用户名: 密码: 验证码:
钨酸盐、钼酸盐纳米材料的合成制备及发光性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料由于其介观效应等而表现出不同于常规材料独特的物理化学性质,因而对纳米材料的合成和性质研究已成为材料科学、物理学以及化学学科的前沿。钨酸盐和钼酸盐是无机材料中的两个重要家族,在光学、微波、闪烁体、传感器,催化等方面具有广泛的用途。钨酸盐和钼酸盐的合成方法很多,主要有柠檬酸法、固相法,溶胶凝胶法等。然而,这些方法都存在一定的局限性:合成过程复杂,需要较高的反应温度或者较长的保温时间、所得颗粒尺寸较大,形貌不规则等;而熔盐法和水热法具有合成温度低,工艺简单,粉体大小均匀,形貌可以控制等优点。本论文首次采用熔盐法和水热法在低温下成功合成了钨酸盐和钼酸盐纳米材料,并对各种影响因素进行了讨论,确定了各纳米材料合成所需的最佳条件,并对其生长机理和发光机理进行了探讨。
     1.以钨酸钠(Na2WO4·2H2O)和硝酸锌(Zn(NO3)2·6H2O)为原料制备前驱体,以硝酸锂为反应介质(熔点为253℃),采用低温熔盐法制得了具有良好结晶性能的棒状ZnWO4纳米晶粉体。并利用X-射线衍射技术(XRD)、透射电子显微镜(TEM)和室温荧光光谱(PL)等分析技术对制备样品的矿相组成、结晶形貌和发光性能进行了表征。研究结果表明:在合成过程中,通过调节反应介质与前躯体的比例和保温时间,而不需要任何模板、表面活性剂、有机溶剂和高温处理作为辅助,就可以成功得合成棒状的ZnWO4纳米晶;同时研究也表明,越小的颗粒具有更好的发光强度。
     2.以钨酸钠(Na2WO4·2H2O)和氯化锶(SrCl2·6H2O)为原料制备前驱体,以硝酸锂为反应介质(熔点为253℃),采用低温熔盐法制得了具有良好结晶性能的SrWO4纳米晶粉体;利用XRD、SEM、TEM对粉体矿相组成和结晶形貌进行了表征。实验结果表明:常温下得到的SrWO4粉体是微米级颗粒,而在熔盐体系下可以得到SrWO4纳米晶。熔盐存在条件下,保温时间和反应介质与前驱体的比例对SrWO4纳米晶的结晶性能和结晶形貌有重要的影响,并做了详细的探讨,提出了溶解再结晶的过程。
     3.以硝酸镉(Cd(NO3)2·4H2O)和钼酸钠(Na2MoO4·2H2O)为原料,分别采用常规方法和反相微乳法制备前躯体,然后在水热条件下90oC保温20h制备了CdMoO4微晶,并采用XRD、TEM、SEM、PL等分析测试手段对制得的CdMoO4粉体进行了表征。实验结果表明:用常规方法制备前驱体,然后水热条件得到产物为微米级尺度;而用反相微乳法制备前驱体,同样水热条件下可以得到形貌均一,分散性好的CdMoO4纳米晶。另外,纳米颗粒具有更高的发光强度,并且荧光峰的半峰宽也比较大,这与纳米颗粒的小尺寸效应是有关的。
     4.以钼酸钠(Na2MoO4·2H2O)和Cd(NO3)2·4H2O为原料,利用微乳液法制备前驱体;以硝酸锂为反应介质(熔点为253℃),采用低温熔盐法制得了具有不同形貌、结晶性能良好的CdMoO4微晶颗粒。分别用XRD、TEM、SEM、PL等分析测试手段对制得的CdMoO4样品进行了表征。实验结果表明:反应介质与前驱体比例一定的条件下,延长保温时间对CdMoO4结晶形貌有较大的影响;而在保温时间不变的条件下,增加盐的比例,对CdMoO4结晶形貌没有较大的影响。
Nanoparticles and nanocluster materials are a new class of advanced materials exhibiting unique chemical and physical properties compared to those bulk materials. Tungstates and molybdates are two important families of inorganic materials which have high potential applications in various fields, such as in photoluminescence, microwave applications, optical fibers, scintillator materials, humidity sensors, magnetic properties, and catalysis. Tungstates and molybdates have been prepared by different routs, such as Czochralski method, solid state reaction, heating of RO film with WO3 vapor, sol-gel reaction. However, these methods have some disadvantages, e.g. high temperature and prolonged reaction time being needed, larger particles in size and irregular in morphology, and inhomogeneous chemical composition. On the contrary, molten salt method and hydrothermal method are of simple instrumentations, low temperature, short holding time and available to a large scale production. Therefore, in this thesis, we have prepared tungstates and molybdates powders by a molten salt method and hydrothermal method.
     1. Na2WO4 and Zn(NO3)2 were used as the starting materials, and ZnWO4 nanoparticles were successfully synthesized by a molten salt method with LiNO3 salt. The powders obtained were characterized by using X-ray diffractometer (XRD), a transmission electron microscope (TEM) and photoluminescence spectra (PL), respectively. The morphology and dimension of the ZnWO4 nanorods were affected by such conditions as calcining time and the weight ratio of the salt to ZnWO4 precursor. The improved PL properties of the ZnWO4 nanorods can be obtained with the decease to nanometer scale in particle size.
     2. SrWO4 nano-particles with a scheelite structure were successfully prepared by a molten salt method, Na2WO4 and SrCl2 as the starting materials. SrWO4 nano-particles were characterized by XRD, SEM, TEM and PL, respectively. The results showed that we could get SrWO4 powders by a direct precipitation in the room temperature, which were larger and inhomogeneous. However, SrWO4 nano-particles could be obtained by a molten salt method at a low temperature. The particle size, morphology, and crystallinity of SrWO4 nanoparticles are strongly relied on such experimental parameters as holding time and weight ratio of LiNO3 salt to SrWO4 precursor. The formation and development of SrWO4 crystallites should be based on a dissolution-recrystallization process. The improved PL properties of SrWO4 crystallites strongly relied on their particle size and crystallinity. The better crystallinity, the higher PL emission peak is.
     3. CdMoO4 nano-particles were successfully synthesized by a hydrothermal process at a low temperature, and the powders were characterized in detail by XRD, SEM, TEM and PL, respectively. CdMoO4 particles could be obtained under the hydrothermal condition from micrometer to nanometer sizes by varying their precursors. The PL spectra results showed that the optical properties of CdMoO4 crystallites obviously relied on their particle sizes. The improved PL properties of CdMoO4 crystallites can be obtained by decreasing the particle size to a nanometer scale.
     4. CdMoO4 precursor was synthesized by a microemulsion method with Na2MoO4 and Cd(NO3)2 as the starting materials, and CdMoO4 nano-particles were successfully synthesized by a molten salt method. The powders were characterized in detail by XRD, SEM, TEM and PL, respectively. The results showed that with a proper weight ratio of the salt, prolonging the holding time can affect the CdMoO4 crystallinity and particle size a lot. However, with a definite holding time, changing the weight ratios of the salt has little influence on the CdMoO4 crystalinity and particle size. The improved PL properties of CdMoO4 crystallites strongly relied on their particle size and crystallinity. The better crystallinity, the higher PL emission peak is.
引文
[1] B. N. Granguly and M. Nicol, Effect of hydrostatic pressure on the vibrational properties and the Structure of SrWO4 and PbWO4, Phys. Stat. Sol. (b), 1997, 617-622 .
    [2] A. W. Sleight and B. L. Chamberland, Transition metal molybdates of the type AMoO4, Inorganic Chemistry, 7(8), 1968, 1672-1675 .
    [3] Malcolm Nicol and Jean F. Durana, Vibration Raman spectra of CaMoO4 and CaWO4 at high pressures, The Journal of Chemical Physics, 54(4), 1971, 1436-1439 .
    [4] S.Desgreners, S. Jandl and C. Carlone, Temperature dependence of the Raman active phones in the CaWO4, SrWO4, and BaWO4, J. Phys. Chem. Solids, 45 (11/12), 1984, 1105-1109.
    [5] C. D. Wagner, W. M. Riggs, L. E. Davis and G. E. Muilenberg, A Reference Book of Standard Data for Use in X-Ray Photoelectron Spectroscopy (Published by Perkin-Elemer Corporation and Physical Electrons Divison, 6509 Flying Cloud Drive Eden Prairie, Minnesota 553447, USA), 1979, 42-43 .
    [6] C. E. Tyner and H. G. Drickarner, Studies of the luminescence efficiency of tungstate and molybdate phosphors as a function of temperature and high pressure, The Journal of Chemical Physics, 67(9), 1997, 4103-4115.
    [7] J. A.Groenink, C. Hakfoot, and G. Blasse, The Luminescence of Calcium Molybdate, Phys. Stat. Sol. (a), 54(477), 1979, 329-336.
    [8] R. Grasser, E. Pitt, A. Scharmann, and G. Zimmerer, Optical properties of CaWO4 and CaMoO4 crystals in the 4 to 25ev region, Phys. Stat. Sol. (b), 69,1975, 359-367.
    [9] G. Blasse and W. J. Schipper, Low-temperature photoluminescence of strontium and barium tungstate, Phys. Stat. Sol. (a), 25, 1974, K163-K165.
    [10]张志焜,崔作林著。纳米技术与纳米材料[M]。北京:国防工业出版社,2000,10。
    [11] Siegel R W, Nanostructured materials-mind over matter. Nanostructured Materials, 3, 1993, 1-18.
    [12] Halperin W P, Quantum size effect in metal particles. Rev of Modern Phys. 58(3), 1986, 533-606.
    [13] Zhang Zhikun, Cui Zuolin, Chen Kezheng, et al. Structure of nano-conductive fibers. Chinese Science Bulletin, 42, 1997, 1535-1537.
    [14]苏品书,超微粒子材料技术[M],复汉出版社,1989.
    [15] Kawabata A.On the charge neutrality of metallic fine particles. J. Phys. Pariscolloq, 38(2), 1977, 83-35.
    [16] Denton R, Müehlschlegel B, Scalapino D J. Thermodynamic properties of electrons in small metal particles. Phys. Rev. B. 7(8), 1973, 3589-3607.
    [17] Buttet J, Car R, Myles C W. Size dependence of the conduction-electron-spine-resonance g shift in a small sodium particle: Orthogonalized standing-wave calculations. Phys. Rev. B: Condens. Matter, 26(5), 1982, 2414-2431.
    [18] Denton R, Müehlschlegel B, Scalapino D J. Electronic heat capacity and susceptibility of small metal particles. Phys. Rev. Lett. 26 (12), 1971, 707-711.
    [19] Ryogo Kubo, Arisato Kawabata, Shunichi Kobayashi, Electronic properties of small particles Annu. Rev. Mater. Sci. 14, 1984, 49-66.
    [20] Klein D L, Roth R, Lim A K, et al. A single-electron transistor made from a CdSe nanocrystal, Nature, 389, 1997,699.-703
    [21] Feldheim D L, Keating C D. Self-assembly of single electron transistors and related devices, Chem. Soc. Rev, 27, 1998, 1-12.
    [22] Chou S Y, Krauss P R, Zhang W, et al. Sub-l0nm imprint lithography and applications, J. Vac. Sci. Technol., B15(6), 1997,2897-2904.
    [23]张立德,牟季美。纳米材料学[M]。沈阳:辽宁科学技术出版社,1994.
    [24] Cai W P, Zhang L D. J. Phys: Condens Mater., Characterization and the optical switching phenomenon of porous silica dispersed with silver nano-particles within its pores, 8(40), 1996, L591- L596.
    [25] Ferrai A. Development, Industrialization of Nan发omposite Ceramic Materials, in Procedings of Nanostructure Materials and Coating, 95, Atlana Airport Marriot. Atlanta, Georgia. USA, 1995.
    [26] Mo C M, Yuan Z, Zhang L D, photoluminescence of nanoparticles, et al. Nanostructured Mater., (2), 1993, 113-116.
    [27] Ball P, Garwin L. Science at the atomic scale, Nature, 355, 1992, 761-766.
    [28] Tabagi H, Ogawa H, Quantum size effects on photoluminescence in ultra fine Si particle,Appl. Phys. Lett, 56(24), 1990, 2379-2380.
    [29]舒磊,俞书宏,钱逸泰。半导体硫化物纳米微粒的制备。无机化学学报,15(1),1999,1-7.
    [30]左东华,张志焜,崔作林。纳米镍在硝基苯加氢中催化性能的研究[J].分子催化,9(4),1995,298-302.
    [31]沈迪新,陈宏德,田群,等。我国汽车尾气污染,污染控制与对策。环境科学进展,5(6),1997,23-33.
    [32]王俊珍,付希贤,杨秋华等。钙钛矿型SrFeO3催化降解水溶性燃料。环境科学与技术, 91(3),2000,1-2.
    [33]张梅,杨绪杰,陆路德等。纳米TiO2一种性能优良的光催化剂。化工新型材料,28(4),2000,11-13.
    [34]祖庸,雷闫盈,王训等。纳米ZnO的奇妙用途。化工新型材料,27(3),1999,14-16.
    [35]袁荞龙,罗宁,国内钛白粉生产、研究及应用进展.化工进展,(5),1997,5-7.
    [36]朱胜利,施世态,徐锦伟。纳米氧化锌在橡胶制品中的应用研究.弹性体,12(2),2002,48-51.
    [37]苏学军,郑典模。纳米SiO2的应用进展.江西化工,(1),2002,6-10.
    [38]张中太,林元华,唐子龙等。纳米材料及其技术的应用前景。材料工程,(3),2000,42-47.
    [39] J. Eckert, J.C. Halzer, C.E. Krill, et al, Mechanically driven alloying and grain size changes in nanocrystalline Fe-Cu powders. J. Appl. Phys. 73, 1993, 2794-2804.
    [40] H.Gleiter, Nanocrystalline materials, Prog. Mater. Sci., 33, 1989, 223-315.
    [41]汪国忠.半导体和金属纳米材料的制备及自组织生长和物性研究.中国科学院固体物理研究所博士学位论文,2002,2.
    [42] G.L Zhang, et al. Preparation of Fe nanocrystalline in SiO2 by ion implantation. Appl. Phys. Lett., 61, 1992, 2527-2529.
    [43] J.J. McClelland, et al. Laser Focused Atomic Deposition. Science, 262, 1993, 877-880.
    [44] J. S. Heggery, W. R. Cannon. In: Laser Induced Chemical Process. J. Steinfeld ed. New York: Plenum, 1981.
    [45] Aegerter, A. Michel. Sol-gel niobium pentoxide: A promising material for electrochromic coatings, batteries, nanocrystalline solar cells and catalysis. Solar Energy Materials and Solar Cells, 68 (3-4), 2001, 401-422.
    [46] L. Burtrand, J. P. Zhang. Preparation, structure evolution and dielectric properties of BaTiO3thin films and powders by an aqueous sol-gel process. Thin Solid films, 388(1-2), 2001, 107-113
    [47] F. Fievet, J. P. Lagier, etal. Homogenous and Heterogeneous Nucleations in the Polyol Process For the Preparation of Micron and Submicron Size Metal Particles. Solid State Ionics, 32/33, 1989, 198-205.
    [48] Z. Hu, etal. Amorphous Iron-Boron Powders Prepared by Chemical Reduction of Mixed Solutions:Dependence of Composition upon Reaction Temperature. J.Chem. Soc.:Chem. Commun.,1995, 247-332.
    [49] M. A. Chamarro, C. Gourdon, Selective excitation of nanocrystals by polarized light. Solid State Commun 10, 1992, 967-970.
    [50] M. Y. Han, W. Huang, C. H. Chew, etal, Large Nonlinear Absorption in Coated Ag2S/CdS Nanoparticles by Inverse Microemulsion. J. Phys. Chem. B, 102, 1998, 1884-1887.
    [51] I. Yamaguchi,T. Kimishima, K. Osakada, and T. Yamamoto. Ru and Sm Catalyzed Polyaddition of Dialdehydes to Give Poly(ester)s. Application of Tishchenko Type Reactions to Polymer Synthesis. J. Polym. Sci.,Part A: Polym. Chem. 33, 1997, 1265-1273.
    [52] T. Torimoto, H. Uchida, T. Sakata, et al. Surface structures of lead sulfide microcrystals modified with 4-(hydroxythio)phenol and their influences on photoinduced charge transfer. J. Am. Chem. Soc. 115 (5), 1993, 1874-1880.
    [53] J. P. Spat z, A. Roesher, M. Moller, Gold Nanoparticles in Micellar Poly (styrene)-b-Poly(一ethyleneoxide) Films. Adv. Mater. 8, 1996, 337-340.
    [54] F. C. Meldrum, V. J. Wade, et al. Synthesis of inorganic nanophase materials in supramolecular protein cages. Nature, 349, 1991, 684-687.
    [55] Y. Li, J. Wan, Z. Gu, Templated Synthesis of CdS Nanowires in Hexagonal Liquid Crystal Systems, Acta Physico-Chimica Sinica, 15, 1999, 1.
    [56]施尔畏,夏长泰,王步国等.水热法的应用与发展.无机材料学报,11, 1996, 193-206.
    [57]川谢博.纳米材料的表面活性剂控制生长及溶剂热催化生长.中国科学技术大学硕士学位论文,2002, 13.
    [58] W. S. Sheldrick, M. Wachhold, Solventothermal Synthesis of Solid-State Chalcogeni- dometalates. Angew. Chem. Int. Ed. Eng. 36, 1997, 206-224.
    [59] P. Feng, X. Bu, G. D. Stocky. Hydrothermal Syntheses and Structural Characterizations of Cobalt Phosphate Based Zeolite Analogues. Nature, 388, 1997, 735-741.
    [60]中国科学院吉林物理所和中国科学技术大学《固体发光》编写组编。固体发光[M]。北京:中国科学院出版社,1976,4-15.
    [61]徐叙瑢。发光材料与显示技术[M].北京:化学工业出版社,2003,3-10.
    [62]肖志国。蓄光型发光材料及其制品[M]。北京:化学工业出版社,2002,1-20。
    [63]李建宇。稀土发光材料及其应用[M]。北京:化学工业出版社,2003,3-15.
    [64] Dexter D L. A, theory of Sensitized Luminescence in Solids, J. Chem. Phys, 21, 1953, 836-850
    [65] Yu Xianen. Functional Luminescence Materials and Light Luminescence Mechanism, Chinese Light Industry Publishing House.1997.
    [66] Smets B.M.J, Verlijsdonk J.G. The luminescence properties of Eu2+ and Mn2+ doped barium hexaaluminates, Mater.Res.Bull, 21, 1986, 1305-1310.
    [67]刘光滑。稀土固体材料[M]。北京:机械工业出版社,1998,36-50.
    [68]临川二郎。稀土的最新应用技术[M]。北京:化学工业出版社,1981,3-9.
    [69]埃文斯。结晶化学导论[M]。北京:人民教育出版社,1984,22.
    [70] Murayama Y, Takeuchi N, et al, Phosphorescent phosphor, US patent, 1997.
    [71]贡长生,张克立,等。新型功能材料[M]。北京:化学工业出版社,2000,369-372.
    [72]孙家跃,杜海燕,胡文祥。固体发光材料[M]。北京:化学工业出版社,2003,1-9.
    [73]蒋大鹏,赵成久,侯风勤,等。自然发光二极管的制备技术及主要特性。发光学报,24(4),2003,385-389.
    [74]何捍卫,周科朝,熊翔,等。红外-可见光的上转换材料研究进展。中国稀土学报,21(2),2003,123-124.
    [75] Downing E A, Hesselink L, Macfarlane R M. Conference Proceedings Lasers and Electro Optics Society Annual Meeting [C].1994, 6.
    [76] Wauters D, Poelman D, Van Meirhaeghe R L, et al. [J]. Journal of Crystal Growth, 204, 1999, 97-107.
    [77] Ohmi K, Fujimoto K, Tanaka S, et al. Improvement of crystallographic and electroluminescent characteristics of SrS:Ce thin film devices by post-deposition annealing in Ar-S atmosphere, J.Appl. Phys, 78(1), 1995, 428-434.
    [78] Morishita T, Matsuyama H, matsui M, et al, Distribution of luminescent centers in electroluminescent SrS:Ce films prepared by post-annealing in H2S, Applied Surface Science,157, 2000, 61-66
    [79]邓朝勇,王永生,杨胜。无机薄膜电致发光研究进展。功能材料, 33(2),2003,133-135.
    [80]曲崇,徐征,陈晓红,等。PPV固态类阴极射线发光动力学的研究。功能材料,23(2),2002,183-184。
    [81] I. Ya. Fugol, A. G. Belov and E. I. Tarasova, on the nature of emission bands of self-trapped excitons in solid xenon, Solid State Communication, 32,1979,787-790
    [82]李傅,顾镇南,林建华,等。YTaO4:Gd, Eu体系光致发光中的能量传递。物理化学学报, 15(9),1999,794-797.
    [83] Brixner L H, Chen H-y, On the Structural and Luminescent Properties of the M' on the Earth Tantalates, J. Electrochem. Soc. 130, 1983, 2435-2443.
    [84] Schipper W J, Hoogendorp M F, Blasse G, The luminescence and X-ray storage properties of Pr3+ and Ce3+ in YNbO4 and M′-YTaO4, J. Alloys Comps. 202, 1993, 283-287
    [85]张明荣,李倍俊,胡关钦,殷之文,白钨矿结构的钨、钼酸盐晶体的光吸收边及其起因,光学学报,18(11),1998,1591-1595.
    [86] Grasser R, Scharmann A, Luminescencein CaWO4 and CaWO4:Pb crystals J. Lumin, 1976,473-478.
    [87] Groenink J A, Blasse G, Some new observations on the luminescence of PbMoO4 and PbWO4. J.Solid State Chem. 32(1), 1980, 9-20.
    [88] Koepke Cz, Wojtowicz A J, Lempicki A. Exited-state absorption in eximer-pumped CaWO4 crystals. J.Lumin 54(5), 1993, 345-355.
    [89] Iu R Kebaciog, Muller A, SOCC MO calculations on the ions WX12-, MoX12- and VX12-(X=O,S,Se).Chem. Phys. Lett. 8(1), 1971, 59-62.
    [90] Kr?ger, Some Aspects of the Luminescence of Solids, Elsevier, Amsterdam, 1948.
    [91] H. Grassmann, H.G. Moser, Scintillation properties of ZnWO4, J. Lumin. 33, 1985, 109-112.
    [92] Y.C. Zhu, J.G. Lu, Y.Y. Shao, et al., Nucl. Instrum. Methods A, Measurements of the scintillation properties of ZnWO4 crystals, 244, 1986, 579-582
    [93] B.C. Grabmaier, Crystal scintillators, IEEE Trans. Nucl. Sci. 31, 1984, 372-376.
    [94] P.J. Born, D.S. Robertson, P.W. Smith, et al, The preparation and scintillation properties of zinc tungstate single crystals, J. Lumin, 24/25, 1981, 131
    [95] T. Oi, K. Takagi, T. Fukazawa, Electrical properties of InSb thin films in low noise hallgenerators on a ferrite substrate, Appl. Phys. Lett 36 (4), 1980, 278.
    [96] S.C. Sabharwal, Sangeeta, Study of growth imperfections, optical absorption, thermoluminescence and radiation hardness of CdWO4 crystals J. Crysl, Growth, 200, 1999, 191.
    [97] J.D. Vergados, The neutrinoless double beta decay from a modern perspective, Phys. Rep. 361, 2002, 1.
    [98] Yuri Zdesenko, The future of doubleβdecay research, Rev. Mod. Phys. 74, 2002, 663-684.
    [99] S.R. Elliot, P. Vogel, High Energy Physics - Phenomenology (hep-ph); High Energy Physics - Experiment (hep-ex), Ann. Rev. Nucl. Part Sci. 52 (2002) 115-151.
    [100] V.I. Tretyak, Yu.G. Zdesenko, Tables of double beta decay data, At. Data Nucl. Data Tables 61, 1995, 43. V.I. Tretyak, Yu.G. Zdesenko, Tables of doubleβdecay data - an update, At. Data Nucl. Data Tables, 80, 2002, 83
    [101] P. Belli, et al., New limits on spin-dependent coupled WIMPs and on 2βprocesses in 40Ca and 46Ca by using low radioactive CaF2(Eu) crystal scintillators, Nucl. Phys. B, 563, 1999, 97-106.
    [102] J.C. Brice, P.A.C. Whiffin, Br. Solute striae in pulled crystals of zinc tungstate, J. Appl. Phys. 18, 1967, 581-691.
    [103] W. Jander, W. Wenzel, Die aktiven Zwischenzust?nde, die bei der Bildung von Wolframaten, besonders des Kupferwolframates, im festen Zustande auftreten. 26. Mitteilungüber Reaktionen im festen Zustande, Z. Anorg. Allg. Chem. 246, 1941, 67-80.
    [104] A.R. Phani, M. Passacantando, L. Lozzi, S. Santucci, Structural characterization of bulk ZnWO4 prepared by solid state method, J. Mater. Sci. 35, 2000, 4879-4883.
    [105] A. Kuzmin, J. Purans, Local atomic and electronic structure of tungsten ions in AWO4 crystals of scheelite and wolframite type, Radiat. Meas. 33, 2001, 583-586.
    [106] Eiji Ikada and Teizo Watanabe. New asymmetric dielectric relaxations in two liquid, Phys. Chem. 78 (1974) 1078-1082
    [107] M. Bonanni, L. Spanhel, M. Lerch, E. F€uglein, G. M€uller, Conversion of Colloidal ZnO-WO3 Heteroaggregates into Strongly Blue Luminescing ZnWO4 Xerogels and Films, Chem.Mater, 10 (1998) 304-310
    [108] F.-S. Wen, X. Zhao, H. Huo, J.-S. Chen, E.-S. Lin, J.-H. Zhang, Hydrothermal synthesis and photoluminescent properties of ZnWO4 and Eu3+-doped ZnWO4, Mater.Lett, 55, 2002, 152-157.
    [109] M.H. Huang, S. Mao, H. Feick, H. Yan, Y.Wu, H. Kind, E.Weber, R. Russo, P. Yang, Measurement of the production rates ofηandη′in hadronic Z decays, Science 292, 2001, 1897-1990.
    [110] Y. Cui, C.M. Lieber, Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks, Science 291, 2001, 851-853.
    [111] H.W. Liao, Y.F. Wang, X.M. Liu, Y.D. Li, Y.T. Qian, Hydrothermal Preparation and Characterization of Luminescent CdWO4 Nanorods, Chem. Mater. 12, 2000, 2819-2821.
    [112] G.R. Patzke, F. Krumeich, R. Nesper, Oxidic nanotubes and nanorods—Anisotropic modules for a future nanotechnology, Angew, Chem., Int. Ed. Engl. 41, 2001, 2446-2461
    [113] J.T. Hu, T.W. Odom, C.M. Lieber, Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes, Acc. Chem. Res. 32, 1999, 435-445.
    [114] R. Xu, Synthesis and Preparation of LiNO3, Inorg. Chem. 199, 2001, 133-136.
    [115] Yonggang Wang , Junfeng Ma, Jiantao Tao, Xiaoyi Zhu, Low temperature synthesis of CaMoO4 nanoparticles Ceramics International 33, 2007, 693-695.
    [116] G. Blasse, W.J. Schipper, Low-temperature photoluminescence of strontium and barium tungstate, Phys. Status Solidi, A 25, 1974, 163-166.
    [117] S. Oishi, M. Hirao, Growth of CaWO4 whiskers from kcl flux, J. Mater. Sci. Lett. 8, 1989, 1397-1399.
    [118] M. Kobayashi, M. Ishii, Y. Usuki, H. Yahagi, Scintillation characteristics of PbWO4 single crystals at room temperature, Nucl. Instrum. Methods Phys. Res., A 333, 1993, 429-432.
    [119] V. Murk, M. Nikl, E. Mihokova', K. Nitsch, A Study of electron excitations of CaWO4 and PbWO4 single crystals, J. Phys., Condens. Matter 9, 1997, 249-253.
    [120] M. Martini, F. Meinardi, G. Spinolo, A. Vedda, M. Nihl, Y. Usuki, Shallow traps in PbWO4 studied by wavelength-resolved thermally stimulated luminescence, Phys. Rev., B 60, 1999, 4653-4657.
    [121] A.A.Kaminski, H.J.Eichler, et al. Properties of Nd-Doped and Undoped Tetragonal PbWO4, NaY(WO4)2, CaWO4, and Undoped Monoclinic ZnWO4 and CdWO4 as Laser-Active and Stimulated Raman Scattering-Active Crystals, Appl. Opt. 38 (21), 1999, 4533-4536.
    [122] M.J.Treadaway. R.C.Powell. Energy transfer in samarium-doped calcium tungstate crystals,Phys. Rev. B 11 (2), 1975, 862-865
    [123] V.Nagirnyi, E.Feldbach, L.Jonsson, et al. Excitonic and recombination processes in CaWO4 and CdWO4 scintillators under synchrotron irradiation, Radiat. Measure 29 (3/4), 1998, 247-252.
    [124] Woo-seok Cho, M.Yashima, M.Kakihana, et al. Room-Temperature Preparation of Highly Crystallized Luminescent SrWO4 Film by an Electrochemical Method, J. Am. Ceram. Soc. 78 (11), 1995, 3110-3114.
    [125]师昌绪主编. [M].材料大辞典北京:化学工业出版社,1994, 11-12。
    [126]王步国,施尔畏,仲维卓,殷之文,钨酸盐晶体中负离子配位多面体的结晶方位与晶体的形貌[J],无机材料学报,13(5),1998,648-653。
    [127]张明荣,李倍俊,胡关钦,殷之文,白钨矿结构的钨、钼酸盐晶体的光吸收边及其起因,光学学报[J], 18(11),1998,1591-1595。
    [128]仲维卓,华至素坤编,[M]晶体生长形态学,北京:科学出版社,1999,132-135。
    [129] Granguly B. N. and Nicol M., Effect of hydrostatic pressure on the vibrational properties and the structure of SrWO4 and PbWO4 [J], Phys. Stat. Sol. (b), 79, 1997, 617-622
    [130] Sleight A. W. and Chamberland B. L., Transition metal molybdates of the type AMoO4, Inorganic Chemistry, 7 (8), 1968, 1672-1675.
    [131] S. Nishigaki, S. Yano, H. Kato, T. Nonomura, BaO-TiO2-WO3 microwave ceramics and crystalline BaWO4, J. Am. Ceram. Soc. 71, 1988, C-11
    [132] W S Chow, M. Yoshimura, Jpn. Hydrothermal, Hydrothermal-Electrochemical, and Electrochemical Synthesis of Highly Crystallized Barium Tungstate Films, J. Appl. Phys. 36, 1997, 1216-1222
    [133] T. Esaka, Evaluation of proton concentration and mobility in Yb doped SrCeO3, Solid State Ion. 36, 1989, 89-95.
    [134] Y. Kashiwakura, O. Kanehisa, Japan Patent No. 1-263188, 1989.
    [135] B. N. Ganguly, M. Nicol. Effect of hydrostatic pressure on the vibrational properties and the structure of SrWO4 and PbMoO4, Phys. Status Solidi B, 79, 1977, 617-622
    [136] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R.Russo, P. Yang, Room-Temperature Ultraviolet Nanowire Nanolasers. Science 292, 2001, 1897-1899.
    [137] Y. Cui, C.M. Lieber, Functional Nanoscale Electronic Devices Assembled using Silicon Nanowire Building Blocks. Science 291, 2001, 851-853.
    [138] H.W. Liao, Y.F. Wang, X.M. Liu, Y.D. Li, Y.T. Qian, Hydrothermal Preparation and Characterization of Luminescent CdWO4 Nanorods. Chem. Mater. 12, 2000, 2819-2821.
    [139] G.R. Patzke, F. Krumeich, R. Nesper, Oxidic nanotubes and. nanorods: Anisotropic modules for a future nanotechnology. An-gew. Chem., Int. Ed. Engl. 41, 2002, 2446-2461.
    [140] J.T. Hu, T.W. Odom, C.M. Lieber, Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes. Acc. Chem. Res. 32, 1999, 435-445.
    [141] R. Xu, Synthesis and Preparation of LiNO3, Inorg. Chem. 199, 2001, 133-136.
    [142] V. Thangadurai, C. Knittlmayer, W. Weppner, Mechanic room temperature preparation and characterization of scheelite-type ABO4 (A = Ca, Sr, Ba, Pb; B = Mo, W) powders. Mater. Sci. Engin. B 106, 2004, 228–233
    [143] J.O. Eckert Jr, C.C. Hung-Houston, B.L. Gersten, M.M. Lencka, R.E. Riman, Kinetics and mechanisms of hydrothermal synthesis of barium titanate. J. Am. Ceram. Soc. 79, 1996, 2929-2939.
    [144] G. W. Mellors, S. Sender off, Appl. Fund. Thermod Metal Processing, Conf. Therm. Properties Mat. Univ. Pittsburgh, 1967, 81-86.
    [145] N. N. Leyzerovich , K. G. Bramnik , T. Buhrmester , H. Ehrenberg and H. Fuess, Electrochemical intercalation of lithium in ternary metal molybdates MMoO4 (M: Cu, Zn, Ni and Fe), Journal of Power Sources 127, 2004, 76-84.
    [146] V.B. Mikhailika, H. Krausa, D. Wahla, H. Ehrenbergb, M.S.Mykhaylyk, Optical and luminescence studies of ZnMoO4 using vacuum ultraviolet synchrotron radiation, Nuclear Instruments and Methods in Physics Research A, 2006.
    [147] V.B. Mikhailik, H. Kraus, D. Wahl, M.S. Mykhaylyk, Studies of electronic excitations in MgMoO4, CaMoO4 and CdMoO4 crystals using VUV synchrotron radiation, Phys. Stat.Sol(b) 242, 2005, R17-R19.
    [148] D. Spassky, S. Ivanov, I. Kitaeva, V. Kolobanov, V. Mikhailin, L. Ivleva, I. Voronina, Optical and luminescent properties of a series of molybdate single crystals of scheelite crystal structure, Phys. Stat. Sol(c). 2, 2005, 65-69.
    [149] V. B. Mikhailik, H. Kraus, M. Itoh, D. Iri, M. Uchida, Radiative decay of self-trapped excitons in CaMoO4 and MgMoO4 crystals, J. Phys. Condens. Matter. 17, 2005, 7209-7218.
    [150] B. L. Chamberland, J. A. Kafalas, J. B. Goodenough, Characterization of chromiummanganese oxide (MnCrO3) and chromium (III) manganate, norg. Chem. 16, 1997, 44-48.
    [151] T. Qi, K. Takagi, T. Fukazawa, Scintillation study of ZnWO4 single crystals, Appl. Phys. Lett. 36, 1980, 278-282.
    [152] L. G. Van Uitert, S. Preziosi, Zinc Tungstates for Microwave Maser Applications, J. Appl. Phys. 33, 1962, 2908-2910.
    [153] H. Wang, F. D. Medina, Y. D. Zhou, Q. N. Zhang, Temperature dependence of the polarized Raman spectra of ZnWO4 single crystals, Phys. Rev. B 45, 1992, 10356-10359.
    [154] H. Grassmann, H. G. Moser, E. Lorenz, Scintillation properties of ZnWO4, J.Lumin, 33, 1985, 109-112.
    [155] W. Qu, W. Wlodarski, J. U. Meyer, Comparative study on micromorphology and humidity sensitive properties of thin-film and thick-film humidity sensors based on semiconducting MnWO4, Sens. Actuators B 64, 2000, 76-79.
    [156] A. Karipides and D. A. Haller, The crystal structure of tetraphenylgermanium, Acta Crystallogr. B, 28, 1972, 2889-2892.
    [157] R. Grasser, E. Pitt, A. Scharmann, G. Zimmerer, Optical properties of CaWO4 and CaMoO4 crystals in the 4 to 25 eV region, physica status solidi (b ) 69, 1975, 359-368.
    [158] S.B. Mikhrin, A.N. Mishin, A.S. Potapov, P.A. Rodnyi, A.S. Voloshinovskii, Nucl. Inst. Meth. A. 486, 2002, 295-297.
    [159] Dmitry A. Spassky, Sergey N. Ivanov, Vitaly N. Kolobanov, Vitaly V. Mikhailin, Vladimir N. Zemskov, Boris I. Zadneprovski, Leonid I. Potkin, Optical and luminescent properties of the lead and barium molybdates, Rad. Meas. 38, 2004, 607-610.
    [160] B. K. Chandrasekhar and William B White, Luminescence of single crystal CaMoO4, Mater. Res. Bull, 25, 1990, 1513-1518.
    [161] R. Grasser, E. Pitt, A. Scharmann, G. Zimmerer, Optical properties of CaWO4 and CaMoO4 crystals in the 4 to 25 eV region, physica status solidi (b) 69, 1975, 359-368.
    [162] L. F. Johnson, G. D. Boyd, K. Nassau, and R. R. Soden, Continuous Operation of a solid-state Optical Maser, Phys. Rev 126, 1962, 1406-1409 .
    [163] A. N. Belsky, V. V. Mikhailin, A. N. Vasil'ev, I. Dafinei, P. Lecoq, C. Pedrini, P. Chevallier, P. Dhez and P. Martin, Fast luminescence of undoped PbWO4 crystal, Chem. Phys. Lett 243 , 1995, 552–558.
    [164] P.A. Christian, J.N. Carides, F.J. DiSalvo, J.V. Waszczak, Vanadium oxide cathode materials for secondary lithium cells, J. Electrochem. Soc.127 (11), 1980, 2315-2319
    [165] J.O. Besenhard, J. Heydecke, E. Wudy, H.P. Fritz, W. Foag, Characteristics of molybdenum oxide and chromium oxide cathodes in primary and secondary organic electrolyte lithium batteries. Part II. Transport properties, Solid State Ion. 8, 1983, 61-71.
    [166] T. Tsumura, M. Inagaki, Lithium insertion/extraction reaction on crystalline MoO3, Solid State Ion. 104, 1997, 183-189
    [167] A. Yu, N. Kumagaj, Z. Liu, J. Lee, Preparation of sodium molybdenum oxides by a solution technique and their electrochemical performance in lithium intercalation, Solid State Ion. 106, 1998, 11-18.
    [168] R.H. Sanchez, L. Trevino, A.F. Fuentes, A. Martinez-de la Cruz, L.M. Torres-Martinez, Electrochemical lithium insertion in two polymorphs of a reduced molybdenum oxide, J. Solid State Electrochem. 4, 2000, 210-215.
    [169] Prashant Kumar Pandey , N.S. Bhave, R.B. Kharat, Preparation and characterization of spray deposited NiMoO4 thin films for photovoltaic electrochemical studies, Materials Research Bulletin. 41, 2006, 1160-1169.
    [170] Joaquín L. Brito and A. Liliana Barbosa, Effect of Phase Composition of the Oxidic Precursor on the HDS Activity of the Sulfided Molybdates of Fe(II), Co(II), and Ni(II), J. Catal 171, 1997, 467-475.
    [171] Jeong Ho Ryu, Bong Geun Choi, Jong-Won Yoon, Kwang Bo Shim, Kinuyo Machi, Kenji Hamada, Synthesis of CaMoO4 nanoparticles by pulsed laser ablationin deionized water and optical properties, Journal of Luminescence, 124, 2007, 67-70.
    [172] Jeong Ho Ryu , Jong-Won Yoon, Chang Sung Lim, Kwang Bo Shim, Micr owave-assisted synthesis of barium molybdate by a citrate complex method and oriented aggregation, Materials Research Bulletin 40, 2005, 1468–1476.
    [173] C. Mazzocchia, C. Aboumrad, C. Diagne, E. Tempesti, J.M.Herrmann, G. Thomas, On the NiMoO4 oxidative dehydrogenation of propane to propene: some physical correlation with the catalytic activity, Catal. Lett 10, 1991, 181-191.
    [174] Xiang Huang, Junfeng Ma, Pingwei Wu, Yingmo Hu, Jinhui Dai, Zhibin Zhu, Haiyan Chen, Hongfen Wang, Hydrothermal synthesis of LiCoPO4 cathode materials for rechargeable lithiumion batteries, Materials Letters 59, 2005, 578-582.
    [175] Xue D, Betzler K, Hesse H, Lammer D. Linear and nonlinear optical susceptibilityies of orthorhombic rare earth molybdates RE2(MoO4)3, Journal of Physics and Chemistry of Solids, 63, 2002, 359-361.
    [176] Volkov V, Cascales C, Kling A, Zaldo C. Growth, Structure, and Evaluation of Laser Properties of LiYb(MoO4)2 Single Crystal. Chemistry of Materials, 17, 2005, 291-300.
    [177] Tempesti E, Kaddouri A, Mazzocchia C, Sol-gel processing of silica supported Ni and Co molybdate catalysts used for isoC4 alkane oxidative dehydrogenation. Applied Catalysis A, 166, 1998, 259-261
    [178] Zhang Y J, Rodr'iguez-Ramos I, Guerrero-Ruiz A, Oxidative dehydrogenation of isobutene over magnesium molybdate catalysts. Catalysis Today, 61, 2000, 377-382.
    [179] Calafat A, Vivas F, Brito J L. Effects of phase composition and of potassium promotion on cobalt molybdate catalysts for the synthesis of alcohols from CO2 and H2. Applied Catalysis A, 172, 1998, 217-224
    [180] Stern D L, Grasselli R K, Reaction Network and Kinetics of Propane Oxydehy-drogenation over Nickel Cobalt Molybdate, Journal of catalysis, 167, 1997, 560-569.
    [181] Sharma N, Shaju K M, SubbaRao G V, Chowdari B V R, Dong Z L, White T. Carbon-Coated Nanophase CaMoO4 as Anode Material for Li Ion Batteries, J. Chemistry of Materials, 16(3), 2004, 504-512.
    [182] (a) Madeira, L.M; Portela, M.F; Mazzocchia, C. Catal. Rev-Sci& Eng. 46, 2004, 53, (b)汪信,陆路德,无机化学学报, 16 (2), 2000, 213.(c )鲍骏,卞国柱,伏义路.催化学报,20( 6), 1999,645.
    [183] William T A, Harrison. Crystal structures of paraelastic aluminum molybdate and ferric molybdateβ-Al2(MoO4)3 andβ-Fe2(MoO4)3 Materials Research Bulletin, 30, 1995, 1325-1331.
    [184] Senguttuvan N, Babu S M, Dhanasekaran R. Some aspects on the growth of lead molybdate single crystals and their characterization. Materials Chemistry and physics, 48, 1997, 120-123
    [185] Magalhaes A A O, Margarit I C P, Mattos O R. Molybdate conversion coatings on zinc surfaces, Journal of electro-analytical chemistry, 572, 2004, 433-440.
    [186] Livage C, Hynaux A, Marrot J, Nogues M. Solution process for the synthesis of the“high-pressure”phase CoMoO4 and X-ray single crystal resolution. J. Matter. Chem, (12)5, 2002,1423-1425.
    [187] Carmen C, Monzzoni F, Scotti R, Cauzzi D, Moggi P, Predieri G. Electron paramagnetic resonance characterization of silica-dispersed copper molybdate obtained by sol-gel and impregnation methods. J. Mater. Chem. 9(2), 1999, 507-513.
    [188] Richmind W, Hockridge J G, Loan M, Parkinson G M. A New Iron Oxyhydroxide phase: The Molybdate-Substituted Analogue of Akaganèite. Chemistry of Materials, 16(17), 2004, 3203-3205.
    [189] Lind C, VanDerveer D G, Wilkinson A P, Chen J, Vaughan M T, Weidner D. J. New High-Pressure From of the Negative Thermal Expansion Materials Zirconium Molybdate and Hafnium Molybdate. Chem. Mater., 13(2), 2001, 487-490.
    [190] Wagner G W, Procell L R, Yang Y C, Bunton C A. Molybdate/Peroxide Oxidation of Mustard in Microemulsions. Langmuir, 17(16), 2001, 4809-4811.
    [191] Bostick B C, Fendorf S, Helz G R, Environ G R. Differential adsorption of molybdate and tetrathiomolybdate on Pyrite (FeS2). Environ. Sci. Technol., 37, 2003, 285-291.
    [192] Beale A M, Sankar G. In Situ Study of the Formation of Crystalline Bismuth Molybdate Materials under Hydrothermal Conditions, Chem. Mater, 15, 2003, 146-153.
    [193] Rodriguez J A, Chaturvedi S, Hanson J C. Electronic Properties and Phase Transformations in CoMoO4 and NiMoO4: XANES and Time-Resolved Synchrotron XRD Studies. J. Phys. Chem. B, 102(8), 1998, 1347-1355.
    [194] Kurosaki K, Oyama T, Muta H, Uno M, Yamanaka S. Thermoelectric properties of perovskite type barium molybdate, J. Alloys Compds. 372, 2004, 827-831.
    [195] Bramnik K G, Ehrenberg H, Zeitschrift fur anorganische und allgemeine Chemic, 630, 2004, 1336-1339.
    [196] William T A, Harrison L, Dussack L, Jacobson A J. Hydrothermal Syntheses and Properties of New Layered Alkaline Earth Molybdate(VI) Hydrates: Single-Crystal Structure of BaMoO4.H2O, Journal of solid state chemistry, 116, 1995, 95-102.
    [197] Roy A, Das D, Ghose J. M?ssbauer, studies on zn-substituted iron molybdate. Materials Research Bulletin, 37, 2002, 2383-2392.
    [198] Palacio L A, Echavarria A, Saldarriaga C. Crystal structure a cobalt molybdate type ?x:NaCo2OH(H2O)(MoO4)2 . International Journal of Inorganic Materials, 3, 2001, 367-371.
    [199] Rullens F, Devillers M, Lashewsky A. Preparation of simple and mixed nickel and cobalt molybdates using hybrid precursors made from an ordered polymer matrix and inorganic salts, J. Mater. Chem., 14(23), 2004, 3421-3426.
    [200] Sebastian L, Piffard Y, Shukla A K, Taulelle F, Gopalakrishnan J, Synthesis, structure and lithium-ion conductivity of Li2-2xMg2+x(MoO4)3 and Li3M(MoO4)3(MIII=Cr, Fe). J. Mater. Chem. 13(7), 2003, 1797-1802.
    [201] Krivovichev S V, Cahill C L, Burns P C, A Novel Open Framework Uranyl Molybdate: Synthesis and Structure of (NH4)4{(UO2)5(MoO4)7}(H2O)5 . Inorg. Chem., 42(7), 2003, 2459-2464.
    [202] Hangloo V, Pandita S, Bamzai K K, Kotru P N, Sahni N. Cryst. Growth and Characterization of Pure Gd-Heptamolybdate and Mixed Gd-Ba-Molybdate, Crystals Growth Des, 3(5), 2003, 753-759.
    [203] Seara W M. Isosteric Heat of Adsorption of Water Vapor on Bismuth Iron Molybdate Measrued by the Method of Constant Surface Conductance . Langmuir, 17(17), 2001, 5237-5244.
    [204] Rarig R S Jr, Lam R, Zavalij P Y, Ngala J K, LaDuca R L Jr, Greedan J E, Zubieta. Ligand Influences on Copper Molybdate Networks: The Structures and Magnetism of {Cu(3,4′-byp)MoO4},{Cu(3,3′-bpy)0.5MoO4}, and { Cu(4,4′-bpy)0.5MoO4}.1.5H2O. J. Inorg. Chem, 41(8), 2002, 2124-2133.
    [205] Wanklyn, B.M.; Wondre, F.R.; Davison, W.L, New rare earth silicate crystals: Dy2MoSi2Al4O16, compounds in the systems R2O3-SiO2-PbO, and a new form of R2SiO5, Mater.Sci, 10, 1975, 1494-1500.
    [206] Jeong Ho Ryu , Jong-Won Yoon, Chang Sung Lim, Kwang Bo Shim, Microwave-assisted synthesis of barium molybdate by a citrate complex method and oriented aggregation, Materials Research Bulletin 40, 2005, 1468–1476.
    [207] C. Mazzocchia, C. Aboumrad, C. Diagne, E. Tempesti, J.M. Herrmann, G. Thomas, On the NiMoO4 oxidative dehydrogenation of propane to propene: some physical correlation with the catalytic activity, Catal. Lett 10, 1991, 181-191.
    [208] Jeong Ho Ryu, Bong Geun Choi, Jong-Won Yoon, Kwang Bo Shim, Kinuyo Machi, Kenji Hamada, Synthesis of CaMoO4 nanoparticles by pulsed laser ablationin deionized water and optical properties, Journal of Luminescence, 124, 2007, 67-70.
    [209] Kwan, S.; Kim, P; Akana, J.; Yang, P.D, Synthesis and assembly of BaWO4 nanorods, Chem.Commun, 5, 2001, 447-448
    [210] (a )Gong, Q.; Qian, X.P; Cao, H.L; Du, W.M.; Ma, X.D.; Ma, M.S. J. Phys.Chem.B, 110, 2006, 19295.(b) Gong, Q.; Li, G.; Qian, X.P; Cao, H.L.; Du, W.M.; Ma, X.D. J. Colloids and Interfcce Science, 304, 2006, 408.(c)Gong, Q.; Qian, X.R; Ma, X.D.; Zhu, Z.K. Cryst, Growth. Des, 6, 2006, 1821
    [211] (a ) Gen, J. Zhu, J. J. Chen, FIX Cryst. Growth. Des, 6, 2006, 321.(b )Gen, JLv,Y N,D.J. Z hu,J, J. Nanotechnology, 17, 2006, 14-26.
    [212] L. Zhen, W.S. Wang, C.Y. Xu, W.Z. Shao, M.M. Ye and Z.L. Chen, High photocatalytic activity and photoluminescence property of hollow CdMoO4 microspheres. Scripta Materialia 58, 2008, 461–464.
    [213] Qiang Gong, Gang Li, Xuefeng Qian, Hongliang Cao, Weimin Du, Xiaodong Ma, Synthesis of single crystal CdMoO4 octahedral microparticles via microemulsion-mediated route, Journal of Colloid and Interface Science 304, 2006, 408–412.
    [214]潘金生,全健民,材料科学基础[M].北京:清华大学出版社.1998. 583-586
    [215] Toshio Kimura, Tatsuya Takahashi, Taksahi Yamaguchi. Preparation and characteristics of Ni-ferrite powdes obtained in the presence of fused salts. Journal of Materials Sciences, 15, 1980, 1491-1497.
    [216] Yonggang Wang, Junfeng Ma, Jiantao Tao, Xiaoyi Zhu, Jun Zhou, Synthesis of CaWO4 nanoparticles by a molten salt method, Materials Letters, 60, 2006, 291–293.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700