用户名: 密码: 验证码:
纳米复合TiO_2-SnO_2介孔材料的制备、结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
介孔YiO2因其具有高比表面积,发达有序的孔道结构,孔径尺寸在一定范围内可调,表面易于改性等特点,可以有效地增强纳米YiO2光催化、光电转换等功能,使其在水处理、空气净化、太阳能电池、纳米材料微反应器、生物材料等方面表现出广阔的应用前景而备受瞩目。然而,YiO2是宽禁带材料,通常需要用紫外光源(λ≤388nm)来激发,而太阳光谱中紫外光部分仅占5%,这就导致太阳能利用效率低,在很大程度上限制了它的实际应用。为了提高二氧化钛的光谱响应和太阳光的利用率,人们做了大量的工作对二氧化钛进行改性,提出了染料敏化、贵金属掺杂以及利用溶胶-凝胶技术进行半导体-半导体复合等方法,但上述方法存在光化学稳定性差、原料成本高、操作工艺繁琐等弊端。为了弥补上述方法的不足,本文做了如下工作:
     一、利用直接水解常压液相反应进行了半导体-半导体复合。本文以廉价无机盐为原料,采用直接水解常压液相反应对TiO2进行半导体-半导体掺杂耦合,制备出对紫外-可见光均有强吸收的纳米复合光催化材料。与目前报道的昂贵的贵金属掺杂和溶胶-凝胶法掺杂相比,具有工艺简单,成本低,易于工业化生产,实用化强等优点。
     二、利用大分子链的空间位阻效应,高分子网络的阻隔作用以及固体模板剂的物理分散作用,有效地阻止了粒子间的粘连与团聚;低温富氧除碳之后,留下大量纳米孔穴,得到纳米介孔材料。此介孔材料不仅解决了长期以来纳米粉体材料过滤难、易团聚和不易回收等缺点,而且与传统粉体相比,可大大增强对所处理有机污染物的吸附能力、催化活性和降解能力,从而提高催化速率和效果。
     三、纳米TiO2-SnO2复合介孔材料的应用。本文用此复合介孔材料对酸性红3R染料和三聚氯氰工业废水进行了光催化降解实验,结果表明,酸性红3R染料在太阳光下照射40min后,脱色率可达到100%;三聚氯氰工业废水在日光灯下照射3h后,废水中CN-的含量可完全达到污水综合排放标准(GB8978-1996)中的一级排放标准。
Mesoporous TiO2 has attracted much attention because of its high specific surface area, ordered drill way structure, adjustable aperture size and surface modification, which effectively enhance function of photocatalysis and photoelectric conversion. TiO2 has widely application prospect in water treatment, air purge, cell battery, nanomaterial mini-reactor and biological materials. But TiO2 is a wide band semiconductor, and it is excited only by ultraviolet light resource (wavelength lower than 388nm). Ultraviolet light possesses 5% in the whole sunlight, which leads to low utilization rate of photos and limited application. For the sake of widening spectral response range of TiO2 and enhancing the utilization rate of sun's rays, a lot of work has been done. People put forward to many modified methods, including the sensitization with organic dye, adulteration with notable metal, and complex of semiconductor with Sol-gel method. But above methods have some disadvantages of poor stability, high cost and complicated synthesizing technics. In order to offset these shortages, woke below is done in this paper:
     Firstly, using cheap inorganic salt as raw material, semiconductor complex material is prepared by normal pressure liquid-phase method, which is sensitive to UV and visible light. This method has merits of simple craft, low cost, easy to commercial process and practical application, compare to costly adulteration with notable metal and complex of semiconductor with Sol-gel method.
     Secondly, this method utilizes the positional hindrance effect of the long chain in space, obstruction effect of high polymer net and physics dispersion effect of solid template agent, which effectively inhibit adhesion and conglobation among particle. Mesoporous material can be get by oxygen-calcination. This material not only resolves filtering difficult, easy conglobation and non-reclaiming of nanometer powder, but also largely enhances adsorption, catalysis activity and degradation to organic pollutant.
     Thirdly, the practical application of nanometric TiO2-SnO2 compound mesoporous material. This article studies photocatalysis degradation experiment to acid red 3R dye and cyanuric chloride, using the compound mesoporous material. The experiment results indicat that the decolorizing rate of acid red 3R dye could be to 100% after 40min under sunlight, the CN content of cyanuric chloride could reach primary emission standard after 3h under sunlight lamp.
引文
[I]IUPAC Manual of Symbols and Terminology, Appendix 2, Part1, Colloid and Surface Chemistry, Pure Appl. Chem,1972,31:578-680
    [2]Kresge C T, Leonowice M E, Roth W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J]. Nature,1992,359:710-712
    [3]Beck J S, Vartuli J C, Roth W J, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates[J]. J.Am.Chem.Soc,1992,114:10834-10843
    [4]Q. S. Huo, D. I. Margoles, V Ciesla, et al. Organization of Organic Molecular with Inorganic Molecular Species into Nanocomposite Bi-phase Arrays[J]. Chem. Mater,1994,6(5):1176-1184
    [5]P. T. Tanev, T. J. Pinnavaia. A Neutral Templating Route to Mesoporous Molecular Sieves[J]. Science, 1995,267(6):865-867
    [6]S. A. Bagshaw, E. Prouzet, T. J. Pinnavaia. Templating of Mesoporous Molecular Sieves by Nonionic Polyethylene Oxide Surfactants[J]. Science,1995,269(8):1242-1245
    [7]W. Z. Zhang, J. L. Wang, P. T. Tanev, et al. Catalytic Hydroxylation of Benzene over Transition-Metal Substituted Hexagonal Mesoporous Silicas[J]. Chem. Commun,1996,14(5):979-983
    [8]P. T. Tanev, M. Chibwe, T. J. Pinnavaia. Titanium-Containing Mesoporous Molecular Sieves for Catalytic Oxidation of Aromatic Compounds[J]. Nature,1994 368(1):321-323
    [9]U. Ciesla, D. Demath, R. Leon, et al. Organization of Organic Molecules with Inorganic Molecular Species into Nanocomposite Biphase Arrays[J]. J. Chem. Soc. Chem. Commun,1994,27(6): 1387-1397
    [10]V. Luca, D. J. Maclachlan, J. M. Hook, et al. Long-Lived Charge Separation in a Donor Acceptor Dyad Adsorbed in Mesoporous V2O3[J]. Chem. Mater,1995,7(9):2220-2227
    [11]D. M Antonelli, J. Y Ying. Synthesis of Hexagonally Packed Mesoporous TiO2 by a Modified Sol-Gel Method[J]. Angew. Chem. Int. Ed. Engl,1995,34(8):2014-2019
    [12]U. Ciesla, S. Schacht, G. D. Stucky, et al. Room Temperature Synthesis of Ordered Porous Silicas Templates by Symmetric and Dissymmetric Gemini Surfactants [CnH2n+1N(CH3)2(CH2)2(CH3)2NCmH2m+1]Br2[J]. Angew. Chem. Int. Ed. Engl,1996,35(2):541-546
    [13]D. M. Antonelli, J. Y. Ying. Synthesis of a Stable Hexagonally Packed Mesoporous Niobium Oxide Molecular Sieves Through a Novel Ligand-Assisted Templating Mechanism[J]. Chem. Mater,1996, 168(3):874-882
    [14]D. M. Antonelli, J. Y. Ying. Titanium Dioxide-Surfactant Mesophases and Ti-TMS. Angew[J]. Chem. Int. Ed. Engl,1996,35(2):426-430
    [15]Z R Tian, W Tong, J Y Wang, et al. Manganese Oxide Mesoporous Structures:Mixed-valent Semiconducting Catalvsis[J]. Science,1997,276(6):926-928
    [16]Stucky G D, Leon R. Generalized synthesis of periodic surfactant/inorganic composite material[J]. Nature,1994,368:317-321
    [17]Lin H P, Mou C Y. "Tubules-in-tubule" hierarchical order of mesoporous molecular sieves in MCM-41[J]. Science,1998,282:1302-1305
    [18]王彤文,陈族蕾,戴乐蓉.混合表面活性剂模板法合成立方相介孔含钛氧化硅[J].物理化学学报,2000,16(5):385-388
    [19]Edler K J, White J W. Room-temperature formation of molecular sieve MCM-41[J]. J Chem Soc, Chem Commun,1995:155-156
    [20]Chatterjee M, Iwasaki T, Hayashi H, et al. Room-temperature formation of thermally stable aluminium-rich mesoporous MCM-41[J]. Catal Lett,1998,52:21-23
    [21]赵杉林,张扬健,孙桂大,等.钛硅沸石分子筛Ti-MCM-41的微波合成与表征[J].催化学报,1999,20(1):139-141
    [22]张扬健,赵杉林,孙桂大,等.W-MCM-48中孔分子筛的微波合成与表征[J].催化学报,2000,21(4):345-349
    [23]张迈生.XRD粉末衍射法研究全微波辐射法合成的MCM-41介孔分子筛[J].无机化学学报,2000,16(1):119-122
    [24]Lin W, Chen J, Sun Y, et al. Bimodal mesopore distribution in a silica prepared by calcining a wet surfactant-containing silicate gel[J]. J Chem Soc, Chem Commun,1995,2367-2369
    [25]Fyfe C A, Fu G. Structure organization of silicate spoliations with surfactants: a new approach to the syntheses, structure transformations, and formation mechaniams of mesostructural materials[J]. J Am Chem Soc,1995,117:9709-9714
    [26]Gallis K W, Landry C C. Synthesis of MCM-48 by a phase transformation process[J]. Chem Mater, 1997,9:2035-2038
    [27]MacLachlan M J, Coombs N, Ozin G A. Non-aqueous supramolecular assembly of mesostructured metal germanium sulphides from (Ge4SIo)4-clusters[J]. Nature,1999,397:681-684
    [28]窦涛.杂原子B-ZSM-35沸石的干法合成、表征及CO+H2反应性能的研究[J].燃料化学学报,1997,25(1):16-20
    [29]Yang P, Zhao D, Margolese D J, et al. Generalized syntheses of large-poremesoporous metal oxides with semicrystalline frameworks [J]. Nature,1998,396:152-155
    [30]Holland B T, Isbester P K, Blandford C F, et al. Synthesis of ordered aluminophosphate and galloaluminophosphate mesoporous Materials with anion-exchange properties utilizing polyoxometalate cluster/surfacant salts as precursors[J]. J Am Chem Soc,1997,119:6796-6803
    [31]张雄福,王金渠,殷德宏,等.多孔陶瓷基膜上合成ZSM-5沸石膜新方法[J].大连理工大学学报,2000,6(40):672-675
    [32]周群.导向剂法合成的晶化机制研究[J].高等化学学报,2000,21(1):1-4
    [33]Kresge C T, Leonowicz M E, Roth W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J]. Nature,1992,359:710
    [34]Beck J S, Varturi J C, Roth W J, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates[J]. J Am Chem Soc,1992,114:10834
    [35]Huo Q, Margolese D I, Ciesla U, et al. Organization of Organic Molecules with Inorganic Molecular Species into Nanocomposite Biphase Arrays[J]. Chem Mater,1994,6:1176
    [36]Monmer A, Schuth F, Huo Q, et al. Cooperation Formation of Inorganic-organic Interfaces in the Synthesis of Silicate Mesostructure[J]. Science,1993,261:1299
    [37]Chen C Y, Burkeet S L, Li H X, et al. Studies on mesoporous materials Ⅱ. Synthesis mechanism of MCM-41[J]. Microporous Materials,1993,2(1):27-34
    [38]徐文萍,何静,孙鹏,等.过渡金属改性MCM-41的结构及对苯催化氧化的研究[J].高等学校化学学报,1999,20(9):1429-1413
    [39]Kim S S, Zhang W Z, Pinnavaia T, et al. Ultrastable mesostructure dsilica vesicles[J]. Science,1998, 282(5392):1302-1305
    [40]Walcarous A, Luthi N, Blip J L, et al. Electrochemical evaluation of polysiloxane-immobilized amine ligands for the accumulation of copper(II) species[J]. Electrochim Acta,1999,44(25):4601
    [41]Lim M H, Blanford C F, Stein A. Synthesis and Characterization of a Reactive Vinyl-Functionalized MCM-41:Probing the Internal Pore Structure by a Bromination Reaction[J]. J Am Chem Soc,1997, 119:4090
    [42]D M Antonelli, J Y Ying. Synthesis of Hexagonally Packed Mesoporous TiO2 by a Modified Sol-Gel Method. Angew[J]. Chem. Int. Ed. Engl,1995,34(8):2014-2019
    [43]戴清,沈迅伟,何农跃,等.纯二氧化钛介孔分子筛的合成与表征[J].无机化学学报,1998,14(4):460-465
    [44]T. O. Do. A Simple Route for the Synthesis of Mesostructured Lamellar and Hexagonal Phophorus-free Titania[J]. Langmuir,1999,15(12):8561-8567
    [45]J. Blanchard, F. Schuth, P. Trens, et al. Synthesis of Hexagonally Packed Porous Titanium Oxo-phosphate[J]. Micropor. Mesopor. Mater,2000,39(1):163-170
    [46]Y Miah, Hiroaki H. Hiroshi. Preparation of Mesoporous TiO2 Thin Films by Surfactant Templating. Non-Cryst[J]. Solids,2001,285(1):90-95
    [47]M. Antonelli. Synthesis of Phosphourus-free Mesoporous Yitania via Templating with Amine Surfactants[J]. Micropor. Mesopor. Mater,1999,30(1):315-322
    [48]R.Yang, H. Yu, Mim Li. Mesoporous Properties of Nanosized Anatase Titania Powders Prepared by Urea Hydrolysis with PEG Dispersant[J]. J. Mater. Sci.Lett,2003,22:1131-1135
    [49]R.Tan, Y He, Y Zhu, et al. Hydrothermal Preparation of Mesoporous TiO2 Powder from Ti(SO4)2 with Polyethylene glycol) as Template[J]. J. mater. Sci,2003,38:3973-3978
    [50]M. M. Yusuf, Y Chimoto, H. I. Imai, et al. Preparation and Characterization of Porous Titania by Modified Sol-Gel Method[J]. J. Sol-Gel Sci. Tech,2003,26:635-640
    [51]J. Feng, Q. Huo, et al. Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores[J]. Science,1998,279:548-552
    [52]Kipkemboi, A. Fogden, V Alfredsson, et al. Triblock Copolymers as Templates in Mesoporous Silica Formation:Structural Dependence on Polymer Chain Length and Synthesis Temperature[J]. Langmuir, 2001,17(17):5398-5402
    [53]Yang D Z, D L Margolese, et al. Block Copolymer Templating Syntheses of Mesoporous Metal Oxides with Large Ordering Lengths and Nanocrystalline Frameworks[J]. Chem. Mater,1999,11(10): 2813-2826
    [54]Y. H. Yue, Z. Gao. Synthesis of Mesoporous TiO2 with a Crystalline Framework[J]. Chem. Commun, 2000,18(3):1755-1758
    [55]郑金玉,丘坤元,危岩.有机小分子模板法合成二氧化钛中孔材料[J].高等学校化学学报,2000,21(4):647-649
    [56]J. Y. Zheng, J. B. Pang, K. Y. Qiu, et al. Synthesis of Mesoporous Titanium Dioxide Materials by Using a Mixture of Organic Compounds as a Non-Surfactant Template[J]. J. Mater. Chem,2001,11(5): 3367-3372
    [57]Y Jimmy, L Z Zhang, J G Yu. Rapid Synthesis of Mesoporous TiO2 with High Photocatalytic Activity by Ultrasound-induced Agglomeration[J]. New J. Chem,2002,26(4):416-420
    [58]Antoneli M, Ying J Y. Synthesis of hexagonally packed mesoporous TiO2 by a modified Sol-Gel method[J]. Angew Chem Int Ed Engl,1995,34(18):2014
    [59]Jimmy C Y, Zang L Z, Yu J G.. Rapid synthesis of mesoporous TiO2 with high photocatalytic activity by ultrasound-induced agglomeration[J]. New J Chem,2002,26(4):416
    [60]Dai Q, He N, Guo Y, et al. High photocatalytic activity of pure TiO2 mesoporous molecular sieves for the degradation of 2,4,6-trichlorophenol[J]. Chem Lett,1998,11:1113
    [61]Jimmy C Y, Jiaguo Y, Jincai Z. Enhanced photocatalytic activity of mesoporous and ordinary TiO2 thin films by sulfuric acid treatment[J]. Appl Catal B:Environ,2002,36(1):31
    [62]Saadoun L, Ayllon J A, Jimenez B J, et al. Synthesis and photocatalytic activity of mesoporous anatase prepared from tetrabutyl ammonium-titania composites[J]. Mater Res Bull,2000,35:193
    [63]Elias S, Tatyana P, Panagiotis L. Study of the efficiency of visible-light photocatalytic degradation of basic blue adsorbed on pure and doped mesoporous titania films[J]. Langmuir,2001,17(16):5025
    [64]Anders H, Michael G. Molecular photovoltaics[J], Ace Chem Res,2000,33(5):269
    [65]Michael G. Molecular photovoltaics that mimic photosynthesis[J]. Pure Appl Chem,2001,73(3):459
    [66]Subbian K, Dinesh P A, Koichi Y, et al. Cathodic electrodeposition of TiO2 thin films for dye-sensitized photoelectrochemical applications [J]. Chem Lett,2001,1:78
    [67]Peter S, Ralf M, Lorenz W. Liquid density response of a quartz crystal microbalance modified with mesoporous titanium dioxide[J]. Anal Chem,1999,71(16):3305
    [68]Karen L F, Michael H B, Alois P, et al. Sensitized luminescence of trivalent europium by three-dimensionally arranged anatase nanocrystals in mesostructured titania thin films[J]. Angew Chem Int Ed,2002,41(6):959
    [69]He X, David A. Recent advances in synthesis and applications of transition metal containing mesoporous molecular sieves[J]. Angew Chem Int Ed,2002,41:214
    [70]Yanqin Wang, Humin Cheng, Li Zhang, et al. The preparation, characterization, photoelectrochemical and photocatalytic properties of lanthanide metal-ion-doped TiO2 nanoparticles[J]. Journal of Molecular Catalysis A: Chemical,2000,151:205-216
    [71]郑红,汤鸿霄,王怡中.有机污染物半导体多相光催化氧化机理及动力学研究进展[J].环境科学进展,1996,4:1
    [72]胡安正,唐超群.纳米TiO2光催化材料及其应用于环境保护的研究进展[J].功能材料,2001,32(6):586-590
    [73]王建强,辛柏福,于海涛,等.Fe3+-Ti02/SiO2光催化降解罗丹明B的研究[J].高等学校化学学报,2003,24:1093-1096
    [74]水森,岳林海,徐铸德.几种制备方法的掺铁二氧化钛光催化特性[J].物理化学学报,2001,17(3):282-285
    [75]陈俊涛,李新军,杨莹,等.稀土元素掺杂对TiO2薄膜光催化陛能的影响[J].中国稀土学报,2003,21(spec Issue): 67-71
    [76]于向阳,程继健,杨阳,等.稀土元素掺杂对TiO2光催化性能的影响[J].华东理工大学学报,2000,26(3):287-290
    [77]王朋,陈文新,刘应亮,等.稀土离子掺杂对TiO2结构和光催化性能的影响[J].暨南大学学报(自然科学版),2003,24(5):81-87
    [78]钱斯文,王智宇,王民权.La3+掺杂对纳米TiO2微观结构及光催化性能的影响[J].材料科学和工程学报,2003,21(1):48-52
    [79]Shivaliingappa L., Sheng J., Fukami T. Photocatalytic Effect in Platinum Doped Titanium Diocide Films[J]. Vacuum,1997,18(5):413-416
    [80]Rabhut K. T., Varadarjan T. K., Viswanathan B. Photocatalytic Reduction of Dinitrogen to Ammonia over Nobel-Metal-Loaded TiO2[J]. Journal of Photochemistry and Photobiology A:Chemistry,1996, 96(1-3):181-185
    [81]Chen J. Photocatalyzed Oxidation of Alcohols and Organochlorides in the Presence of Native TiO2 and Metallized TiO2 Suspensions[J]. Wat. Res,1999,33(3):661-668
    [82]Wu T, Liu G, Zhao J, et al. Photoassisted degradation of dye pollutants V:Self-photosensitized oxidative transformation of Rhoda mine B under visible light irradiation in aqueous TiO2 dispersions[J]. J Phys Chem B,1998,102:5845-5851
    [83]Avelino C. From microporous to mesoporous molecular sieve materials and their use in catalysis[J]. Chem Rev,1997,97:2373
    [84]Michael T. Molecular sieves in the nanotechnology era[J]. AIChE J,2002,48(4):654
    [85]He X, David A. Recent advances in synthesis and applications of transition metal containing mesoporous molecular sieves[J]. Angew Chem Int Ec,2002,41:214
    [86]Antoneli M, Ying J Y. Synthesis of hexagonally packed mesoporous TiO2 by a modified Sol-Gel method[J]. Angew Chem Int Ed Engl,1995,34(18): 2014
    [87]Michael R H, Scot T M, Choi W, el al. Environmental applications of semiconductor photocatalysis[J]. Chem Rev,1995,95:69
    [88]Anders H, Michael G. Light-induced redox reactions in nanocrystalline systens[J]. Chem Rev,1995,95: 49
    [89]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001:59-88
    [90]Falconer J. L, Magrini B, Kimberley A. Photocatalytic and Thermal Catalytic Oxidation of Acetaldehyde on Pt/TiO2[J]. Journal of Catalysis,1998,179(2):171-178
    [91]Yuan zhihao, Jia junhui, Zhang lide. Influence of co-doping of Zn(Ⅱ)+Fe(Ⅲ) on the photocatalytic activity of TiO2 for phenol degradation[J]. Materials Chemistry and Physics,2002,73(4):323-326
    [92]Tanev P T, Pinnavaia T J. A neutral templating route to mesoporous molecular sieves [J]. Science, 1995,267:865-867
    [93]王文宝,陆诚,杨平.TiO2介孔分子筛的合成与X射线衍射分析[J].分析测试学报,21(6):78-80
    [94]杨建广,唐谟堂,杨声海,等.湿法制备纳米ATO粉体团聚的形成及消除的方法[J].中国涂料,
    2004(7):33-38
    [95]冯良荣,吕绍杰,邱发礼.过渡元素掺杂对纳米Ti02光催化剂性能的影响[J].化学学报,2002,60(3):463-467
    [96]ZHANG Yawen, TANG Ming, JIN Xing, et al. Polymeric adsorption Behavior of nanoparticulate yttria stabilized zirconia and the deposition of as-formed suspensions on dense α-AI2O3 substrates[J]. Solid State Sci,2003,5(3):435-440
    [97]沈钟,王果庭.胶体与表面化学[M].北京:化学工业出版社,1991,316
    [98]West, A. R., Solid State Chemistry And Its Applications[M], New Delhi:John Wiley,1984,366-370
    [99]刘平,周廷云.TiO2/SnO2复合光催化剂的耦合效应[J].物理化学学报,2001,17(3):265-269
    [100]Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972,328(7):37-38
    [101]顾桂松,胡湖生,杨明德,等.含氰废水的处理技术最近进展[J].环境保护,2001(2):16-19
    [102]Wang R, Hashi Moto K, Fujishima A, et al. Light-induced amphiphilic surface[J]. Nature,1997,388: 431-432
    [103]Yuan zhihao, Jia junhui, Zhang lide. Influence of co-doping of Zn(Ⅱ)+Fe(Ⅲ) on the photocatalytic activity of TiO2 for phenol degradation[J]. Materials Chemistry and Physics,2002,73(4):323-326

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700