征了该修饰电极的形貌特征和电化学行为,研究结果表明,采用该方法可以在电极表面有效地固定杂多酸分子。本方法所构造的修饰电极在中性条件下能够稳定存在,对氧气的还原和尿酸的氧化表现出优越的催化能力,有望用于电化学传感器。
Recently, the considerable interests have been focused on polyoxometalates (POMs) clusters not only due to their special intrinsic structure but also due to their potential application in the field of material science, catalysis, biology and medicine. In order to promotes their applications in electrocatalytic research, develop some novel fabrication method to immobilize POMs on electrodes is a new challenge in this fields. The present reaserch work focused on the selecting and optimizing materials, improving immobilizing methods, and designing several types of novel polyoxometalates modified electrodes. The main points of this dissertation are addressed as follows:
     1. Electrochemical behavior and its electrocatalytic properties of chemically modified electrode with Keggin-type [SiNi(H2O)W11O39]6?
     A monolayer of Keggin-type heteropolyanion [SiNi(H2O)W11O39]6? was fabricated by electrodepositing [SiNi(H2O)W11O39]6? on cysteamine modified gold electrode. The monolayer of [SiNi(H2O)W11O39]6? modified gold electrode was characterizedby atomic force microscopy (AFM) and electrochemical method. AFM results showed the [SiNi(H2O)W11O39]6? uniformly deposited on the electrode surface and formed a porous monolayer. Cyclic voltammetry exhibited one oxidation peak and two reduction peaks in 1.0M H2SO4 in the potential range of ?0.2 to 0.7 V. The constructed electrode could exist in a large pH (0–7.6) range and showed good catalytic activity towards the reduction of bromate anion (BrO3?) and nitrite (NO2?), and oxidation of ascorbic acid (AA) in acidic solution. The well catalytic active of the electrode was ascribed to the porous structure of the [SiNi(H2O)W11O39]6? monolayer.
     2. A Novel Sensor Based on Layer-by-Layer Hybridized Phosphomolybdate and Poly(ferrocenylsilane) on a Cysteamine Modified Gold Electrode
     A novel sensor have been constructed by layer-by-layer hybridizing phosphomolybdate (POM) and poly(ferrocenylsilane) (PFS) on a cysteamine modified gold electrode. The properties and performance of the sensor have been measured by electrochemistry and atomic force microscopy in detail. The results showed that the constructed multilayers modified gold electrode combined the properties of POM and PFS, and exhibited good electrocatalytic ability to a series of inorganic ions, including BrO3-﹑IO3-﹑NO2-﹑Fe3+﹑ascorbic acid and SO32-. The well catalytic activity of the sensor was ascribed to the porous structure of hybrid POM-PFS multilayer. The resulted sensor exhibited extremely fast amperometric response, low detection limit, high selectivity and wide linear range to these analyses.
     3. Type I Collagen /Polyoxometalate Composite Films on Cysteamine Modified Gold Electrode and Its Electrocatalytic Properties
     A novel multilayer of the type I collagen and PW12O403- was successfully fabricated. The type I collagen was firstly assembled on cysteamine modified gold electrode to form a network and then PW12O403- was electrodeposited on the modified electrode. By recycling the assembly and electrodeposition, the PW12O403- (collagen-PW12O403-)n modified electrode was prepared. Electrochemistry and atomic force microscopy (AFM) were used to characterize the PW12O403- (collagen-PW12O403-)n multilayer. AFM results showed that the PW12O403- preferentially deposited on the collagen network to produce the PW12O403- network. Electrochemical experiments results showed that the resulted electrode exhibited good electrochemical and electrocatalytic properties towards the reduction of nitrite. The electrochemical and electrocatalytic properties of modified electrode were investigated in detail.
     4. A Novel Strategy for the Construction of Polyoxometalate Modified Electrode and Its Electrochemical Behaviors
     A novel polyoxometalate modified electrode is fabricated by immersing the gold electrode in the benzene solution of phthalocyanatocobalt(II), the solution of poly(ferrocenylsilane) and the solution of Keggin-type [SiNi(H2O)W11O39]6- stepwisely. The properties of the modified electrode have been investigated by atomic force microscopy (AFM) and electrochemical methods. AFM results show the modified electrode has been successfully covered by the three materials. The resulted electrode has good catalytic activity towards the reduction of oxygen (O2) and oxidation of uric acid.
引文
[1] Berzelius J. The preparation of the phosphomolybdate ion [PMo12O40] 3-. Pogg Ann, 1826, 82 (4): 369–392
    [2] Rosenheim A, Jaeniceke H. Study on Polynuclear Molybdenum and Tungsten Compounds. Z Anorg Chem, 1917, 100 (7): 304-315
    [3] Keggin J F. Structure of the molecule of 12-phosphotungstic acid. Nature, 1933, 131 (24): 908-909
    [4]许林,胡度文,王恩波.杂多酸型催化剂的研究进展[J],石油化工, 1997, 26 (9): 632-638
    [5]欧国勇,杨辉荣,方岩雄。负载型杂多酸催化剂研究进展[J],化工进展, 2001, (8) :18-21
    [6]王少鹏,薛建伟,刘春丽.分子筛负载杂多酸催化剂的研究,山西化工,2006, 26(6):62-92
    [7] Pope M T. Heteropoly and Isopoly Oxometalates[M]. New York: Berlin: Springer-Verger, 1983. 35-41
    [8]刘丽,吕男,许宏鼎.过渡金属取代杂多酸盐的溶液电化学性质及其修饰的电极的研究: [硕士论文].吉林:吉林大学化学系, 2005
    [9] Ichida H, Nagai K, Sasaki Y, et al. Heteropolyvanadates containing two and three manganese(IV) ions: unusual structural features of Mn2V22O6410- and Mn3V12O40H35-. J Am Chem Soc, 1989,111 (2):586-591
    [10] Ortega F, Pope M T, Evans HT. Tungstorhenate Heteropolyanions: Synthesis and Characterization of Enneatungstorhenates(V), Enneatungstorhenates(VI), and Enneatungstorhenates(VII). Inorg Chem, 1997, 36 (10): 2166-2169
    [11] Khenkin A M , Shimon L J W, Neumann R. Preparation and Characterization of New Ruthenium and Osmium Containing Polyoxometalates, [M(DMSO)3Mo7O24]4- (M = Ru(II), Os(II)), and Their Use as Catalysts for the Aerobic Oxidation of Alcohols. Inorg Chem, 2003,42 (10): 3331-339
    [12] Honda D, Ozeki T, Yagasaki A. A Missing Link between Molecular and Solid Oxides. Inorg Chem, 2004, 43 (22): 6893-6895
    [13] Angus-Dunne S.J, Irwin JA, et al. Reaction Kinetics and Mechanism of Formation of (MnMo9O32)6- by Hypochlorous Acid Oxidation of Mn2+(aq) in the Presence of Molybdate. J Chem Soc Dalton Trans,1993, 52 (18): 2717-2726
    [14]王林元,刘玉鑫.过氧化杂多酸盐的合成以及在有机反应中的应用: [硕士学位论文]。四川:四川大学化学系,2004
    [15]董绍俊,车广礼,谢远武.化学修饰电极。北京:科学出版社, 1995. 1-3
    [16] Zonnevijlle F, Tourne C M, Tourne G F. Ligand- and metal-exchange reactions on substituted lacunary heteropolytungstates. Inorg Chem, 1983, 22 (8): 1198-1202
    [17] Weakley T J R, Malik S A. Heteropolyanions containing two different heteroatoms—I. J Inorg Nucl Chem,1967,29 (12): 2935-2944
    [18] Tourne C M, Tourne G F. The photochemistry of the nitro and nitroso groups. Bull Soc Chim France, 1969, 4 (5): 1124-1130
    [19] Baker L C W, Figgis J S. New fundamental type of inorganic complex: hybrid between heteropoly and conventional coordination complexes. Possibilities for geometrical isomerisms in 11-, 12-, 17-, and 18-heteropoly derivatives. J. Am. Chem. Soc. 1970 92 (12): 3794-3797
    [20] Zonnevijlle F, Tourne C M, Tourne G F. Preparation and characterization of iron(III)- and rhodium(III)-containing heteropolytungstates. Identification ofnovel oxo-bridged iron(III) dimers. Inorg Chem, 1982, 21 (4): 2742-2751
    [21] Pang D W, Wang Z L. Electrocatalysis of metalloporphyrins-part 13: electrocatalysis of several water-soluble porphyrins. J Electroanal Chem, 1993, 358 (3): 235-246
    [22] Wang Z L, Pang D W, Electrocatalysis of metalloporphyrins-part 13: electrocatalysis of several water-soluble porphyrins. .J Electroanal Chem, 1990, 283 (8): 349-352
    [23] Hashimoto S, Tatsumo Y, ey al. Resonance Raman Evidence for Oxygen Exchange between the FeIV==O Heme and Bulk Water during Enzymic Catalysis of Horseradish Peroxidase and Its Relation with the Heme-Linked Ionization. Proc Natl. Acad Sci USA, 1984, 83 (8):2417-2421
    [24] Barley M H, Tckeuchi K J, Meyer Y J. J Am Chem Soc, Electrocatalytic reduction of nitrite to ammonia based on a water-soluble iron porphyrin. 1986, 108 (19): 5876-5885
    [25] Kuwana T, Fujihara M, Sunakawa K, Osal T. Germ Cell-Specific Expression of GFP Gene Induced by Chicken vasa Homologue (Cvh) Promoter in Early Chicken Embryos. J Electroanal Chem, 1978, 88 (8): 299-305
    [26] Bettelheim A, White B A, Murray R W. Electrocatalysis of dioxygen reduction in aqueous acid and base by multimolecular layer films of electropolymerized cobalt tetra(o-aminophenyl)porphyrin. J Electroanal Chem, 1987, 217 (2): 271-286
    [27]曹小华,黎先财,柳闽生,廖晓宁.杂多酸型化合物及其研究展望.化学中间体, 2005,(2):8-12
    [28]赵忠奎,李宗石,王桂茹等.杂多酸催化剂及其在精细化学品合成中的应用[J].化学进展, 2004, 16(4): 620-630
    [29]由宏君.长链烯烃烷基化固体酸催化剂的研究.新疆石油学院学报, 2003, 15(4):58-60
    [30]欧阳钺,黎土妹,蔡梅燕.杂多化合物的结构及其功能.海南师范学院学报(自然科学版), 2002, 15(3):204-208
    [31]王恩波,胡长文,许林.多酸化学导论.北京:化学工业出版社, 1998. 192~193
    [32] Wang E B, Hu C W, Xu Y. Introduciton of Polyacid Chemistry. Publishing house o f Beijing Chemical Industry, Beijing, 1998, p. 125.
    [33] Keita B, Nadjo L, Saveant J. Surface modifications with heteropoly and isopoly oxometalates. J Electroanal Chem, 1988, 243 (9): 105-116
    [34] Pope M T, Miiller A. Polyoxometalate chemistry. Angrew Chem Int Ed Eng, 1991, 30 (l): 34-38
    [35] Keita B, Nadjo L. New oxometalate-based materials for catalysis and electrocatalysis. Materials chemistry and physics, 1989, 22 (1): 77-103
    [36]奚晓丹,刘绍琴,王恩波.吸附杂多化合物对亚硝酸根的电催化还原[J].分析化学, 1998, 26 (6): 719-723
    [37]贾颖萍,王为清。同多酸和杂多酸修饰电极。大连大学学报,1998,19(6):20-23
    [38] Wang BX, Dong S J. Electrochemical study of isopoly and heteropoly oxometalate film modified microelectrodes, Part 5 [J]. J Electroanal Chem, 1992, 328: 245~257
    [39]万其进,余新武,徐晓晖,兰风远。一取代硅钨杂多酸修饰电极的制备及其电化学性质研究。湖北师范学院学报,1998,18 (3):17-20
    [40]田敏,奚晓丹,董绍俊。硅钨杂多酸修饰微电极的研究。分析化学研究报告,1996,24(8):902-905
    [41] Cox J A, Majda M. Modification of a platinum electrode surface by irreversible adsorption of adenosine-5'-monophosphate and metallation by iron. Anal Chem, 1980, 52 (6): 861-864
    [42] Brown A P, Anson F C. Cyclic and differential pulse voltammetric behavior of reactants confined to the electrode surface. Anal Chem, 1977, 49 (11): 1589-1595
    [43] Brown A P, Anson F C. Electron-transfer kinetics with both reactant and product attached to electrode surface. J. Electroanal. Chem. 1978, 92 (2): 133-145
    [44] Brown A P, Koval C, Anason F C. Illustrative electrochemical behavior of reactants irreversibly adsorbed on graphite electrode surfaces. J Electroanal Chem, 1976, 72 (3): 379-387
    [45] Oyama N, Yap K B, Anson F C. Spontaneous Coating of Graphite Electrodes by Amino Ferrocenes. J Electroanal Chem, 1979, 100 (7): 233-246
    [46]王宝兴,董绍俊.分析化学.长春:中国科学院长春应用化学研究所,1992, 1069-1073
    [47] Dong S, Wang B. Electrochemical study of isopoly- and heteropoly-oxometallate film modified microelectrodes. II: Electrochemical behaviour of isopolymolybdic acid monolayer modified carbon fibre microelectrodes. Electrochim Acta, 1992, 37 (10): 1859-1864
    [48] White J H., Soriaga M P, Hubbard A. T. Effect of surface roughness on the adsorption, orientation and anodic oxidation of hydroquinone at platinum electrodes. J. Electroanal. Chem. 1984, 177 (12): 89-96
    [49] White J H, Soriaga M P, Hubbard A. T. Influence of oriented-chemisorbed monolayers on the electrode kinetics of unadsorbed nonionic redox couples. J Phys. Chem., 1985, 89 (15): 3227–3232
    [50] Soriaga M P, Stickney A J L, Hubbard A T. Electrochemical Oxidation of Aromatic Compounds Adsorbed on Platinum Electrode. J Electroanal Chem,1983, 144 (8): 207-215
    [51] Zak J, Porter M D, Kuwana T. Thin-layer electrochemical cell for long optical pathlength observation of solution species. Anal Chem, 1983, 55 (14): 2219-2222
    [52] Gui Y P, Porter M D, Kuwana T. Long optical path length thin-layer spectroelectrochemistry. Quantitation of adsorbed aromatic molecules at platinum. Anal Chem, 1985, 57 (7): 1474-1476
    [53] Keita B, Nadjo L. New aspects of the electrochemistry of heteropolyacids partⅣ. Acidity dependent cyclic voltammetric behaviour of phosphotungstic and silicotungstic heteropolynions in water and N, N-dimethylformamide. J Electroanal. Chem, 1987, 22 (7): 77-98
    [54] Keita B, Nadjo L, Haeussler J P. Activation of electrode surfaces : semiquantitative characterization of electrode surfaces modified with heteropolyanions. J Electroanal Chem, 1987, 230 (12): 85-97.
    [55] Keita B, Nadjo L. Scanning tunneling microscopy monitory of the surface morphology of the based plane of highly oriented pyrolytic graphite during the cyclic voltammetry of isopoly and heteroplyanions. J Electroanal Chem, 1993, 354 (14): 295-304
    [56] Dong S, Jin W. Study of a 1:12 phosphomolybdic anion doped polypyrrode film electrode and its catalysis. J Elelctroanal Chem, 1993, 354 (3): 87-89
    [57] Poter M D, Bright T B, Allara D L. Spontaneously organized molecular assemblies. 4. Structural characterization of n-alkyl thiol monolayers on gold by optical ellipsometry, infrared spectroscopy, and electrochemistry. J. Am. Chem. Soc. 1987, 109 (13): 3559-3568
    [58] Bain C D, Whitesides G M. Modeling organic surfaces with self-assembled monolayers. Angew Chem, 1989, 101(4): 522-528
    [59] Nuzzo R G, Dubois L H, Allara D L. Fundamental studies of microscopic wetting on organic surfaces. 1. Formation and structural characterization of a self-consistent series of polyfunctional organic monolayers. J Am Chem Soc, 1990, 112 (2): 558-569
    [60] Bain C D, Whitesides G M. Formation of monolayers by the coadsorption of thiols on gold: variation in the length of the alkyl chain. J Am Chem Soc, 1989, 111 (18): 7164-7175
    [61] Allara D L, Nuzzo R G. Spontaneously organized molecular assemblies. 2. Quantitative infrared spectroscopic determination of equilibrium structures of solution-adsorbed n-alkanoic acids on an oxidized aluminum surface. Langmuir, 1985, 1 (1): 52-64
    [62] Maoz R, Netzer L, Gun J, Sagiv J. Self-assembling monolayers in the construction of planned supramolecular structures and as modifiers of surface properties. J Chim Phys, 1988, 85 (11): 1059-1065
    [63] Gun J, Iscovici R, Sagiv J. On the formation and structure of self-assembling monolayers. II: A comparative study of Langmuir-Blodgett and adsorbed films using ellipsometry and IR reflection-absorption spectroscopy. J Colloid Interface Sci, 1984, 101 (1): 201-213
    [64] Lee H, Kepley L J, Hong H G, Akhter S, Mallouk T E. Adsorption of ordered zirconium phosphonate multilayer films on silicon and gold surfaces. J. Phys. Chem. 1988, 92 (9): 2597-2601
    [65] Hickman J J, Zou C, Ofer D, Harvey P D, Wrighton M S, Laibinis P E, Bain C D, Whitesides G M. Combining spontaneous molecular assembly with microfabrication to pattern surfaces: selective binding of isonitriles to platinum microwires and characterization by electrochemistry and surface spectroscopy. J Am Chem Soc, 1989, 111 (18): 7271-7272
    [66] Moriguchi I, Fendler J F. Characterization and Electrochromic Properties of Ultrathin Films Self-Assembled from Poly(diallyldimethylammonium) Chloride and Sodium Decatungstate.Chem. Mater, 1998, 10 (8): 2205-2211.
    [67] Ichinose I, Tagawa H, Mizuki S, et al. Formation Process of Ultrathin Multilayer Films of Molybdenum Oxide by Alternate Adsorption of Octamolybdate and Linear Polycations. Langmuir, 1998, 14 (1): 187-192.
    [68] Jiang K, Zhang H X, Shannon C, Zhan W. Preparation and Characterization of Polyoxometalate/Protein Ultrathin Films Grown on Electrode Surfaces Using Layer-by-Layer Assembly. Langmuir, 2008, 24 (7): 3584-3589
    [69] Clemente_Leon, Agricole B, Minggotaud C, et al. Application of the langmuir-blodgett technique to polyoxometalates: towards new magnetic films[J]. Angew Chem Int Ed Engl, 1997, 36 (6): 1114-1116
    [70] Kuhn A, Anson F C. Adsorption of monolayer of P2Mo18O626- and deposition of multiple layers6-of Os(bpy)32+ - P2Mo18O626- on electrode surface[J]. Langmuir, 1996, 12 (12):5481-5488
    [71] Blewicz R, Majda M. Bifunctional monolayer Langmuir-Blodgett films at electrodes. Electrochemistry at single 'gate sites'. J Am Chem, 1991, 113 (7): 5466-5471
    [72] Gao F, Yamase T, Suzuki H. H2O2-based epoxidation of bridged cyclic alkenes with [P{Ti(O2)}2W10O38]7? in monophasic systems: active site and kinetics. J Mol Catal A, 2002, 180 (12): 97-108
    [73] Kholdeeva O A, Trubitsina T A, Maksimovskaya R I, Golovin A V, Neiwert W A, et al. First Isolated Active Titanium Peroxo Complex: Characterization and Theoretical Study. J M Inorg Chem, 2004, 43 (7): 2284-2296
    [74] Kato C N, Negishi S, Yoshida K, Hayashi K. The strong influence of structures around titanium centers in dimeric mono-, di-, and tri-titanium(IV)-substituted Keggin polyoxotungstates on the catalytic epoxidation of alkenes with H2O2.Appl Catal A, 2005, 292 (18): 97-108
    [75]黄开果,赫奕.杂多酸盐K6[P2W18O62]·14H2O的电化学性质研究及其修饰电极的制备:[硕士学位论文].吉林:吉林大学化学院, 2005
    [76] Himeno S, Takamoto M, Ueda T. Synthesis, characterisation and voltammetric study of aβ-Keggin-type [PW12O40]3? complex. Electroanal Chem, 1999, 465 (2): 129 - 135
    [77]王崇太,华英杰.杂多酸的电催化性质.海南师范学院学报(自然科学版), 2005, 18 (3): 243-247
    [78] Song I K, Barteau M A. Redox properties of Keggin-type heteropolyacid (HPA) catalysts: effect of counter-cation, heteroatom, and polyatom substitution. Mole. Catal A: Chem, 2004 , 212 (12): 229 - 236.
    [79] Mcgarvey G B, Moffatj B. Ion-exchange properties of microporous monovalent salts of 12-tungstophosphoric acid and 12-molybdophosphoric acid catalysts. J Mol. Catal, 1991 , 128 (1) : 69-83
    [80] Schwetler M A, Peters J A, Vanbekkum H. Mo/W interchange of heteropolyanions as a measure of stability : a 31P NMR study = L'échange entre Mo/W des hétéropolyanions comme mesure de stabilité. Etude de la R.M.N du phosphore 31 (31P). J Mol Catal, 1990, 63 (3): 343-351
    [81] Wang S F, Du D. Preparation and electrochemical properties of Keggin-type phosphomolybdic anions in electrostaticly linked -cysteine self-assembled monolayers. Sensors and Actuators B, 2003, 94 (3): 282-289
    [82] Pope M T, Müller A. Polyoxometalate chemistry: an old field with new dimensions in several disciplines. Angew Chem Int Ed Engl, 1991, 30 (1): 34-38
    [83] Keita B, Nadjo L. New aspects of the electrochemistry of heteropolyacids partⅡ. Coupled electron and proton transfers in the reduction of silicotungstic species. J Electroanal. Chem, 1987, 217 (12) : 287—304
    [84] Chen S M, Fa Y H. Characterization and Electrocatalytic Properties of Composite Poly(new fuchsin) and Phosphomolybdate Films. Electroanalysis. 2005, 17 (7): 579-587
    [85] Cheng L, Niu L, Gong J, Dong S J. Electrochemical Growth and Characterization of Polyoxometalate-Containing Monolayers and Multilayers on Alkanethiol Monolayers Self-Assembled on Gold Electrodes. Chem Master, 1999, 11(6): 1465-1475.
    [86] Keita B, Nadjo L, Belanger D, Wilde C P, Hilaire M. Electrochemical quartz crystal microbalance: evidence for the adsorption of heteropoly and isopoly anions on gold electrodes. J Electroanal Chem, 1996, 404 (2): 271-279
    [87] Keita B, Nadjo L, Haeussler J P. Activation of electrode surfaces. Semiquantitative characterization of electrode surfaces modified with heteropolyanions. J Electroanal Chem, 1988, 230 (12): 85-97
    [88]曹小华,黎先财,柳闽生,廖晓宁。杂多酸型化合物及其研究展望。化工中间体,2005,2 (1):8-12
    [1]. Kuo M C, Limoges B R, Stanis R J,.Turner J A, Herring A M. The use of the heteropoly acids, H5PMo10V2O40, H7[P2W17O61(FeIII·OH2)] or H12[(P2W15O56)2Fe4III(H2O)2], in the anode catalyst layer of a proton exchange membrane fuel cell. J Power Sources, 2007, 171 (2): 517-523
    [2]. Gatto I, Sacca A, Carbone A, Pedicini R, Urbani F, Passalacqua E. CO-tolerant electrodes developed with PhosphoMolybdic Acid for Polymer Electrolyte Fuel Cell (PEFCs) application. J Power Sources, 2007, 171 (2): 540-552
    [3]. Wang E B, Hu C W, Xu L, Introduction of Polyacid Chemistry. Pblishiing house of Beijing chemistry industry, being, 1998,12 (14): 125-131
    [4]. Keita B, Nadjo L, Saveant J. Surface modifications with heteropoly and isopoly oxometalates. Part II. Electrocatalytic behavior of glassy carbon surfaces modified with 17-tungsto, 1-molybdo-diphosphate. J Electroanal Chem, 1988, 243 (13): 105-112
    [5]. Pope M T, Müller A. Polyoxometalate chemistry: an old field with new dimensions in several disciplines. Angew Chem Int Ed Engl, 1991, 30 (1): 34-38
    [6]. Zhang Z M, Qi Y F, Qin C, Li Y G, Wang E B, Wang X T, Su Z M, Xu L. Two multi-copper-containing heteropolyoxtungstates constructed from the lacunary keggin polyoxoanion and the high nuclear spin cluster. Inorg Chem, 2007, 46 (20): 8162-8169
    [7]. Sha J Q, Peng J, Tian A X, Liu H S, Chen J, Zhang P P, Su Z M. Assembly of multitrack Cu-N coordination polymeric chain modified polyoxometalates influenced by polyoxoanion cluster and ligand. Cryst Growth Des, 2007, 7 (12): 2537-2540
    [8]. Sadakane M, Steckhan E. Electrochemical Properties of Polyoxometalates as Electrocatalysts. Chem Rev, 1998, 98 (1): 219-238
    [9]. Rahman M A, Won M S, Wei P H, Shim Y.B. Electrochemical Detection of ClO3-, BrO3-, and IO3- at a Phosphomolybdic Acid Linked 3-Aminopropyl- Trimethoxysilane Modified Electrode. Electroanalysis, 2006, 18 (10): 993-1000
    [10]. Chem S M, Fa Y H. Characterization and Electrocatalytic Properties of Composite Poly(new fuchsin) and Phosphomolybdate Films. Electroanalysis, 2005, 17 (7): 579-587
    [11]. Bi L H, Foster K, Cormac T M, Dempser E. Preparation of multilayer films containing a crown heteropolyanion and an osmium functionalised pyrrole monomer. J Electroanal Chem, 2007, 605 (1): 24-30
    [12]. Kuhn A, Anson F C. Adsorption of Monolayers of P2Mo18O626- and Deposition of Multiple Layers of Os(bpy)32+?P2Mo18O626- on Electrode Surfaces. Langmuir, 1996, 12 (22): 5481-5488
    [13]. Keita B, Bouaziz D, Nadjo L, Deronzier A. Surface functionalization with oxometallates entrapped in polymeric matrices. II, Substituted pyrrole-based ion-exchange polymers. J Electroanal Chem, 1990, 279 (12): 187-203
    [14]. Keita B, Bouaziz D, Nadjo L. Strategies for entrapping oxometalates in polymeric matrices [J]. J Electroanal Chem, 1988, 255 (4): 307-313
    [15]. Cheng L, Niu L, Gong J, Dong S. Electrochemical Growth and Characterization of Polyoxometalate-Containing Monolayers and Multilayers on Alkanethiol Monolayers Self-Assembled on Gold Electrodes. Chem Mater, 1999, 11 (6): 1465-1475
    [16]. Liu J, Cheng L, Liu B, Dong S. Covalent Modification of a Glassy Carbon Surface by 4-Aminobenzoic Acid and Its Application in Fabrication of a Polyoxometalates-Consisting Monolayer and Multilayer Films. Langmuir, 2000, 16 (19): 7471-7476
    [17]. Wang L, Jiang M, Wang E B, Duan L Y, Hao N, Lan Y, Xu L,Li Z. Preparation and characterization of the nanoporous ultrathin multilayer films based on molybdenum polyoxometalate (Mo38)n. J. Solid State Chem. 2003, 176 (1): 13-17
    [18]. Wang B Q, Cheng L, Dong S J. Construction of a heteropolyanion-modified electrode by a two- step sol-gel method and its electro catalytic applications. J Electroanal Chem, 2001, 516 (3): 17-22
    [19]. Wang S F, Du D. Preparation and electrochemical properties of keggin type phosphomolybdic anions in electrostaticly linked L-cysteine self assembled monolayers. Sens Actuators B, 2003, 94 (3): 282-289
    [20]. Huang B Q, Wang L, Shi K, Xie Z X, Zheng L S, A new strategy for the fabrication of the phosphor polyoxomolybdate modified electrode from ionic liquid solutions and its electrocatalytic activities. J Electroanal Chem, 2008, 615 (16): 19-24
    [21]. Unoura K, Tanaka N. Comparative study of the electrode reactions of 12-molybdosilicate and 12-molybdophosphate. Inorg Chem, 1983, 22 (20): 2963-2964
    [22]. Kulesza P J, Chojak M, Karnicka K, Miecznikowski K, Palys B, Lewera A,. Structure and reactivity of network films composed of polyoxometallate stabilized and conducting polymers linked platinum nanoparticles. Chem Mater. 2004, 16 (21): 4128-4134
    [23]. Prodromidis M I, Veltsistas P G, Efstathiou C E, Karayannis M I. Amperometric Detection of Periodate Using a Graphite Electrode Modified with a Novel Alpha-Keggin-Type Silicotungstic Acid Salt and Determination of Ethylene Glycol in Antifreeze Fluids", Electroanalysis, 2001, 13 (11): 960-966
    [24]. Li L D, Li W J, Sun C Q, Li L S. Fabrication of carbon paste electrode containing 1:12 phosphomolybdic anions encapsulated in modified mesoporous electrode. Electroanalysis, 2002, 14 (5): 368-375
    [25]. Tian A X, Han Z G, Peng J, Ying J, Sha J Q, Dong B X, Zhai J L, Liu H S, Hydrothermal Synthesis and Crystal Structure of a Polyoxometalate- based Complex [CuI(phen)2]4(SiW12O40). Inorganica Chimica Acta, 2008, 361 (8): 1332-1340
    [26]. Dina F R, Michael W, Jiri R. Electrode layers for electrochemical applications based on functionalized mesoporous silica films. Sens Actuators B, 2007, 126 (10): 78-81
    [27]. Shan Y P, Yang G C, Jia YT, Gong J, Su Z M, Qu LY. ITO electrode modified with chitosan nanofibers loading polyoxometalate by one step self assembly method and its electrocatalysis. Electrochem Commun, 20079 (6): 2224-2228
    [28]. Zhai S Y, Liu J Y, Jiang J G, Dong S J, Multilayer assemblies consisting of tri-vanadium-substituted heteropolyanions and its electrocatalytic propertie. Electroanalysis, 2003, 15 (2): 1165-1170
    [29]. Kulesza PJ, Roslonek G. SIntercalation of metal complex cations in polyoxometallates: formation fo composite films with distinct electrocatalytic centers. J Electroanal Chem, 1990, 280 (11): 233-240
    [1] Hurdis E C, Jr H R. Accuracy of Determination of Hydrogen Peroxide by Cerate Oxidimetry. Anal Chem, 1954, 26 (2):320-325
    [2] Matsubara C, Kawamoto N, Takamura K. Oxo [5, 10, 15, 20-tetra(4-pyridyl) porphyrinato] titanium(IV): an ultra-high sensitivity spectrophotometric reagent for hydrogen peroxide. Analyst, 1992, 117 (11): 1781-1785
    [3] Nakashima K, Maki K, Kawaguchi S, Akiyama S, Tsukamoto Y, Kazuhiro I. Peroxyoxalate Chemiluminescence Assay of Hydrogen Peroxide and Glucose Using 2,4,6,8-Tetrathio-morpholinopyrimido[5,4-d]pyrimidine as a Fluorescent Component. Anal Sci, 1991, 7 (5): 709-714
    [4] Willner I, Katz E. Integration of Layered Redox Proteins and Conductive Supports for Bioelectronic Applications. Angew Chem Int Ed, 2000, 39 (7): 1180-1218
    [5] Kuo M C, Limoges B R, Stanis R J, Turner L A, Herring A M. The use of the heteropoly acids, H5PMo10V2O40, H7[P2W17O61(FeIII·OH2)] or H12[(P2W15O56)2Fe4III(H2O)2], in the anode catalyst layer of a proton exchange membrane fuel cell. J Power Sources, 2007, 171 (2): 517-523
    [6] Weinstock I A. Homogeneous-Phase Electron-Transfer Reactions of Polyoxometalates. Chem Rev, 1998, 98 (1): 113-170
    [7] Sadakane M, Steckhan E. Electrochemical Properties of Polyoxometalates as Electrocatalysts. Chem Rev, 1998, 98 (1): 219-237
    [8] Sun L S, Ca D V, Cox J A. Electrocatalysis of the hydrogen evolution reaction by nanocomposites of poly(amidoamine)-encapsulated platinum nanoparticles and phosphotungstic acid. J Solid State Electrochem, 2005, 9 (12): 816-822
    [9] Fontananova E, Donato L, Drioli E, Lopez L C, Favia P, d’Agostino R. Heterogenization of Polyoxometalates on the Surface of Plasma-Modified Polymeric Membranes.Chem Mater, 2006, 18 (6): 1561-1568
    [10] Liu S Q, Volkmer D, Kurth D G. Smart Polyoxometalate-Based Nitrogen Monoxide Sensors. Anal Chem, 2004, 76 (15): 4579-4582
    [11] Liu S Q, Kurth D G, Bredenkotter B, Volkmer D. The Structure of Self-Assembled Multilayers with Polyoxometalate Nanoclusters. J Am Chem Soc, 2002, 124 (41): 1279-1287
    [12] Liu S Q, Kurth D G, Mohwald H, Volkmer D. A thin-Film Electrochromic Device Based on a Polyoxometalate Cluster. Adv Mater, 2002, 14(3): 225-228
    [13] Clemente-Leon M, Coronado E, Gomez-Garcia C L, Mingotaud C, Ravaine S,Romualdo-Torres G, Delhaes P. Structure Formation Principles and Reactivity of Organolithium Compounds (p NA). Chem Eur J, 2005, 11 (24): 7477-7518
    [14] Cheng L, Cox J A. Preparation of multilayered nanocomposites of polyoxometalates and poly(amidoamine) dendrimers. Electrochem Commun, 2001, 3 (6): 285-289
    [15] Wang X, Kang Z, Wang E, Hu C. Inorganic–organic hybrid polyoxometalate nanoparticle modified wax impregnated graphite electrode: preparation, electrochemistry and electrocatalysis. Electroanal Chem, 2002, 523 (1-3): 142-149
    [16] Dong S, Cheng L, Zhang X. Electrochemical studies of a lanthanide heteropoly tungstate/molybdate complex in polypyrrole film electrode and its electrocatalytic reduction of bromate. Electrochim Acta, 1997, 43 (56): 563-568
    [17] Abrantes L M, Cordas C M, Vieil E. EQCM study of polypyrrole modified electrodes doped with Keggin-type heteropolyanion for cation detection. Electrochim Acta, 2002, 47 (9): 1481-1487
    [18] Barth M, Lapkowski M, Lefrant S. Evidence of change in the winter mixed layer in the Northeast Pacific Ocean. Elechim Acta, 1999, 44 (12): 2117-2123
    [19] Martel D, Kuhn A, Kulesza P J, Galkowski M T, Malik M A. The effect of modification of carbon electrodes with hybrid inorganic/organic monolayers on morphology and electrocatalytic activity of platinum deposits. Electrochim Acta, 2001, 46 (26-27):4197-4203
    [20] Cheng L, Dong S. Comparative studies on electrochemical behavior and electrocatalytic properties of heteropolyanion-containing multilayer films prepared by two methods. J Electroanal Chem, 2000, 481 (2):168-176
    [21] Kulesza P J, Chojak M, Miecznikowski K, Lewera A, Malik M A, Kuhn A. Polyoxometallates as inorganic templates for monolayers and multilayers of ultrathin polyaniline. Electrochem Commun,2002, 4 (6):510-515
    [22] Zhang T R, Feng W, Lu R, Zhang X T, Jin M, Li T J, Zhao Y Y, Yao J. N. Synthesis and characterization of polymetalate based photochromic inorganic–organic nanocomposites. Thin Solid Films,2002, 402 (1-2):237-241
    [23] Matlosz M, Magaino S, Landolt D, Temperature dependent methanol electro-oxidation on well-charaterized Pt-Ru alloys. J Electrochem Soc, 1994, 141 (7):1795-1803.
    [24] Peter M, Lammertink R G H., Hempenius M A, Vancso G J. Electrochemistry of Surface-Grafted Stimulus-Responsive Monolayers of Poly (ferrocenyl dimethylsilane) on Gold. Langmuir,2005, 21(11): 5115-523
    [25] Wang X J, Wang L, Wang J J, Chen T. Study on the Electrochemical Behavior of Poly(ferrocenylsilane) Films. J Phys Chem B, 2004, 108 (18):5627-33
    [26] Pudelski J K, Foucher D A, Honeyman C H, Macdonald P M, Manners I, Barlow S, O'Hare D. Synthesis, Characterization, and Properties of High Molecular WeightPoly(methylated ferrocenylsilanes) and Their Charge Transfer Polymer Salts with Tetracyanoethylene. Macromolecules,1996, 29 (6):1894-1906
    [27] Nguyen M T, Diaz A F, Dement'ev V V, Pannell K H. High molecular weight poly(ferrocenediyl-silanes): synthesis and electrochemistry of [-(C5H4) Fe(C5H4) SiR2-]n, R = Me, Et, n-Bu, n-Hex. Chem Mater,1993, 5 (10): 1389-1394
    [28] Arsenault A C, Miguez H, Kitaev V, Ozin G A, Manners I. A Polychromic, Fast Response Metallopolymer Gel Photonic Crystal with Solvent and Redox Tunability: A Step Towards Photonic Ink (P-Ink). Adv Mater, 2003, 15 (6): 503-507
    [29] Rulkens R, Lough A J, Manners I, Lovelace S R, Grant C, Geiger W E. Linear Oligo(ferrocenyldimethylsilanes) with between Two and Nine Ferrocene Units: Electrochemical and Structural Models for Poly(ferrocenylsilane) High Polymers. J Am Chem Soc, 1996,118 (50): 12683-12695
    [30] Peter M, Hempenius M A, Kooij E S, Jenkins T A, Roser S J, Knoll W, Vancso G J. Electrochemically Induced Morphology and Volume Changes in Surface-Grafted Poly(ferrocenyldimethylsilane) Monolayers. Langmuir, 2004, 20 (3): 891-897
    [31] Ma Y J, Dong W F, Hempenius M A, Mohwald H, Vancso G J. Redox-controlled molecular permeability of composite-wall microcapsules. Naure Mater, 2006, 5 (9): 724-729
    [32] Ma Y J, Dong W F, Hempenius M A, Mohwald H, Vancso G J. Layer-by-Layer Constructed Macroporous Architectures. Angew Chem Int Ed, 2007, 46 (10): 1702-1705
    [33] Balogh L, Tomalia D A. Poly(Amidoamine) dendrimer-templated nanocomposites. 1. Synthesis of Zerovalent CopperNanoclusters. J Am Chem Soc, 1998, 120(29):7355-7356
    [34] Wang B, Vyas R N, Shaik S F. Preparation Parameter Development for Layer-by-Layer Assembly of Keggin-type Polyoxometalates. Langmuir, 2007, 23 (20): 11120-11126
    [35] Li L D, Li W J, Sun C Q, Li L S. Fabrication of Carbon Paste Electrode Containing 1:12 Phosphomolybdic Anions Encapsulated in Modified Mesoporous Molecular Sieve MCM-41 and Its Electrochemistry. Electroanalysis, 2002, 14 (5): 368-375
    [36] Ma Y J, Hempenius M A, Vancso G J. Electrostatic assembly with poly(ferrocenylsilanes). J Inorg Organomet, 2007, 17(1574-1451): 3-18
    [37] Laviron E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem, 1979, 101 (1): 19-28
    [38] Rahman M A, Won M S, Wei P H, Shim Y B. Electrochemical Detection of ClO, BrO, and IO at a Phosphomolybdic Acid Linked 3-Aminopropyl- Trimethoxysilane Modified Electrode. Electroanalysis, 2006, 18 (10): 993-1000
    [39] Kulesza P J, Chojak M, Karnicka K, Miecznikowski K, Palys B, Lewera A. Network Films Composed of Conducting Polymer-Linked and Poly oxometalate-Stabilized Platinum Nanoparticles. Chem Mater, 2004, 16 (21): 4128-4134
    [40] Chen S M, Fa Y H. Preparation and Electrochemical Study of Fisetin Modified Glassy Carbon Electrode. Application to the Determination of NADH and Ascorbic Acid. Electroanalysis, 2005, 17 (11): 985-996
    [41] Zhai S Y, Liu JY, Guang J, Dong S J. Multilayer Assemblies Consisting of Tri-Vanadium-Substituted Heteropolyanions and Its Electrocatalytic Properties. Electroanalysis, 2003, 15 (14): 1165-1170
    [42] Papadakis A, Souliotis A, Papaconstantinou E. Functionalization of electrodes with polyoxometalates P2Mo18O626? and P2W18O626?. J Electroanal Chem, 1997, 435 (1-2): 17-21
    [43] Zhao G C, Zhu J J, Chen L Y, Chen HY. The Preparation and Characterization of the Mo-S-Ag Modified Electrode and Its Electrocatalytic Effect on the Oxidation of Ascorbic Acid. Electroanalysis, 1998, 10 (8): 579-582
    [44] Kulesza P J, Roslonek G. Intercalation of metal complex cations in polyoxometallates: formation of composite films with distinct electrocatalytic centers. J Electroanal Chem, 1990, 280 (1): 233-240
    [45] Anson F C, Tsou Y M, Saveant J M. Outer-sphere oxidation of ascorbate with os(bpy)33+ incorporated in nafion coatings on graphite electrodes. J Electroanal Chem, 1984, 178 (1): 113-127
    [1] Zhang Z M, Qi Y F, Qin C, Li Y G, Wang E B, Wang X T, Su Z M, Xu L. Two multi-copper-containing heteropolyoxtungstates constructed from the lacunary keggin polyoxoanion and the high nuclear spin cluster. Inorg Chem, 2007, 46 (20): 8162-8169
    [2] Sha J Q, Peng J, Tian A X, Liu H S, Chen J, Zhang P P, Su Z M. Assembly of multitrack Cu-N coordination polymeric chain modified polyoxometalates influenced by polyoxoanion cluster and ligand. Cryst Growth Des, 2007, 7 (12): 2537-2540
    [3] Kuo M C, Limoges B R, Stanis R J,.Turner J A, Herring A M. The use of the heteropoly acids, H5PMo10V2O40, H7[P2W17O61(FeIII·OH2)] or H12[(P2W15O56)2Fe4III(H2O)2], in the anode catalyst layer of a proton exchange membrane fuel cell. J Power Sources, 2007, 171 (2): 517-523
    [4] Gatto I, Sacca A, Carbone A, Pedicini R, Urbani F, Passalacqua E. CO-tolerant electrodes developed with PhosphoMolybdic Acid for Polymer Electrolyte Fuel Cell (PEFCs) application. J Power Sources, 2007, 171 (2): 540-552
    [5] Wang E B, Hu C W, Xu L. Introduction of Polyacid Chemistry. Beijing: Chemical Inductry Press, 1998, 12 (4): 125-130
    [6] Keita B, Nadjo L, Saveant J. Surface modifications with heteropoly and isopoly oxometalates. Part II. Electrocatalytic behavior of glassy carbon surfaces modified with 17-tungsto, 1-molybdo-diphosphate. J Electroanal Chem, 1988, 243 (13): 105-112
    [7] Pope M T, Müller A. Polyoxometalate chemistry: an old field with newdimensions in several disciplines. Angew Chem Int Ed Engl, 1991, 30 (1): 34-38
    [8] Sadakane M, Steckhan E. Electrochemical Properties of Polyoxometalates as Electrocatalysts. Chem Rev, 1998, 98 (1): 219-238
    [9] Rahman M A, Won M S, Wei P H, Shim Y.B. Electrochemical Detection of ClO3-, BrO3-, and IO3- at a Phosphomolybdic Acid Linked 3-Aminopropyl-Trimethoxysilane Modified Electrode. Electroanalysis, 2006, 18 (10): 993-1000
    [10] Chem S M, Fa Y H. Characterization and Electrocatalytic Properties of Composite Poly(new fuchsin) and Phosphomolybdate Films. Electroanalysis, 2005, 17 (7): 579-587
    [11] Kuhn A, Anson F C. Adsorption of Monolayers of P2Mo18O626- and Deposition of Multiple Layers of Os(bpy)32+?P2Mo18O626- on Electrode Surfaces. Langmuir, 1996, 12 (22): 5481-5488
    [12] Keita B, Bouaziz D, Nadjo L, Deronzier A. Surface functionalization with oxometallates entrapped in polymeric matrices. II, Substituted pyrrole-based ion-exchange polymers. J Electroanal Chem, 1990, 279 (12): 187-203
    [13] Keita B, Bouaziz D, Nadjo L. Strategies for entrapping oxometalates in polymeric matrices [J]. J Electroanal Chem, 1988, 255 (4): 307-313
    [14] Cheng L, Niu L, Gong J, Dong S. Electrochemical Growth and Characterization of Polyoxometalate-Containing Monolayers and Multilayers on Alkanethiol Monolayers Self-Assembled on Gold Electrodes. Chem Mater, 1999, 11 (6): 1465-1475
    [15] Liu J, Cheng L, Liu B, Dong S. Covalent Modification of a Glassy Carbon Surface by 4-Aminobenzoic Acid and Its Application in Fabrication of a Polyoxometalates-Consisting Monolayer and Multilayer Films. Langmuir, 2000, 16 (19): 7471-7476
    [16] Wang L, Jiang M, Wang E B, Duan L Y, Hao N, Lan Y, Xu L, Li Z. Preparation and characterization of the nanoporous ultrathin multilayer films based on molybdenum polyoxometalate (Mo38)n. J Solid State Chem, 2003, 176 (1): 13-17
    [17] Wang S F, Du D. Preparation and electrochemical properties of keggin type phosphomolybdic anions in electrostaticly linked L-cysteine self assembled monolayers. Sens Actuators B, 2003, 94 (3): 282-289
    [18] Chen C Y, Song Y, Wang L. Electrochemical behavior and its electrocatalytic properties of chemically modified electrode with Keggin-type [SiNi(H2O)W11O39]6?. Electrochim Acta, 2009, 54 (5): 1607-1611
    [19] Chen C Y, Song Y, Wang L. A novel sensor based on layer-by-layer hybridized phosphomolybdate and poly(ferrocenylsilane) on a cysteamine modified gold electrode. Electroanal. 2008, 20 (23): 2543-2548
    [20] Koide T, Yuguchi M, Kawakita M, Konno H J. Metal-assisted stabilization and probing of collagenous triple helices. Am Chem Soc. 2002, 124 (12): 9388-9389
    [21] Zong S Z, Cao Y, Zhou Y M, Ju H G. Zirconia Nanoparticles Enhanced Grafted Collagen Tri-Helix Scaffold for Unmediated Biosensing of Hydrogen Peroxide. Langmuir, 2006, 22 (21): 8915-8919
    [22] Silva C C, Pinheiro A G, Thomazini D, Goes J C, Figueiro S D, de Paiva J A C,. Sombra A S B. Effect of the pH on the piezoelectric properties of collagen films. Mater Sci Eng B, 2001, 83 (6): 165-172
    [23] Baker H R, Erika F, Merschrod S, Poduska K M. Electrochemically Controlled Growth and Positioning of Suspended Collagen Membranes. Langmuir, 2008, 24 (7): 2970-2972
    [24] Li M, He P, Zhang Y, Hu N. An electrochemical investigation oh haemoglobin ... in collagen films. Biochim. Biophy Act, 2005, 1749 (4): 43-45
    [25] Dey S k, Long Y T, Chowdhury S, Sutherland T C, Mandal H S, Kraatz H B. Study of Electron Transfer in Ferrocene-Labeled Collagen-like Peptides. Langmuir, 2007, 23 (12): 6475-6477
    [26] Zong S Z, Cao Y, Zhou Y M, Ju H G. Reagentless biosensor for hydrogen peroxide based on immobilization of protein in zirconia nanoparticles enhanced grafted collagen matrix. Biosens Bioelectron,2007, 22 (8): 1776-1782
    [27] Zong S Z, Cao Y, Zhou Y M, Ju H G. Zirconia Nanoparticles Enhanced Grafted Collagen Tri-Helix Scaffold for Unmediated Biosensing of Hydrogen Peroxide. Langmuir, 2006, 22 (21): 8915–8919
    [28] Suppes G M, Deore B A, Freund M S. Porous conducting polymer/heteropolyoxometalate hybrid material for electrochemical supercapacitor applications.Langmuir, 2008, 24 (3): 1064-1070
    [29] Leon M C, Ito T, Yashiro H, Yamase T. Two-dimensional Array of Polyoxomolybdate Nanoball Constructed by Langmuir-Blodgett Semiamphiphilic Method. Chem Mater, 2007, 19 (1): 2589-2594
    [30] Xi X, Dong S. Electrocatalytic reduction of nitrite using Dawson-type tungstodiphosphate anions in aqueous solutions, adsorbed on a glassy carbon electrode and doped in polypyrrole film. J Mol Catal A Chem, 1996, 114 (13): 257-265
    [31] Pope M T, Varga G M. Heteropoly blue, I. Reduction stoichiometries and reduction potentials of some 12-tungstates. Inorg Chem., 1966, 5 (7): 1249-1254
    [32] Wang B, Cheng L, Dong S. Construction of a heteropolyanion-modified electrode by a two-step sol–gel method and its electrocatalytic applications. J Electroanal Chem, 2001, 516 (12): 17-22
    [1] Miguel C L, Takeru I, Hisahi Y, Toshihiro Y. Two-Dimensional Array of Polyoxomolybdate Nanoball Constructed by Langmuir?Blodgett Semiamphiphilic Method. Chem Mater, 2007, 19 (10): 2589-2594
    [2] Zhang Z M, Qi Y F, Qin C, Li Y G, Wang E B, Wang X L, Su Z M, Xu L. Two Multi-Copper-Containing Heteropolyoxotungstates Constructed from the Lacunary Keggin Polyoxoanion and the High-Nuclear Spin Cluster. Inorg Chem, 2007, 46 (20): 8162-8169
    [3] Wang X L, Bi Y F, Chen B K, Lin H Y, Liu G C. Self-Assembly of Organic–Inorganic Hybrid Materials Constructed from Eight-ConnectedCoordination Polymer Hosts with Nanotube Channels and Polyoxometalate Guests As Templates. Inorg Chem, 2008, 47 (7): 2442-2448
    [4] Bi L H, Foster K V, Mccormac T, Dempsey E. Preparation of multilayer films containing a crown heteropolyanion and an osmium functionalised pyrrole monomer. J Electroanal Chem, 2007, 605 (1): 24-30
    [5] Zhai S Y, Liu J Y, Jiang J G, Dong S J. Multilayer assemblies consisting of tri-Vanadium-substituted heteropolyanions and its electrocatalytic properties. Electroanalysis, 2003, 15 (14): 1165-1170
    [6] Wang P, Wang X P, Zhu G Y. Sol–gel-derived carbon ceramic composite electrodes bulk-modified with 1:12-silicomolybdic acid. New J Chem, 2000, 24 (10): 481-483
    [7] Cheng L, Pacey G E, Cox J A. Preparation and electrocatalytic applications of a multilayer nanocomposite consisting of phosphomolybdate and poly(amidoamine). Electrochimica acta, 2001, 46 (26-27): 4223-4228
    [8] Fontananova E, Donto L, Drioli E, Lopez L C, Favia P, Dagostino R.Heterogenization of Polyoxometalates on the Surface of Plasma-Modified Polymeric Membranes. Chem Mater, 2006, 18 (2): 1561-1568
    [9] Liu S Q, Kurth D G, Mohwald H, Volkmer D. A thin-film electrochromic device based on a polyoxometalate cluster. Adv Mater, 2002, 14 (3): 225-228
    [10] Lin S Q, Volkmer D, Kurth D G. Smart Polyoxometalate-Based Nitrogen Monoxide Sensors. Anal Chem, 2004, 76 (15): 4579-4582
    [11] Clemente-Leon M, Coronado E, Gomez-Garcia C L, Mingotaud C, Ravaine S, Romualdo-Torres G, Delhaes P. Polyoxometalate Monolayers in Langmuir-Blodgett Films. Chem Eur J, 2005, 11 (13): 3979-3987
    [12] Zai S Y, Liu J Y, Jiang J G, Dong S J. Multilayer assemblies consisting of tri-vanadium-substituted heteropolyanions and its electrocatalytic properties. Electroanalysis, 2003, 15 (14): 1165-1170
    [13] Li L D, Li W J, Sun C Q, Li L S. Fabrication of Carbon Paste Electrode Containing 1:12 Phosphomolybdic Anions Encapsulated in Modified Mesoporous Molecular Sieve MCM-41 and Its Electrochemistry. Electroanalysis, 2002, 14 (5): 368-375
    [14] Chen C Y, Song Y H, Wang L. Electrochemical behavior and its electrocatalytic properties of chemically modified electrode with Keggin-type [SiNi(H2O)W11O39]6?. Electrochimica Acta, 2009, 54 (5): 1607-1611
    [15] Chen C Y, Song Y H, Wang L. A Novel Sensor Based on Layer-by-Layer Hybridized Phosphomolybdate and Poly(ferrocenylsilane) on a Cysteamine Modified Gold Electrode. Electroanalysis, 2008, 20 (23): 2543-2548
    [16] Peter M, Lammertink R G H., Hempenius M A, Vancso G J. Electrochemistry of Surface-Grafted Stimulus-Responsive Monolayers of Poly (ferrocenyl dimethylsilane) on Gold. Langmuir,2005, 21 (11): 5115-523
    [17] Wang X J, Wang L, Wang J J, Chen T. Study on the Electrochemical Behavior of Poly(ferrocenylsilane) Films. J Phys Chem B, 2004, 108 (18): 5627-5633
    [18] Cui K, Song Y H, Wang L. A novel hydrogen peroxide sensor based on Ag nanoparticles electrodeposited on DNA-networks modified glassy carbon electrode. Electrochem Commun, 2008,10 (11):1712-1715
    [19] Mazur U, Leonetti M, English W A, Hipps K W. Spontaneous Solution-Phase Redox Deposition of a Dense Cobalt(II) Phthalocyanine Monolayer on Gold. J Phys Chem B, 2004, 108 (44): 17003-17006
    [20] Gao G G, Xu L. Wang W J, Wang Z Q, Qiu Y F, Wang E B. Electrochromic multilayer films of tunable color by combination of copper or iron complex. J Electrochem Soc, 2005, 152 (2): 102-105
    [21] Kloster G M, Anson F C. Electrochemical reduction of HNO2 or oxidation of benzyl alcohol by electrocatalyst coatings consisting of alternating layers of [P2Mo18O62]6? anions and Os(II)- or Ru(II)-polypyridine cations. Electrochim Acta, 1999, 44 (13): 2271-2279
    [22] Guo H, Yu J g, Cheng B. Preparation and formation mechanism of wood-block-like calcite particles, J Solid State Chem, 2006, 179 (8): 2547-2553
    [23] Fay N, Dempsey E, McCormac T. Assembly, electrochemical characterisation and electrocatalytic ability of multilayer films based on [Fe(bpy)3]2+, and the Dawson heteropolyanion, [P2W18O62]6?. J Electroanal Chem, 2005, 574 (2): 359-366
    [24] Chen L, Cox J A. Nanocomposite Multilayer Film of a Ruthenium Metallodendrimer and a Dawson-Type Polyoxometalate as a Bifunctional Electrocatalyst. Chem Mater, 2002, 14 (1): 6-8
    [25] Kulesza P J, Chojak M, Karnicka K, Miecznikowski K, Palys B, Lewera A. Network Films Composed of Conducting Polymer-Linked and Polyoxometalate-Stabilized Platinum Nanoparticles. Chem Mate, 2004, 16 (21): 4128-4134
    [26] Sivanesan A, John S A. Determination of l-dopa using electropolymerized 3,3′,3″,3 -tetraaminophthalocyanatonickel(II) film on glassy carbon electrode. Biosens Bioelectron, 2007, 23 (15): 708-713
    [27] Sivanesan A, John S A. Amino Group Position Dependent Orientation of Self-Assembled Monomolecular Films of Tetraaminophthalocyanatocobalt(II) on Au Surfaces. Langmuir, 2008, 24 (5): 2186-2190

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700