用户名: 密码: 验证码:
乙酰氧乙基聚硅氧烷的合成、性能与降解动力学
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含碳官能基的聚硅氧烷除具有聚硅氧烷许多优良性能外,还可利用其官能基的反应活性,与其他聚合物反应,以形成具有特殊性能的聚合物,在保留了有机聚硅氧烷优异性能的同时又赋予其新的性能。该类聚合物在许多领域得到广泛应用。然而,许多碳官能基的引入使得聚硅氧烷的热稳定性降低,影响了在某些方面的使用。搞清该类聚合物的热降解规律及其影响因素,对于控制热降解反应、更好地利用该类化合物以及改进和研制具有更优异性能的聚合物具有十分重要的意义。
     本论文通过硅氢加成法合成含碳官能基的硅烷单体,然后利用阴离子开环聚合法,以含有乙酰氧乙基的官能基环硅氧烷、八甲基环四硅氧烷(D_4)、六甲基二硅氧烷(MM)为起始反应物,合成了含有乙酰氧乙基的官能性聚硅氧烷。对影响反应的催化剂、温度、物料摩尔比等各因素进行了研究,得出了较为合理的实验条件:本体硅氢加成反应中,以双封头-Pt为催化剂,不饱和化合物和Si-H键的比例为1.2:1,反应温度控制在60-65℃,反应时间12h,整个体系处于无水无氧状态进行反应;阴离子聚合反应中,以Me_4NOH硅醇盐为催化剂,在80-85℃下,采用分步加料法进行聚合反应,得到了乙酰氧乙基聚硅氧烷。用红外光谱、核磁共振、GPC、激光光散射等手段分析了产物的结构;并用TG等手段对所得聚合物的热性能进行详细研究,考察了官能团含量以及分子量对其耐热性的影响;采用改进的Freeman-Carroll方法对不同温度范围内的热解活化能、反应级数、速率常数进行了估算,并得到其表观的降解动力学机理;利用量子化学方法计算分析H_3SiCH_2CH_2OOCCH_3的热降解机理,发现其热降解反应有两种非竞争性反应路径。
     在聚硅氧烷主链上引入官能团已经引起人们很大的重视,对聚硅氧烷进行化学改性和修饰是一个永远的挑战;进行这方面的研究,对于寻找新的交联方法,研制特殊性能的有机硅高聚物是有理论价值和应用前景的。现在人们已经对聚硅基酯在环境和生物医药领域的应用非常感兴趣,在棉纺织工业聚硅基酯作为液体交联剂影响抗水性,具有硅基酯末端基团的聚硅氧烷可用来作为离子聚合的保护试剂以及粘度降低试剂。因此,乙酰氧乙基聚硅氧烷的热降解研究对深入研究其性能、扩大其使用范围具有重要的理论和实际意义。
In spite of possessing a variety of unique and superior properties, carbofunctionalized polysiloxanes play important roles in modifitions of organic polymers,such as the copolymerization of polysiloxanes and organic polymers,with the aid of the reaction activity of the carbofunctional groups,to endow the organic polymers with the excellent properties of the polysiloxanes.This kinds of polymer is rapid developmet in silicone chemistry,and an active research field.However,because of the decomposition or rearrangement under certain conditions,their applications are limited to some extent.Understanding their rearrangement conditions and mechanisms will be of great important values for the control and application of these compounds.
     In this thesis,carbofunctionalized silicane monomer was synthesized with hydrosilation reaction.Acetoxyethylcyclicsiloxane、octamethylcycotetrasiloxane(D_4)、hexamethyldisiloxane(MM)were used as comonomers to anionic ring-opening copolymetize under base catalysts in this experiment.Studies on molar ratio of monomers,catalysts and polymerization temperature were our main focuses.We obtained a more reasonable experimental conditions:no solvent,the mol ratio of unsaturated compound and the Si-H is 1.2:1,the optimal reaction temperature was 60-65℃for 12h,anhydrous and anaerobic system state in the hydrosilation reaction.The optimal polymerized experiment condition is as the following:Me_4NOH siloxanolate is the catalyst,the optimal reaction temperature 80-85℃,fractinal step method.We synthesized a series of carbofunctionalized polysiloxanes,and their molecular structure were characterized by FT-IR、~1HNMR etc.We also use the TGA to investigate thermal properties of the polymer.Effect of molecular weight,and cotent of functional group on the polymer was also explored.We also analysized thermal degradation activation energy,reaction order,reaction rate constant under the different temperature range by the corrected Freeman-Carrol methods.Quantum chemistry method was used to calculate the thermal degradation mechanisms of H_3SiCH_2CH_2OOCCH_3 and got the real degradation mechanism.There are two kinds of reactions in this system,and both of them are noncompetitive.
     The carbofunctional group introducted in the polysiloxane chain has aroused great attention.Chemical modified is always a challenge.There are much theoretical value and application prospects in searching for new cross-linking method and developing special performance polysiloxane. Now,people are interested in application of the silica ester,especially in the application of the environment and biomedicine.Polysilica-ester can be used as the water resistance in the textile industry,the protection reagents of the ionic polymerization,application of the photography and viscosity-reduced reagents.Therefore,studied on the thermal degradation mechaniam of acetoxyethylpolysiloxane,can contribute to the deeper study of its performance,and expand the scope of its application.
引文
[1]幸松民,王一璐.有机硅合成工艺及产品应用.北京:化学工业出版社,2000.14-17
    [2]周宁琳.有机硅雾合物导论.北京:科学出版社 2000
    [3]Grubb W T,Robert C O.Kinetics of the Polymerization of a Cyclic Dimethylsiloxane.J.Am.Chem.Soc.,1955,77(6):1405-1411
    [4]Winton Patnode,Donald F Wilcock.Methylpolysiloxanes.J.Am.Chem.Soc.,1946,68(3):358-363
    [5]Frederick P Adams,Jack B Carmichael,Ronald J Zeman.Kinetics of nonequilibrium methylsiloxane polymerization and rearrangement.J.Poly.Sci.A-1,1967,5(4):741-759
    [6]Morton A.Golub,Jorge Heller,M Morton and E.E.Boatick.Cyclohydrochlorination of 3,4-polyisoprene.J.Poly.Sci.B,1964,2(5):523-527
    [7]Semlyen J.A.,Wright P.V.Equilibrium ring concentrations and the statistical conformations of polymer chains-Oligomeric dimethylsiloxanes.Polymer,1969(10):543-553
    [8]William A Piccoli,Gerald G Haberland,Robert L Merker.Highly Strained Cyclic Paraffin-Siloxanes.J.Am.Chem.Soc.,1960,82(8):1883-1885
    [9]Breed L,Elliott R,Haggerty W,Jr Baiocchi F.Some Alkoxyorganosilanes.J.Org.Chem.,1961,26(4):1303-1305
    [10]Karl W Krantz.Double Chain Polymers of Phenylsilsesquioxane.J.Am.Chem.Soc.,1960,82(23):6194-6195
    [11]Lee C L.,Johammson O K.Polymerization of Cyclosiloxanes.Ⅰ.Kinetic Studies on Living Polymer-Octamethylcyclotetrasiloxane Systems.J.Poly.Sci.A-1,1966,4(12):3013-3026
    [12]Kendrrick T.C.,Parbhoo B M.,White J.W.In Comprehensive Polymer Science,Allen G,Bevington J.C.Eastmond G.C.,Ledwith A.Russo S and Sigwalt P,eds.Oxford,Pergamon,1989,4:459
    [13]Donald W Scott.Equilibria between Linear and Cyclic Polymers in Methylpolysiloxanes.J.Am.Chem.Soc.,1946,68(11):2294-2298
    [14]Cecil L.Frye,RudolfM Salinger,F W G.Fearon,J M Klosowski,T De Young.Reactions of organolithium reagents with siloxane substrates.J.Org.Chem.,1970,35(5):1308-1314
    [15]Valles E.M.Synthesis and characterization of monodisperse α,ψ-divinylpoly and α,ψ-vinylpolydimethylsiloxane.J.Macromol.Sci.,1992(29):391
    [16]Jack B Carmichael,James Heffel.Verification of the Flory Theory of Random Reorganization of Molecular Weight Distribution-Kinetics of Methylsiloxane Polymerization.J.Phys.Chem.,1965,69(7):2213-2217
    [17]Kogan E V.,Ivanova A G.,Rellchsfeld V O,Smimov N I.,Grubber V N.in siloxane polymers,eds.Clarson S J and Semlyen J A,New Jersey:PTR Print ice Hall,1993,40
    [18]Tchemyshev A I and Yastrebov V V in Siloxane polymers.Clarson S J and Semlyen J A.New Jersey:PTR Print ice Ha11,1993,40
    [19]Chojnowskki J,Mazurek,M,Scibiorek,M,and Wilczek,L.Cationic polymerization of siloxanes.Approach to the mechanistic studies.Makromol.Chem.,1974,175:3299
    [20]Friedel C and Crafts J M.Compt Rend,1863(56),592
    [21]Kipping F S.Pro Chem Soc.London,1904(20),15
    [22]Rochow E G US 2380995,1941
    [23]王坚平,冯圣玉,陈建华.聚硅氧烷接枝共聚物,有机硅材料及应用,1996(1).7-10
    [24]吴明艳,冯圣玉等.含烃氧基聚硅氧烷的研究及应用,有机硅材料,2002,16(5),26-29
    [25]荣宇,冯圣玉,陈剑华.羟丙基封端聚硅氧烷的合成及性质,有机桂材料,2001,15(1),12-15
    [26]吴拥中,李红云,冯圣玉.新型含氨丙基聚硅氢烷基高温硫化硅橡胶的制备,材料科学与工程学报,2004,22(1),41-43
    [27] 许涌深,唐士立.反应性官能端基硅氧烷的合成与应用,化工进展,2001(1),31~35
    
    [28] Qingzeng Zhu, Shengyu Feng, Chen Zhang. Synthesis and thermal properties of polyurethane-polysiloxane crosslinked polymer networks. J. Appl. Poly. Sci., 2003(99):310-315
    
    [29] Chuanjian Zhou, Ruifang Guan, Shengyu Feng. Studies on the synthesis and optical and conducting properties of poly[methyltetraphenylphenylsilylene-co-1,4-bis(methylphenylsilyl)phe nylene] Eur. Poly. J., 2004 (40): 165-170
    
    [30] Lewis RN. Methylphenylpolysiloxanes J Am Chem Soc 1948(70) :1115-1117
    
    [31] Andrianov KA. Vysokomol Soedin A 1971(14):253
    
    [32] T.H. Thomas, T.C. Kendrcik. Thermal analysis of polydimethylsiloxanes. I. Thermal degradation in controlled atmospheres.J. Polym. Sci. A-2 1969 (7):537-549
    
    [33] T.H. Thomas, T.C. Kendrcik. Thermal analysis of polysiloxanes. II. Thermal vacuum degradation of polysiloxanes with different substituents on silicon and in the main siloxane chain.J. Polym. Sci. A-21970 (8):1823- 1830
    
    [34] Grassie N, MacFarlane J. The thermal degradation of polysiloxanes-I. Poly(dimethylsiloxane).Eur Polym J, 1978,14(11):875- 884
    
    [35] S.J. Clarson, J.A. Semlyen. Cyclic polysiloxanes: 1. Preparation and characterization of poly(phenylmethylsiloxane) Polymer 1986 (27) 1633-1636
    
    [36] P.V. Wright, J.A. Semlyen. Equilibrium ring concentrations and the statistical conformations of polymer chains: Part 3. Substituent effects in polysiloxane systems. Polymer, 1970 (11): 462-471
    
    [37] J.A. Semlyen, P.V. Wright. Equilibrium ring concentrations and the statisticalconformations of polymer chains I-Oligomeric dimethylsiloxanes. Polymer, 1969 (10) 543-553
    
    [38] J.A. Semlyen. Ring-chain equilibria and the conformations of polymer chains. Adv. Polym. Sci., 1976 (21) 41.
    
    [39] M.S. Beevers, J.A. Semlyen. Equilibrium ring concentrations and the statistical conformations of polymer chains: Part 5. Stereoisomeric cyclics in poly (phenylmethylsiloxane) equilibrates. Polymer, 1971 (12) 373-382
    
    [40] S.J. Clarson, J.A. Semlyen.Studies of cyclic and linear poly(dimethyl-siloxanes): 21. High temperature thermal behaviour. Polymer, 1986 (27) 91-95
    
    [41] D.J. Orrah, J.A. Semlyen, K. Dodgson, S.B. Ross-Murphy. Studies of cyclic and linear poly(dimethylsiloxanes): 23. Low temperature behaviour as studied by dynamic oscillatory shear viscometry and differential scanning calorimetry. Polymer, 1987 (28):985 -990.
    
    [42] M.K. Lee, D.J. Meier, Synthesis and properties of diarylsiloxane and (aryl/methyl)siloxane polymers: 1. Thermal propertiesPolymer, 1993 (34) 4882-4892.
    
    [43] a) G. Camino, S. M. Lomakin, M. Lazzari, Polydimethylsiloxane thermal degradation Part 1. Kinetic aspects. Polymer, 2001(42)2395 -2402 b) G. Camino, S. M. Lomakin, M. Lazzari, Thermal polydimethylsiloxane degradation. Part 2.The.degradation.mechanisms. Polymer, 43(2002) 2011-2015
    
    [44] Kissinger H. E., Reaction Kinetics in Differential Thermal Analysis. Anal Chem, 1959(29):1702- 1706
    
    [45] Ismail IMK, Rodgers SL. Comparisons between fullerene and forms of well-known carbons Carbon 1992(30)229-239
    
    [46] 钟发春.交联聚硅氧烷的热降解行为.宇航材料工艺.2003(1)29~32
    
    [47] Grassie N. The thermal degradation of polysiloxanes. Part 4. poly (dimethyl/ diphenyl siloxane). European Polymer Journal, 1979(15): 415 -420
    
    [48] Durham LJ, Wurster CF, Mosher HS.Peroxides.Ⅶ.The Thermal Decomposition of Primary Hydroperoxides.J Am Chem Soc, 1958(80)327-332.
    
    [49] KuceraM , L anikovaJ , and JelinekM. J Polym Sci, 1961, 53(7): 301.
    
    [50] Thomas T H, Kendrick T C. Thermal analysis of polydimethylsiloxanes.I. Thermal degradation in controlled atmospheres. J Polym Sci: Part A-2, 1969(7): 537-549
    
    [51] T. S. Radhakrishnan. New Method for Evaluation of Kinetic Parameters and Mechanism of Degradation from Pyrolysis-GC Studies: Thermal Degradation of Polydimethylsiloxanes. Journal of Applied Polymer Science, 1999(73):441 -450
    
    [52] E. Peter Maziarz, III, X. Michael Liu, Edmond T. Quinn, Yu-Chin Lai, Daniel M. Ammon, Jr., and George L. Grobe, III Detailed analysis of α,ω-bis(4-hydroxybutyl) poly(dimethylsiloxane) using GPC-MALDI TOF mass spectrometry. J Am Soc Mass Spectrom, 2002(13): 170- 176
    
    [53] Huiping Chen, J Am Soc Mass Spectrom, 2003(14): 1039- 1048
    
    [54] Girish Deshpande, Mary E. Rezac. Kinetic aspects of the thermal degradation of poly(dimethylsiloxane) and poly(dimethyl diphenyl siloxane. Polymer Degradation and Stability, 2002(76):17- 24
    
    [55] E. Peter Maziarz III, Gary A. Baker, and Troy D. Wood. Capitalizing on the High Mass Accuracy of Electrospray Ionization Fourier Transform Mass Spectrometry for Synthetic Polymer haracterization: A Detailed Investigation of oly(dimethylsiloxane).Macromolecules 1999(32):4411 -4418
    
    [56] Qingzeng Zhu, Ruifang Guan, Fanjun Meng, Shengyu Feng. The application of heating rate to studies of polysiloxanes with cyanoethyl substituents and silazane polymers. Thermochimica Acta, 2003(402):193-197
    
    [57] G .E.Deshpande, M E Reazc . The Effect of Phenyl Content on the Degradation of Poly (Dimethyl Diphenyl) Siloxane Copolymers. Polym . Degra . Stab.2002(76):17-24
    
    [58]Caihong Xu, Shengyu Feng . Synthesis and Characterization of Polysiloxane Containing Phenylethynyl Groups. Reactive & Functional Polymers,2001(41):141-146
    
    [59] Huang Zhixiong,Xie Wenfeng, Cheng Dongcai, The Thermal Decomposition Kinetics of Polysiloxane/ Polymethylacrylate IPNs Materials. Journal of Wuhan University of Technology - Mater . Sci . Ed., 2006, 21(2): 47-49
    
    [60] Hua Sun,David Rigby.Polysiloxanes: ab initio force field and structural, conformational and thermophysical properties. Spectrochimica Acta Part A, 1997(53):1301 - 1323
    
    [61] R.D. Patil, J.E. Mark. Computational and Theoretical Polymer Science 2000(10):189-195
    
    [62] Bo Li. Molecular Simulation of Gas Transport Properties and Chain Conformation of Polysilanes. Ph.D.dissertation, University of Cincinnati, 2003
    
    [63] J. Katajisto et al. Ab initio study on thermal degradation reactions of polycarbonate. Journal of Molecular Structure (Theochem), 2003(634): 305-310
    
    [64] James S. Smith, Oleg Borodin, and Grant D. Smith. A Quantum Chemistry Based Force Field for Poly(dimethylsiloxane). J. Phys. Chem., B 2004(108):20340-20350
    
    [65] Yu,Y.M.; Feng,S.Y. An ab Initio Study on [1,2] Rearrangement Reactions of Silylmethanol H3SiCH2OH. J.Phys.Chem. A, 2004(108):7468-7472
    
    [66] Yu, Y.M.; Feng, S.Y.; Feng, D.C. An ab Initio Study on Thermal Rearrangement Reactions of 1-Silylprop-2-en-1-ol H3SiCH(OH)CH=CH2. J. Phys. Chem. A 2005(109):3663-3668
    
    [67] Yu, Y.M.; Feng, S.Y. Theoretical Investigations on Thermal Rearrangement Reactions of (Aminomethyl)silane. J.Phys.Chem.A., 2006(110):12463- 12469
    
    [68] Lyu, Y.Y.; Yim, J.H.; Byum, Y; Lee S.Y.; Lee, S.Y.; Jung, I.S.; Pu, L.S. Effect of the linear siloxane chain in cyclic silsesquioxane (CSSQ) on the mechanical/electrical property of the thin films. European Polymer Journal, 2004, 40(11 ):2505-2512
    
    [69] Kirilin, A.D.;Belova, L.O.; Lakhtin, V.G.;Chernyshevts, E.A. Russian Journal of General Chemistry 2004, 72(12): 1916-1919
    
    [70] McGrath, J. E.; Dunson, D. L.; Mechan, S. J.; Hedrick, J. L. Progress in Polyimde Chemistry I Advances in Polymer Science 1999(140):61 - 105
    
    [71] Hurd, D. T.; Osthoff, R. C; Corrin, M. L. The Mechanism of the Base-catalyzed Rearrangement of Organopolysiloxanes. J. Am. Chem. Soc, 1954(76):249-252
    
    [72] Hurd, D. T. On the Mechanism of the Acid-catalyzed Rearrangement of Siloxane Linkages in Organopolysiloxanes. J. Am. Chem. Soc, 1955(77):2998-3001
    
    [73] Filipkowski ,A.M.; Petty H. E.; Westmeyer, M. D.; Schilling, Jr. C. L. Organic Process Research & Development, 2002(6): 15 - 19
    
    [74] Brook, A. G.; Schwartz, K. V. The Rearrangement of α-Silyl Ketones with Alkoxides. J. Org. Chem., 1962(27): 2311-2315
    
    [75] Brook, A. G.; MacRae, D. M.; Limburg, W .W. Stereochemistry of the Formation and Thermal Rearrangement of a-Ketosilanes. J. Am. Chem. Soc, 1967, 89, 5493-5495
    
    [76] Calad, S. A.; Woerpel, K.A.Silylene Transfer to Carbonyl Compounds and Subsequent Ireland-Claisen Rearrangements to Control Formation of Quaternary Carbon Stereocenters.J. Am. Chem. Soc, 2005(127): 2046 - 2047
    
    [77] Brook, A. G.; Harris, J. W. ; Lennon, J.; Sheikh ,M. E. Relatively Stable Silaethylenes. Photolysis of Acylpolysilanes. J. Am. Chem. Soc, 1979(101):83-95
    
    [78] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.;Stratmann, R. E.; Burant, J. C; Dapprich, S.; Millam, J. M.; Daniels, A.D.; Kudin, K. N.; Strain, M. C; Farkas, O.; Tomasi, J.; Barone, V.; Cossi,M.; Cammi, R.; Mennucci, B.; Pomelli, C; Adamo, C; Clifford, S.;Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick,D. K.; Rabuck, A. D.; Raghavachari,K.;Foresman,J.B.;Cioslowski,J.;Ortiz,J.V.;Stefanov,B.B.;Liu,G.;Liashenko,A.;Piskorz,P.;Komaromi,I.;Gomperts,R.;Martin,R.L.;Fox,D.J.;Keith,T.;Al-Laham,M.A.;Peng,C.Y.;Nanayakkara,A.;Gonzalez,C.;Challacombe,M.;Gill,P.M.W.;Johnson,B.G.;Chen,W.;Wong,M.W.;Andres,J.L.;Head-Gordon,M.;Replogle,E.S.;Pople,J.A.Gaussian 03,Revision C.02;Gaussian,Inc.,Wallingford CT,2004.
    [79]Ju,G.;Feng,D.;Deng,C.Acta Chim.Sin.1985(43):680
    [80]Leon Goodman,Robert M.Silverstein,Allen Benitez.The addition fo chloro-n and ethoxysilanes to vinyl and allyl monomers.J.Am.Chem.Soc.,1957(79):3073-3077
    [81]Kevin D.Belfield,Xiang Zhou Lin,Israel Cabasso.Hydrosilylation of α,β-unsaturated esters:Application for the synthesis of functional polysiloxane graft copolymers and macromonomers.J.Polym.Sci.Part A:Polym.Chem,1991(29):1073-1076
    [82]Curtis L.Schilling,Jr.,croton-on-Hudon,N.Y.US4160775 1978-03-28
    [83]Albert R.LeBoeuf,Framingham,Mass.US 4261875,1979-09-31
    [84]杜作栋,陈剑华,贝小来,周重光.有机硅化学,北京 高等教育出版社,1990,105-106
    [85]董严明.高分子分析手册.北京 中国石化出版社,2004
    [86]刘振海.热分析导论.北京化学工业出版社,1991
    [87]陈镜泓,李传儒.热分析及其应用 科学出版社,北京1985
    [88]Freeman E.S.,Carroll B,The Application of Thermoanalytical Techniques to Reaction Kinetics:The Thermogravimetric Evaluation of the Kinetics of the Decomposition of Calcium Oxalate Monohydrate.J.Phys.Chem.1958(62):394-397
    [89]Jie Zhang,Shengyu Feng,Qingyu Ma.Kinetics of the Thermal Degradation and Thermal Stability of Conductive Silicone Rubber Filled with Conductive Carbon Black J.Appl.Polym.Sci.2003(89):1548-1554
    [90]Anderso D A.,Rreeman E.S.The kinetics of the thermal degradation of the synthetic styrenated polyester.J.Appl.Polym.Sci.,1959(1):192-199
    [91] Anderso D A., Rreeman E.S. The kinetics of the thermal degradation of polystyrene and polyethylene. J. Polym. Sci., 1961(54):253-260

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700